

Create Simple GUI Applications, with Python &
Qt5
The hands-on guide to building desktop apps with
Python.

Martin Fitzpatrick

This book is for sale at http://leanpub.com/create-simple-gui-applications

This version was published on 2019-08-11

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an in-progress
ebook using lightweight tools and many iterations to get reader feedback, pivot
until you have the right book and build traction once you do.

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License

http://leanpub.com/create-simple-gui-applications
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Tweet This Book!
Please help Martin Fitzpatrick by spreading the word about this book on Twitter!

The suggested hashtag for this book is #createsimpleguis.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#createsimpleguis

http://twitter.com
https://twitter.com/search?q=%23createsimpleguis
https://twitter.com/search?q=%23createsimpleguis

Contents

Introduction . 1
Book format . 1
Qt and PyQt . 2
Python 3 . 2

Getting Started . 4
Installation Windows . 4
PyQt5 for Python 3 . 5
PyQt5 for Python 2.7 . 6
Installation Mac . 6
Installation Linux (Ubuntu) . 8

Basic Qt Features . 9
My first Window . 9
Signals, Slots, Events . 16
Actions, Toolbars and Menus . 21
Widgets . 37
Layouts . 52
Dialogs . 64

Qt Creator . 70
Creating a .ui file . 70
Laying out your Main Window . 75
Using your generated .ui file . 81
Adding application logic . 84

Extended Signals . 85
Modifying Signal Data . 85
Custom Signals . 91

CONTENTS

QPainter and Bitmap Graphics . 92
QPainter . 92
Drawing primitives . 95
A bit of fun with QPainter . 116

Creating CustomWidgets . 127
Getting started . 129
paintEvent . 131
Positioning . 131
Updating the display . 134
Drawing the bar . 137
Customising the Bar . 146
Adding the QAbstractSlider Interface . 151
Updating from the Meter display . 152
The final code . 153

The Model View Architecture . 159
Model View Controller . 159
The Model View . 160
A simple Model View — a Todo List . 160
A persistent data store . 174

Multithreading . 178
Preparation . 178
The dumb approach . 181
Threads and Processes . 184
QRunnable and QThreadPool . 185
Extended Runners . 186
Thread IO . 188
QRunnable Examples . 191

Example PyQt5 Applications . 204
Mozzarella Ashbadger . 204
Moonsweeper . 214

Packaging PyQt Applications . 233
fbs: fman Build System . 233

What’s next? . 254

CONTENTS

The video course . 255

Resources . 256
Tutorials . 256
Documentation . 256
Icon sets . 256
Source code . 257

Copyright . 258

Introduction
Welcome to Create Simple GUI Applications the practical guide to building profes-
sional desktop applications with Python & Qt.

If you want to learn how to write GUI applications it can be pretty tricky to get
started. There are a lot of new concepts you need to understand to get anything
to work. A lot of tutorials offer nothing but short code snippets without any
explanation of the underlying systems and how they work together. But, like any
code, writing GUI applications requires you to learn to think about the problem in
the right way.

In this book Iwill give you the real useful basics that you need to get building func-
tional applications with the PyQt framework. I’ll include explanations, diagrams,
walkthroughs and code to make sure you know what you’re doing every step of
the way. In no time at all you will have a fully functional Qt application - ready to
customise as you like.

The source code for each step is included, but don’t just copy and paste andmove
on. You will learn much more if you experiment along the way!

So, let’s get started!

Book format

This book is formatted as a series of coding exercises and snippets to allow you
to gradually explore and learn the details of PyQt5. However, it is not possible to
give you a complete overview of the Qt system in a book of this size (it’s huge, this
isn’t), so you are encouraged to experiment and explore along the way.

If you find yourself thinking “I wonder if I can do that” the best thing you can do is
put this book down, then go and find out! Just keep regular backups of your code
along the way so you always have something to come back to if you royally mess
it up.

Introduction 2

Throughout this books there are also boxes like this, giving info, tips and
warnings. All of them can be safely skipped over if you are in a hurry, but
reading themwill give you a deeper andmore rounded knowledge of the
Qt framework.

Qt and PyQt

When you write applications using PyQt what you area really doing is writing
applications in Qt. The PyQt library is simply¹ a wrapper around the C++ Qt library,
to allow it to be used in Python.

Because this is a Python interface to a C++ library the naming conventions used
withinPyQt donot adhere toPEP8standards.Most notably functions and variables
are named using mixedCase rather than snake_case. Whether you adhere to this
standard in your own applications based onPyQt is entirely up to you, however you
may find it useful to help clarify where the PyQt code ends and your own begins.

Further, while there is PyQt specific documentation available, you will often find
yourself reading the Qt documentation itself as it is more complete. If you do
you will need to translate object syntax and some methods containing Python-
reserved function names as follows:

Qt PyQt
Qt::SomeValue Qt.SomeValue
object.exec() object.exec_()
object.print() object.print_()

Python 3

This book is written to be compatible with Python 3.4+. Python 3 is the future of
the language, and if you’re starting out now is where you should be focusing your
efforts. However, in recognition of the fact that many people are stuck supporting
or developing on legacy systems, the examples and code used in this book are
also tested and confirmed to work on Python 2.7. Any notable incompatibility or

¹Not really that simple.

Introduction 3

gotchas will be flagged with a meh-face to accurately portray the sentiment e.g.

Python 2.7

In Python 2.7 map() returns a list.

If you are using Python 3 you can safely ignore their indifferent gaze.

Getting Started
Before you start coding you will first need to have a working installation of PyQt
and Qt on your system. The following sections will guide you through this process
for themain available platforms. If you already have a working installation of PyQt
on your Python system you can safely skip this part and get straight onto the fun.

The complete source code all examples in this book is available to download from
here.

GPL Only

Note that the following instructions are only for installation of the GPL
licensed version of PyQt. If you need to usePyQt in a non-GPLproject you
will need to purchase an alternative license from Riverbank Computing
in order to release your software.

Documentation?

The PyQt packages fromRiverbank do not include theQt documentation.
However this is available online at docs.qt.io. If you dowant to download
the documentation you can do so from www.qt.io.

Installation Windows

PyQt5 forWindows can be installed as for any other application or library. The only
slight complication is that youmust first determinewhether your system supports
32bit or 64bit software. You can determine whether your system supports 32bit
or 64bit by looking at the System panel accessible from the control panel.

http://download.mfitzp.com/create-simple-gui-applications/all_the_source.zip
https://www.riverbankcomputing.com/
http://docs.qt.io/
http://www.qt.io/

Getting Started 5

The Windows system panel, where you can find out if you’re running 64 or 32bit.

If your system does support 64bit (andmostmodern systems do) then you should
also check whether your current Python install is 32 or 64 bit. Open a command
prompt (Start > cmd):

1 C:\> python3

Look at the top line of the Python output, where you should be able to seewhether
you have 32bit or 64bit Python installed. If you want to switch to 32bit or 64bit
Python you should do so at this point.

PyQt5 for Python 3

A PyQt5 installer for Windows is available direct from the developer Riverbank
Computing. Download the .exe files from the linked page, making sure you down-
load the currently 64bit or 32bit version for your system. You can install this file
as for any other Windows application/library.

After install is finished, you should be able to run python and import PyQt5.

https://www.riverbankcomputing.com/software/pyqt/download5
https://www.riverbankcomputing.com/software/pyqt/download5

Getting Started 6

PyQt5 for Python 2.7

Unfortunately, if youwant tousePyQt5onPython2.7 there arenoofficial installers
available to do this. This part of a policy by Riverbank Computing to encourage
transition to Python 3 and reduce their support burden.

However, there is nothing technically stopping PyQt5 being compiled for Python
2.7 and the helpful people at Abstract Factory have done exactly that.

Simply download the above .rar file and unpack it with 7zip (or other unzip
application). You can then copy the resulting folder to your Python site-packages
folder — usually in C:\Python27\lib\site-packages\

Once that is done, you should be able to run python and import PyQt5.

Installation Mac

OS X comes with a pre-installed version of Python (2.7), however attempting to
install PyQt5 into this is more trouble than it is worth. If you are planning to do
a lot of Python development, and you should, it will be easier in the long run to
create a distinct installation of Python separate from the system.

By far the simplest way to do this is to use Homebrew. Homebrew is a package
manager for command-line software on MacOS X. Helpfully Homebrew also has a
pre-built version of PyQt5 in their repositories.

http://abstractfactory.io/
http://blog.abstractfactory.io/pyqt5-1-1-for-python-2-7/
http://brew.sh/

Getting Started 7

Homebrew — the missing package manager for OS X

To install Homebrew run the following from the command line:

1 ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master\
2 /install)"

This is also available to copy and paste from the Homebrew homepage.

Once the Homebrew installation has completed, you can then install Python 3 and
PyQt5 as follows:

1 brew install python3
2 brew install pyqt5 --with-python-3

After that has completed, you should be able to run python3 and import PyQt5.

Getting Started 8

Installation Linux (Ubuntu)

Installation on Linux is very straightforward as packages for PyQt5 are available
in the repositories of most distributions. In Ubuntu you can install either from
the command line or via “Software Center”. The packages you are looking for
are named python3-pyqt5 or python-pyqt5 depending on which version you are
installing for.

You can also install these from the command line as follows:

1 apt-get install python3-pyqt5

Or for Python 2.7:

1 apt-get install python-pyqt5

Once the installation is finished, you should be able to run python3 or python and
import PyQt5.

Basic Qt Features
Welcome to your first steps in create graphical applications! In this chapter you
will be introduced to the key basic features of Qt (PyQt) that you will find yourself
using in any applications you create.Wewill develop a series of small applications,
adding (and removing!) features step-by-step. Use the code given as your guide,
and feel free to experiment around it — particularly with reference to the Qt
Documentation.

My first Window

So, let’s create our very first windowed application. Before getting the window on
the screen, there are a few key concepts to introduce about how applications are
organised in theQtworld. If you’re already familiar with event loops you can safely
skip to the next section.

The Event loop and QApplication

The core of every Qt Applications is the QApplication class. Every application
needs one— and only one— QApplication object to function. This object holds the
event loop of your application — the core loop which governs all user interaction
with the GUI.

Each interactionwith your application—whether a press of a key, click of amouse,
or mouse movement — generates an event which is placed on the event queue. In
the event loop, the queue is checked on each iteration and if a waiting event is
found, the event and control is passed to the specific event handler for the event.
The event handler deals with the event, then passes control back to the event loop
to wait for more events. There is only one running event loop per application.

http://doc.qt.io/qt-5/
http://doc.qt.io/qt-5/
rwiet
Hervorheben
 Every application

needs one — and only one — QApplication object to function.

rwiet
Stift

rwiet
Hervorheben
his object holds the

event loop of your application — the core loop which governs all user interaction

with the GUI.

rwiet
Stift

rwiet
Stift

rwiet
Hervorheben
The event handler deals with the event, then passes control back to the event loop

to wait for more events.

rwiet
Hervorheben
one

rwiet
Hervorheben
. There is only one running event loop per application.

Basic Qt Features 10

Key Points

• QApplication holds the Qt event loop
• One QApplication instance required
• You application sitswaiting in the event loop until an action is taken
• There is only one event loop

Creating your App

To start build your application, create a new Python file — you can call it whatever
you like (e.g. MyApp.py).

Backup!
We’ll be editing within this file as we go along, and you may want to
come back to earlier versions of your code, so remember to keep regular
backups along theway. For example, after each section save a file named
MyApp_<section>.py

The source code for your very first application is shown below. Type it in verbatim,
and be careful not to make mistakes. If you do mess up, Python should let you
know what’s wrong when you run it. If you don’t feel like typing it all in, you can
download the source code.

http://download.mfitzp.com/create-simple-gui-applications/all_the_source.zip

Basic Qt Features 11

1 from PyQt5.QtWidgets import *
2 from PyQt5.QtCore import *
3 from PyQt5.QtGui import *
4

5 # Only needed for access to command line arguments
6 import sys
7

8 # You need one (and only one) QApplication instance per application.
9 # Pass in sys.argv to allow command line arguments for your app.
10 # If you know you won't use command line arguments QApplication([]) works too.
11 app = QApplication(sys.argv)
12

13 # Start the event loop.
14 app.exec_()
15

16

17 # Your application won't reach here until you exit and the event
18 # loop has stopped.

Let’s go through the code line by line.

We start by importing the PyQt5 classes that we need for the application, from the
QtWidgets, QtGui and QtCore submodules.

This kind of global import from <module> import * is generally frowned
upon in Python. However, in this casewe know that the PyQt classnames
don’t conflict with one another, or with Python itself. Importing them all
saves a lot of typing, and helps with PyQt4 compatibility.

Next we create an instance of QApplication, passing in sys.arg (which contains
command line arguments). This allows us to pass command line arguments to our
application. If you know youwon’t be accepting command line arguments you can
pass in an empty list instead, e.g.

1 app = QApplication([])

Finally, we call app.exec_() to start up the event loop.

rwiet
Hervorheben
 # Pass in sys.argv to allow command line arguments for your app.

10 # If you know you won't use command line arguments QApplication([]) works too.

rwiet
Hervorheben
9 #

rwiet
Hervorheben
9

rwiet
Hervorheben
9 #

rwiet
Hervorheben
 # Start the event loop.

14 app.exec_()

rwiet
Hervorheben
13 # St

rwiet
Hervorheben
17 # Your application won't reach here until you exit and the event

18 # loop has stopped.

Basic Qt Features 12

The underscore is there because exec is a reserved word in Python and
can’t be used as a function name. PyQt5 handles this by appending an
underscore to the name used in the C++ library. You’ll also see it for
.print_().

To launch your application, run it from the command line like any other Python
script, for example:

1 python MyApp.py

Or, for Python 3:

1 python3 MyApp.py

The application should run without errors, yet there will be no indication of any-
thing happening, aside from perhaps a busy indicator. This is completely normal
— we haven’t told Qt to create a window yet!

Every application needs at least one QMainWindow, though you can have more than
one if you need to. However, no matter how many you have, your application will
always exit when the last main window is closed.

Let’s add a QMainWindow to our application.

1 from PyQt5.QtWidgets import *
2 from PyQt5.QtCore import *
3 from PyQt5.QtGui import *
4

5 import sys
6

7

8 app = QApplication(sys.argv)
9

10 window = QMainWindow()
11 window.show() # IMPORTANT!!!!! Windows are hidden by default.
12

13 # Start the event loop.
14 app.exec_()

rwiet
Hervorheben
The underscore is there because exec is a reserved word in Python and

can’t be used as a function name. PyQt5 handles this by appending an

underscore to the name used in the C++ libr

rwiet
Hervorheben
.print_().

rwiet
Stift

rwiet
Hervorheben
Every application needs at least one QMainWindow, though you can have more than

one if you need to.

rwiet
Hervorheben
However, no matter how many you have, your application will

always exit when the last main window is closed.

rwiet
Hervorheben
IMPORTANT!!!!! Windows are hidden by default.

rwiet
Hervorheben
by default.

Basic Qt Features 13

QMainWindow

• Main focus for user of your application
• Every application needs at least one (…but can have more)
• Application will exit when last main window is closed

If you launch the application you should now see your main window. Notice that
Qt automatically creates a window with the normal window decorations, and you
can drag it around and resize it like any normal window.

I can’t see my window!

Youmust always call .show() on a newly created QMainWindow as they are
created invisible by default.

Congratulations — you’ve created your first Qt application! It’s not very interesting
at the moment, so next we will add some content to the window.

If youwant to create a customwindow, thebest approach is to subclass QMainWindow
and then include the setup for the window in the __init__ block. This allows
the window behaviour to be self contained. In the next step we create our own
subclass of QMainWindow — we can call it MainWindow to keep things simple.

rwiet
Hervorheben
the best approach is to subclass QMainWindow

and then include the setup for the window in the __init__ block.

Basic Qt Features 14

1 from PyQt5.QtWidgets import *
2 from PyQt5.QtCore import *
3 from PyQt5.QtGui import *
4

5 import sys
6

7

8 # Subclass QMainWindow to customise your application's main window
9 class MainWindow(QMainWindow):
10

11 def __init__(self, *args, **kwargs):
12 super(MainWindow, self).__init__(*args, **kwargs)
13

14 self.setWindowTitle("My Awesome App")
15

16 label = QLabel("THIS IS AWESOME!!!")
17

18 # The `Qt` namespace has a lot of attributes to customise
19 # widgets. See: http://doc.qt.io/qt-5/qt.html
20 label.setAlignment(Qt.AlignCenter)
21

22 # Set the central widget of the Window. Widget will expand
23 # to take up all the space in the window by default.
24 self.setCentralWidget(label)
25

26

27 app = QApplication(sys.argv)
28

29 window = MainWindow()
30 window.show()
31

32 app.exec_()

Notice how we write the __init__ block with a small bit of boilerplate to take
the arguments (none currently) and pass them up to the __init__ of the parent
QMainWindow class.

When you subclass a Qt class you must always call the super __init__-
function to allow Qt to set up the object.

Basic Qt Features 15

Next we use .setWindowTitle() to change the title of our main window.

Then we add our first widget — a QLabel— to themiddle of the window. This is one
of the simplest widgets available in Qt. You create the object by passing in the text
that you want the widget to display.

We set the alignment of the widget to the centre, so it will show up in the middle
of the window.

The Qt namespace (Qt.) is full of all sorts of attributes that you can use
to customise and control Qt widgets. We’ll cover that a bit more later, it’s
worth a look.

Finally, we call .setCentralWidget() on the the window. This is a QMainWindow
specific function that allows you to set the widget that goes in the middle of the
window.

If you launch your application you should see your window again, but this time
with the QLabel widget in the middle.

Hungry for widgets?

We’ll cover more widgets in detail shortly but if you’re impatient and
would like to jump ahead you can take a look at the QWidget documen-
tation. Try adding the different widgets to your window!

In this section we’ve covered the QApplication class, the QMainWindow class, the
event loop and experimentedwith adding a simplewidget to awindow. In the next
section we’ll take a look at the mechanisms Qt provides for widgets and windows
to communicate with one another and your own code.

Save a copy of your file as MyApp_window.py as we’ll need it again later.

http://doc.qt.io/qt-5/qt.html
http://doc.qt.io/qt-5/qt.html
http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes
http://doc.qt.io/qt-5/widget-classes.html#basic-widget-classes
rwiet
Hervorheben
The Qt namespace (Qt.) is full of all sorts of attributes that you can use

to customise and control Qt widgets. We’ll cover that a bit more later

rwiet
Hervorheben
.setCentralWidget() on the the window.

rwiet
Hervorheben
.setCentralWidget() on the the window. This is a QMainWindow

specific function that allows y

rwiet
Hervorheben
nction that allows you to set the widget that goes in the middle of the

rwiet
Hervorheben
window.

Basic Qt Features 16

Signals, Slots, Events

As already described, every interaction the user has with a Qt application causes
an Event. There are multiple types of event, each representing a difference type
of interaction — e.g. mouse or keyboard events.

Events that occur are passed to the event-specific handler on thewidgetwhere the
interaction occurred. For example, clicking on a widget will cause a QMouseEvent
to be sent to the .mousePressEvent event handler on the widget. This handler can
interrogate the event to find out information, such as what triggered the event and
where specifically it occurred.

You can intercept events by subclassing and overriding the handler function on
the class, as you would for any other function. You can choose to filter, modify, or
ignore events, passing them through to the normal handler for the event by calling
the parent class function with super().

1 class CustomButton(Qbutton):
2

3 def keyPressEvent(self, e):
4 # My custom event handling
5 super(CustomButton, self).keyPressEvent(e)

However, imagine you want to catch an event on 20 different buttons. Subclassing
like this now becomes an incredibly tedious way of catching, interpreting and
handling these events.

1 class CustomButton99(Qbutton)
2

3 def keyPressEvent(self, e):
4 # My custom event handling
5 super(CustomButton99, self).keyPressEvent(e)

ThankfullyQt offers aneater approach to receivingnotificationof thingshappening
in your application: Signals.

rwiet
Hervorheben
: Signals.

Basic Qt Features 17

Signals

Instead of intercepting raw events, signals allow you to ‘listen’ for notifications of
specific occurrences within your application. While these can be similar to events
—aclick onabutton— they canalsobemorenuanced—updated text in abox.Data
can also be sent alongside a signal - so aswell as being notified of the updated text
you can also receive it.

The receivers of signals are called Slots in Qt terminology. A number of standard
slots are provided on Qt classes to allow you to wire together different parts of
your application. However, you can also use any Python function as a slot, and
therefore receive the message yourself.

Load up a fresh copy of MyApp_window.py and save it under a new name
for this section.

Basic signals

First, let’s look at the signals available for our QMainWindow. You can find this
information in the Qt documentation. Scroll down to the Signals section to see
the signals implemented for this class.

Qt 5 Documentation — QMainWindow Signals

As you can see, alongside the two QMainWindow signals, there are 4 signals in-
herited from QWidget and 2 signals inherited from Object. If you click through
to the QWidget signal documentation you can see a .windowTitleChanged signal
implemented here. Next we’ll demonstrate that signal within our application.

Qt 5 Documentation —Widget Signals

http://doc.qt.io/qt-5/qmainwindow.html
rwiet
Hervorheben
The receivers of signals are called Slots in Qt terminology.

rwiet
Hervorheben
gy. A number of standard

slots are provided on Qt classes to allow you to wire together different parts of

your application. However, you can also use any Python function as a slot, and

Basic Qt Features 18

The code below gives a few examples of using the windowTitleChanged signal.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 # SIGNAL: The connected function will be called whenever the window
7 # title is changed. The new title will be passed to the function.
8 self.windowTitleChanged.connect(self.onWindowTitleChange)
9

10 # SIGNAL: The connected function will be called whenever the window
11 # title is changed. The new title is discarded in the lambda and the
12 # function is called without parameters.
13 self.windowTitleChanged.connect(lambda x: self.my_custom_fn())
14

15 # SIGNAL: The connected function will be called whenever the window
16 # title is changed. The new title is passed to the function
17 # and replaces the default parameter
18 self.windowTitleChanged.connect(lambda x: self.my_custom_fn(x))
19

20 # SIGNAL: The connected function will be called whenever the window
21 # title is changed. The new title is passed to the function
22 # and replaces the default parameter. Extra data is passed from
23 # within the lambda.
24 self.windowTitleChanged.connect(lambda x: self.my_custom_fn(x, 25))
25

26 # This sets the window title which will trigger all the above signals
27 # sending the new title to the attached functions or lambdas as the
28 # first parameter.
29 self.setWindowTitle("My Awesome App")
30

31 label = QLabel("THIS IS AWESOME!!!")
32 label.setAlignment(Qt.AlignCenter)
33

34 self.setCentralWidget(label)
35

36

rwiet
Hervorheben
 The new title will be passed to the function.

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

Basic Qt Features 19

37 # SLOT: This accepts a string, e.g. the window title, and prints it
38 def onWindowTitleChange(self, s):
39 print(s)
40

41 # SLOT: This has default parameters and can be called without a value
42 def my_custom_fn(self, a="HELLLO!", b=5):
43 print(a, b)

Try commenting out the different signals and seeing the effect on what the slot
prints.

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

Basic Qt Features 20

We start by creating a function that will behave as a ‘slot’ for our signals.

Then we use .connect on the .windowTitleChanged signal. We pass the function
thatwewant to be calledwith the signal data. In this case the signal sends a string,
containing the new window title.

If we run that, we see that we receive the notification that the window title has
changed.

Events

Next, let’s take a quick look at events. Thanks to signals, for most purposes you
can happily avoid using events in Qt, but it’s important to understand how they
work for when they are necessary.

As an example, we’re going to intercept the .contextMenuEvent on QMainWindow.
This event is fired whenever a context menu is about to be shown, and is passed a
single value event of type QContextMenuEvent.

To intercept the event, we simply override the objectmethodwith our newmethod
of the same name. So in this case we can create a method on our MainWindow
subclass with the name contextMenuEvent and it will receive all events of this type.

1 def contextMenuEvent(self, event):
2 print("Context menu event!")

If you add the above method to your MainWindow class and run your program you
will discover that right-clicking in your window now displays the message in the
print statement.

Sometimes youmaywish to intercept an event, yet still trigger the default (parent)
event handler. You can do this by calling the event handler on the parent class
using super as normal for Python class methods.

1 def contextMenuEvent(self, event):
2 print("Context menu event!")
3 super(MainWindow, self).contextMenuEvent(event)

rwiet
Hervorheben
Next, let’s take a quick look at events. Thanks to signals, for most purposes you

can happily avoid using events in Qt, but it’s important to understand how they

work for when they are necessary.

rwiet
Hervorheben
Sometimes you may wish to intercept an event, yet still trigger the default (parent)

event handler. You can do this by calling the event handler on the parent class

using super as normal for Python class methods.

Basic Qt Features 21

This allows you to propagate events up the object hierarchy, handling only those
parts of an event handler that you wish.

However, in Qt there is another type of event hierarchy, constructed around the
UI relationships. Widgets that are added to a layout, within another widget, may
opt to pass their events to their UI parent. In complex widgets with multiple sub-
elements this can allow for delegation of event handling to the containing widget
for certain events.

However, if you have dealt with an event and do not want it to propagate in this
way you can flag this by calling .accept() on the event.

1 class CustomButton(Qbutton):
2

3 def event(self, e):
4 e.accept()

Alternatively, if you do want it to propagate calling .ignore() will achieve this.

1 class CustomButton(Qbutton):
2 def event(self, e):
3 e.ignore()

In this section we’ve covered signals, slots and events. We’ve demonstrated
some simple signals, including how to pass less and more data using lambdas.
We’ve created custom signals, and shown how to intercept events, pass on event
handling and use .accept() and .ignore() to hide/show events to the UI-parent
widget. In the next section we will go on to take a look at two common features of
the GUI — toolbars and menus.

Actions, Toolbars and Menus

Next we’ll look at some of the common user interface elements, that you’ve
probably seen inmanyother applications— toolbars andmenus.We’ll also explore
the neat system Qt provides for minimising the duplication between different UI
areas — QAction.

rwiet
Hervorheben
 may

opt to pass their events to their UI parent.

rwiet
Hervorheben
However, if you have dealt with an event and do not want it to propagate in this

way you can flag this by calling .accept() on the event.

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

Basic Qt Features 22

Toolbars

One of the most commonly seen user interface elements is the toolbar. Toolbars
are bars of icons and/or text used to perform common tasks within an application,
for which accessing via a menu would be cumbersome. They are one of the most
commonUI features seen inmany applications.While somecomplex applications,
particularly in the Microsoft Office suite, have migrated to contextual ‘ribbon’
interfaces, the standard toolbar is usually sufficient for themajority of applications
you will create.

Standard GUI elements - The toolbar

Qt toolbars support display of icons, text, and can also contain any standard Qt
widget. However, for buttons the best approach is to make use of the QAction
system to place buttons on the toolbar.

Let’s start by adding a toolbar to our application.

Load up a fresh copy of MyApp_window.py and save it under a new name
for this section.

In Qt toolbars are created from the QToolBar class. To start you create an instance
of the class and then call .addToolbar on the QMainWindow. Passing a string in
as the first parameter to QToolBar sets the toolbar’s name, which will be used to
identify the toolbar in the UI.

<<(code/toolbars_and_menus_1.py)

Run it!

You’ll see a thin grey bar at the top of the window. This is your toolbar.
Right click and click the name to toggle it off.

I can’t get my toolbar back!?

Unfortunately once you remove a toolbar there is now no place to right
click to re-add it. So as a general rule youwant to either keep one toolbar
unremoveable, or provide an alternative interface to turn toolbars on and
off.

rwiet
Hervorheben
toolbar

rwiet
Hervorheben
Standard GUI elements - The toolbar

rwiet
Hervorheben
 While some complex applications,

particularly in the Microsoft Office suite, have migrated to contextual ‘ribbon’

interfaces, the standard toolbar is usually sufficient for the majority of applications

rwiet
Hervorheben
you will create.

rwiet
Stift

rwiet
Hervorheben
 QToolBar class

rwiet
Hervorheben
Unfortunately once you remove a toolbar there is now no place to right

click to re-add it. So as a general rule you want to either keep one toolbar

unremoveable, or provide an alternative interface to turn toolbars on and

off.

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

rwiet
Stift

Basic Qt Features 23

We should make the toolbar a bit more interesting. We could just add a QButton
widget, but there is a better approach in Qt that gets you some cool features— and
that is via QAction. QAction is a class that provides a way to describe abstract user
interfaces. What this means in English, is that you can define multiple interface
elements within a single object, unified by the effect that interacting with that
element has. For example, it is common to have functions that are represented in
the toolbar but also themenu— think of something like Edit->Cut which is present
both in the Edit menu but also on the toolbar as a pair of scissors, and also through
the keyboard shortcut Ctrl-X (Cmd-X on Mac).

Without QAction you would have to define this in multiple places. But with QAction
you can define a single QAction, defining the triggered action, and then add
this action to both the menu and the toolbar. Each QAction has names, status
messages, icons and signals that you can connect to (and much more).

In the code below you can see this first QAction added.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 self.addToolBar(toolbar)
15

16 button_action = QAction("Your button", self)
17 button_action.setStatusTip("This is your button")
18 button_action.triggered.connect(self.onMyToolBarButtonClick)
19 toolbar.addAction(button_action)
20

21

22

rwiet
Hervorheben
Without QAction you would have to define this in multiple places. But with QAction

you can define a single QAction, defining the triggered action, and then add

this action to both the menu and the toolbar. Each QAction has names, status

messages, icons and signals that you can connect to (and much more).

Basic Qt Features 24

23 def onMyToolBarButtonClick(self, s):
24 print("click", s)

To start with we create the function that will accept the signal from the QAction
so we can see if it is working. Next we define the QAction itself. When creating
the instance we can pass a label for the action and/or an icon. You must also pass
in any QObject to act as the parent for the action — here we’re passing self as a
reference to our main window. Strangely for QAction the parent element is passed
in as the final parameter.

Next, we can opt to set a status tip — this text will be displayed on the status
bar once we have one. Finally we connect the .triggered signal to the custom
function. This signal will fire whenever the QAction is triggered (or activated).

Run it!

You should see your button with the label that you have defined. Click
on it and the our custom function will emit “click” and the status of the
button.

Why is the signal always false?

The signal passed indicateswhether the button is checked, and since our
button is not checkable — just clickable — it is always false. We’ll show
how to make it checkable shortly.

Next we can add a status bar.

We create a status bar object by calling QStatusBar to get a new status bar object
and then passing this into .setStatusBar. Since we don’t need to change the
statusBar settings we can also just pass it in as we create it, in a single line:

rwiet
Hervorheben
 here we’re passing self as a

reference to our main window.

rwiet
Hervorheben
ain window. Strangely for QAction the parent element is passed

in as the final parameter.

rwiet
Stift

rwiet
Stift

rwiet
Hervorheben
 this text will be displayed on the status

bar once we have one.

rwiet
Hervorheben
The signal passed indicates whether the button is checked, and since our

button is not checkable — just clickable — it is always false. We’ll show

how to make it checkable shortly.

Basic Qt Features 25

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 self.addToolBar(toolbar)
15

16 button_action = QAction("Your button", self)
17 button_action.setStatusTip("This is your button")
18 button_action.triggered.connect(self.onMyToolBarButtonClick)
19 toolbar.addAction(button_action)
20

21 self.setStatusBar(QStatusBar(self))
22

23

24 def onMyToolBarButtonClick(self, s):
25 print("click", s)

Run it!

Hover yourmouse over the toolbar button and youwill see the status text
in the status bar.

Nextwe’re going to turn our QAction toggleable— so clickingwill turn it on, clicking
again will turn it off. To do this, we simple call setCheckable(True) on the QAction
object.

rwiet
Hervorheben
setCheckable(True) on the QAction

Basic Qt Features 26

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 self.addToolBar(toolbar)
15

16 button_action = QAction("Your button", self)
17 button_action.setStatusTip("This is your button")
18 button_action.triggered.connect(self.onMyToolBarButtonClick)
19 button_action.setCheckable(True)
20 toolbar.addAction(button_action)
21

22 self.setStatusBar(QStatusBar(self))
23

24

25 def onMyToolBarButtonClick(self, s):
26 print("click", s)

Run it!

Click on the button to see it toggle from checked to unchecked state.
Note that custom slot function we create now alternates outputting True
and False.

.toggled

There is also a .toggled signal, which only emits a signal when the button
is toggled. But the effect is identical so it is mostly pointless.

Basic Qt Features 27

Things look pretty shabby right now — so let’s add an icon to our button. For this
I recommend you download the fugue icon set by designer Yusuke Kamiyamane.
It’s a great set of beautiful 16x16 icons that can give your apps a nice professional
look. It is freely available with only attribution required when you distribute your
application — although I am sure the designer would appreciate some cash too if
you have some spare.

Fugue Icon Set — Yusuke Kamiyamane

Select an image from the set (in the examples here I’ve selected the file bug.png)
and copy it into the same folder as your source code. To add the icon to the QAction
(and therefore the button)we simply pass it in as the first parameterwhen creating
the QAction. If the icon is in the same folder as your source code you can just copy
it to

You also need to let the toolbar knowhow large your icons are, otherwise your icon
will be surrounded by a lot of padding. You can do this by calling .setIconSize()
with a QSize object.

http://p.yusukekamiyamane.com/
rwiet
Hervorheben
You also need to let the toolbar know how large your icons are, otherwise your icon

will be surrounded by a lot of padding. You can do this by calling .setIconSize()

with a QSize object.

Basic Qt Features 28

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))
15 self.addToolBar(toolbar)
16

17 button_action = QAction(QIcon("bug.png"), "Your button", self)
18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 toolbar.addAction(button_action)
22

23 self.setStatusBar(QStatusBar(self))
24

25

26 def onMyToolBarButtonClick(self, s):
27 print("click", s)

Run it!

The QAction is now represented by an icon. Everything should function
exactly as it did before.

Note that Qt uses your operating system default settings to determine whether to
show an icon, text or an icon and text in the toolbar. But you can override this by
using .setToolButtonStyle. This slot accepts any of the following flags from the
Qt. namespace:

rwiet
Hervorheben
toolbar.setIconSize(QSize(16,16))

rwiet
Hervorheben
(QIcon("bug.png")

rwiet
Hervorheben
Note that Qt uses your operating system default settings to determine whether to

show an icon, text or an icon and text in the toolbar.

rwiet
Hervorheben
But you can override this by

using .setToolButtonStyle. This slot accepts any of the following flags from the

rwiet
Hervorheben
Qt. namespace:

Basic Qt Features 29

Flag Behaviour
Qt.ToolButtonIconOnly Icon only, no text
Qt.ToolButtonTextOnly Text only, no icon
Qt.ToolButtonTextBesideIcon Icon and text, with text beside the

icon
Qt.ToolButtonTextUnderIcon Icon and text, with text under the

icon
Qt.ToolButtonIconOnly Icon only, no text
Qt.ToolButtonFollowStyle Follow the host desktop style

Which style should I use?

The default value is Qt.ToolButtonFollowStyle, meaning that your ap-
plication will default to following the standard/global setting for the
desktop on which the application runs. This is generally recommended
to make your application feel as native as possible.

Finally, we can add a few more bits and bobs to the toolbar. We’ll add a second
button and a checkbox widget. As mentioned you can literally put any widget in
here, so feel free to go crazy. Don’t worry about the QCheckBox type, we’ll cover
that later.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))
15 self.addToolBar(toolbar)
16

17 button_action = QAction(QIcon("bug.png"), "Your button", self)

Basic Qt Features 30

18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 toolbar.addAction(button_action)
22

23 toolbar.addSeparator()
24

25 button_action2 = QAction(QIcon("bug.png"), "Your button2", self)
26 button_action2.setStatusTip("This is your button2")
27 button_action2.triggered.connect(self.onMyToolBarButtonClick)
28 button_action2.setCheckable(True)
29 toolbar.addAction(button_action)
30

31 toolbar.addWidget(QLabel("Hello"))
32 toolbar.addWidget(QCheckBox())
33

34 self.setStatusBar(QStatusBar(self))
35

36

37 def onMyToolBarButtonClick(self, s):
38 print("click", s)

Run it!

Now you see multiple buttons and a checkbox.

Menus

Menus are another standard component of UIS. Typically they are on the top of
the window, or the top of a screen on a Mac. They allow access to all standard
application functions. A few standard menus exist — for example File, Edit, Help.
Menus can be nested to create hierarchical trees of functions and they often
support and display keyboard shortcuts for fast access to their functions.

Basic Qt Features 31

Standard GUI elements - Menus

To create a menu, we create a menubar we call .menuBar() on the QMainWindow.
We add a menu on our menu bar by calling .addMenu(), passing in the name of the
menu. I’ve called it '&File'. The ampersand defines a quick key to jump to this
menu when pressing Alt.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))
15 self.addToolBar(toolbar)
16

rwiet
Hervorheben
.menuBar() on the QMainWindow.

rwiet
Hervorheben
le'. The

rwiet
Hervorheben
 defines a quick key to jump to this

menu when pressing Alt

rwiet
Hervorheben
File'

rwiet
Hervorheben
ampersand

rwiet
Hervorheben
'&

Basic Qt Features 32

17 button_action = QAction(QIcon("bug.png"), "&Your button", self)
18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 toolbar.addAction(button_action)
22

23 toolbar.addSeparator()
24

25 button_action2 = QAction(QIcon("bug.png"), "Your &button2", self)
26 button_action2.setStatusTip("This is your button2")
27 button_action2.triggered.connect(self.onMyToolBarButtonClick)
28 button_action2.setCheckable(True)
29 toolbar.addAction(button_action)
30

31 toolbar.addWidget(QLabel("Hello"))
32 toolbar.addWidget(QCheckBox())
33

34 self.setStatusBar(QStatusBar(self))
35

36 menu = self.menuBar()
37

38 file_menu = menu.addMenu("&File")
39 file_menu.addAction(button_action)
40

41

42 def onMyToolBarButtonClick(self, s):
43 print("click", s)

Quick Keys on Mac

This won’t be visible on Mac. Note that this is different to a keyboard
shortcut — we’ll cover that shortly.

Next we add something to menu. This is where the power of QAction comes in to
play. We can reuse the already existing QAction to add the same function to the
menu. Click it and you will notice that it is toggleable — it inherits the features of
the QAction.

Basic Qt Features 33

Now let’s add some more things to the menu. Here we’ll add a separator to the
menu, which will appear as a horizontal line in themenu, and then add the second
QAction we created.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))
15 self.addToolBar(toolbar)
16

17 button_action = QAction(QIcon("bug.png"), "&Your button", self)
18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 toolbar.addAction(button_action)
22

23 toolbar.addSeparator()
24

25 button_action2 = QAction(QIcon("bug.png"), "Your &button2", self)
26 button_action2.setStatusTip("This is your button2")
27 button_action2.triggered.connect(self.onMyToolBarButtonClick)
28 button_action2.setCheckable(True)
29 toolbar.addAction(button_action)
30

31 toolbar.addWidget(QLabel("Hello"))
32 toolbar.addWidget(QCheckBox())
33

34 self.setStatusBar(QStatusBar(self))

Basic Qt Features 34

35

36 menu = self.menuBar()
37

38 file_menu = menu.addMenu("&File")
39 file_menu.addAction(button_action)
40 file_menu.addSeparator()
41 file_menu.addAction(button_action2)
42

43

44 def onMyToolBarButtonClick(self, s):
45 print("click", s)

Run it!

You should see two menu items with a line between them.

You can also use ampersand to add accelerator keys to the menu to allow a single
key to be used to jump to a menu item when it is open. Again this doesn’t work on
Mac.

To add a submenu, you simply create a new menu by calling addMenu() on the
parent menu. You can then add actions to it as normal. For example:

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))

rwiet
Hervorheben
 create a new menu by calling addMenu() on the

parent menu. You can then add actions to it as normal. For example:

Basic Qt Features 35

15 self.addToolBar(toolbar)
16

17 button_action = QAction(QIcon("bug.png"), "&Your button", self)
18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 toolbar.addAction(button_action)
22

23 toolbar.addSeparator()
24

25 button_action2 = QAction(QIcon("bug.png"), "Your &button2", self)
26 button_action2.setStatusTip("This is your button2")
27 button_action2.triggered.connect(self.onMyToolBarButtonClick)
28 button_action2.setCheckable(True)
29 toolbar.addAction(button_action)
30

31 toolbar.addWidget(QLabel("Hello"))
32 toolbar.addWidget(QCheckBox())
33

34 self.setStatusBar(QStatusBar(self))
35

36 menu = self.menuBar()
37

38 file_menu = menu.addMenu("&File")
39 file_menu.addAction(button_action)
40 file_menu.addSeparator()
41

42 file_submenu = file_menu.addMenu("Submenu")
43 file_submenu.addAction(button_action2)
44

45

46 def onMyToolBarButtonClick(self, s):
47 print("click", s)

Finally we’ll add a keyboard shortcut to the QAction. You define a keyboard
shortcut by passing setKeySequence() and passing in the key sequence. Any
defined key sequences will appear in the menu.

Basic Qt Features 36

Hidden shortcuts

Note that the keyboard shortcut is associated with the QAction and will
still work whether or not the QAction is added to a menu or a toolbar.

Key sequences can be defined in multiple ways - either by passing as text, using
key names from the Qt namespace, or using the defined key sequences from the
Qt namespace. Use the latter wherever you can to ensure compliance with the
operating system standards.

The completed code, showing the toolbar buttons and menus is shown below.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 label = QLabel("THIS IS AWESOME!!!")
9 label.setAlignment(Qt.AlignCenter)
10

11 self.setCentralWidget(label)
12

13 toolbar = QToolBar("My main toolbar")
14 toolbar.setIconSize(QSize(16,16))
15 self.addToolBar(toolbar)
16

17 button_action = QAction(QIcon("bug.png"), "&Your button", self)
18 button_action.setStatusTip("This is your button")
19 button_action.triggered.connect(self.onMyToolBarButtonClick)
20 button_action.setCheckable(True)
21 # You can enter keyboard shortcuts using key names (e.g. Ctrl+p)
22 # Qt.namespace identifiers (e.g. Qt.CTRL + Qt.Key_P)
23 # or system agnostic identifiers (e.g. QKeySequence.Print)
24 button_action.setShortcut(QKeySequence("Ctrl+p"))
25

26 toolbar.addAction(button_action)
27

rwiet
Hervorheben
Note that the keyboard shortcut is associated with the QAction and will

still work whether or not the QAction is added to a menu or a toolbar.

rwiet
Stift

rwiet
Stift

rwiet
Hervorheben
 using

key names from the Qt namespace, or using the defined key sequences from the

Qt namespace.

rwiet
Hervorheben
either by passing as text, us

Basic Qt Features 37

28 toolbar.addSeparator()
29

30 button_action2 = QAction(QIcon("bug.png"), "Your &button2", self)
31 button_action2.setStatusTip("This is your button2")
32 button_action2.triggered.connect(self.onMyToolBarButtonClick)
33 button_action2.setCheckable(True)
34 toolbar.addAction(button_action)
35

36 toolbar.addWidget(QLabel("Hello"))
37 toolbar.addWidget(QCheckBox())
38

39 self.setStatusBar(QStatusBar(self))
40

41 menu = self.menuBar()
42

43 file_menu = menu.addMenu("&File")
44 file_menu.addAction(button_action)
45 file_menu.addSeparator()
46

47 file_submenu = file_menu.addMenu("Submenu")
48 file_submenu.addAction(button_action2)
49

50

51 def onMyToolBarButtonClick(self, s):
52 print("click", s)

Save a copy of your file as MyApp_menus.py as we’ll need it again later.

Widgets

In Qt (andmost User Interfaces) ‘widget’ is the name given to a component of the
UI that the user can interactwith. User interfaces aremade up ofmultiplewidgets,
arranged within the window.

Basic Qt Features 38

Qt comeswith a large selection of widgets available, and even allows you to create
your own custom and customised widgets.

Load up a fresh copy of MyApp_window.py and save it under a new name
for this section.

Big ol’ list of widgets

A full list of widgets is available on the Qt documentation, but let’s have a look at
them quickly in action.

rwiet
Hervorheben
Qt comes with a large selection of widgets available, and even allows you to create

your own custom and customised widgets.

Basic Qt Features 39

All the Qt5 widgets.

1 from PyQt5.QtWidgets import *
2 from PyQt5.QtCore import *
3 from PyQt5.QtGui import *
4

5 # Only needed for access to command line arguments
6 import sys
7

8

9 # Subclass QMainWindow to customise your application's main window
10 class MainWindow(QMainWindow):
11

12 def __init__(self, *args, **kwargs):
13 super(MainWindow, self).__init__(*args, **kwargs)
14

15 self.setWindowTitle("My Awesome App")
16

17

18 layout = QVBoxLayout()
19 widgets = [QCheckBox,
20 QComboBox,
21 QDateEdit,
22 QDateTimeEdit,
23 QDial,
24 QDoubleSpinBox,
25 QFontComboBox,
26 QLCDNumber,
27 QLabel,
28 QLineEdit,
29 QProgressBar,
30 QPushButton,
31 QRadioButton,
32 QSlider,
33 QSpinBox,
34 QTimeEdit]
35

36 for w in widgets:
37 layout.addWidget(w())

Basic Qt Features 40

38

39

40 widget = QWidget()
41 widget.setLayout(layout)
42

43 # Set the central widget of the Window. Widget will expand
44 # to take up all the space in the window by default.
45 self.setCentralWidget(widget)
46

47

48 # You need one (and only one) QApplication instance per application.
49 # Pass in sys.argv to allow command line arguments for your app.
50 # If you know you won't use command line arguments QApplication([]) works too.
51 app = QApplication(sys.argv)
52

53 window = MainWindow()
54 window.show() # IMPORTANT!!!!! Windows are hidden by default.
55

56 # Start the event loop.
57 app.exec_()
58

59

60 # Your application won't reach here until you exit and the event
61 # loop has stopped.

Basic Qt Features 41

Todo thiswe’re going to take the skeletonof our application and replace the QLabel
with a QWidget. This is the generic form of a Qt widget.

Here we’re not using it directly. We apply a list of widgets - in a layout, which we
will cover shortly - and then add the QWidget as the central widget for the window.
The result is that we fill the window with widgets, with the QWidget acting as a
container.

Compound widgets
Note that it’s possible to use this QWidget layout trick to create custom
compoundwidgets. For example you can take a base QWidget and overlay
a layout containing multiple widgets of different types. This ‘widget’ can
thenbe inserted into other layouts as normal.We’ll cover customwidgets
in more detail later.

Lets have a look at all the example widgets, from top to bottom:

Widget What it does
QCheckbox A checkbox
QComboBox A dropdown list box
QDateEdit For editing dates and datetimes
QDateTimeEdit For editing dates and datetimes
QDial Rotateable dial
QDoubleSpinbox A number spinner for floats
QFontComboBox A list of fonts
QLCDNumber A quite ugly LCD display
QLabel Just a label, not interactive
QLineEdit Enter a line of text
QProgressBar A progress bar
QPushButton A button
QRadioButton A toggle set, with only one active item
QSlider A slider
QSpinBox An integer spinner
QTimeEdit For editing times

There are actually more widgets than this, but they don’t fit so well! You can see
them all by checking the documentation. Here we’re going to take a closer look at
the a subset of the most useful.

Basic Qt Features 42

QLabel

We’ll start the tour with QLabel, arguably one of the simplest widgets available in
the Qt toolbox. This is a simple one-line piece of text that you can position in your
application. You can set the text by passing in a str as you create it:

1 widget = QLabel("Hello")

Or, by using the .setText()method:

1 widget = QLabel("1") # The label is created with the text 1.
2 widget.setText("2") # The label now shows 2.

You can also adjust font parameters, such as the size of the font or the alignment
of text in the widget.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = QLabel("Hello")
9 font = widget.font()
10 font.setPointSize(30)
11 widget.setFont(font)
12 widget.setAlignment(Qt.AlignHCenter | Qt.AlignVCenter)
13

14 self.setCentralWidget(widget)

Font tips
Note that if youwant to change the properties of awidget font it is usually
better to get the current font, update it and then apply it back. This
ensures the font face remains in keeping with the desktop conventions.

Basic Qt Features 43

The alignment is specified by using a flag from the Qt. namespace. The flags
available for horizontal alignment are:

Flag Behaviour
Qt.AlignLeft Aligns with the left edge.
Qt.AlignRight Aligns with the right edge.
Qt.AlignHCenter Centers horizontally in the available space.
Qt.AlignJustify Justifies the text in the available space.

The flags available for vertical alignment are:

Flag Behaviour
Qt.AlignTop Aligns with the top.
Qt.AlignBottom Aligns with the bottom.
Qt.AlignVCenter Centers vertically in the available space.

You can combine flags together using pipes (|), however note that you can only
use vertical or horizontal alignment flag at a time.

1 align_top_left = Qt.AlignLeft | Qt.AlignTop

Qt Flags

Note that you use anOR pipe (|) to combine the two flags (not A & B). This
is because the flags are non-overlapping bitmasks. e.g. Qt.AlignLeft has
the hexadecimal value 0x0001, while Qt.AlignBottom is 0x0040. By ORing
togetherweget the value 0x0041 representing ‘bottom left’. This principle
applies to all other combinatorial Qt flags.

If this is gibberish to you, feel free to ignore andmove on. Just remember
to use |!

Finally, there is also a shorthand flag that centers in both directions simultane-
ously:

Flag Behaviour
Qt.AlignCenter Centers horizontally and vertically

Weirdly, you can also use QLabel to display an image using .setPixmap(). This

Basic Qt Features 44

accepts an pixmap, which you can create by passing an image filename to QPixmap.
In the example files provided with this book you can find a file otje.jpgwhich you
can display in your window as follows:

1 widget.setPixMap(QPixmap('otje.jpg'))

Basic Qt Features 45

Otgon “Otje” Ginge the cat.

What a lovely face. By default the image scales while maintaining its aspect ratio.
If you want it to stretch and scale to fit the window completely you can set
.setScaledContents(True) on the QLabel.

1 widget.setScaledContents(True)

Basic Qt Features 46

QCheckBox

The next widget to look at is QCheckBox() which, as the name suggests, presents
a checkable box to the user. However, as with all Qt widgets there are number of
configurable options to change the widget behaviours.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = QCheckBox()
9 widget.setCheckState(Qt.Checked)
10

11 # For tristate: widget.setCheckState(Qt.PartiallyChecked)
12 # Or: widget.setTriState(True)
13 widget.stateChanged.connect(self.show_state)
14

15 self.setCentralWidget(widget)
16

17

18 def show_state(self, s):
19 print(s == Qt.Checked)
20 print(s)

Youcan set a checkbox stateprogrammatically using .setCheckedor .setCheckState.
The former accepts either True or False representing checked or unchecked
respectively. However, with .setCheckState you also specify a particular checked
state using a Qt. namespace flag:

Flag Behaviour
Qt.Unchecked Item is unchecked
Qt.PartiallyChecked Item is partially checked
Qt.Checked Item is unchecked

A checkbox that supports a partially-checked (Qt.PartiallyChecked) state is com-

Basic Qt Features 47

monly referred to as ‘tri-state’, that is being neither on nor off. A checkbox in
this state is commonly shown as a greyed out checkbox, and is commonly used
in hierarchical checkbox arrangements where sub-items are linked to parent
checkboxes.

If you set the value to Qt.PartiallyChecked the checkbox will become tristate.
You can also .setTriState(True) to set tristate support on a You can also set a
checkbox to be tri-state without setting the current state to partially checked by
using .setTriState(True)

You may notice that when the script is running the current state number is
displayed as an int with checked = 2, unchecked = 0, and partially checked = 1.
You don’t need to remember these values, the Qt.Checked namespace variable
== 2 for example. This is the value of these state’s respective flags. This means
you can test state using state == Qt.Checked.

Basic Qt Features 48

QComboBox

The QComboBox is a drop down list, closed by default with an arrow to open it. You
can select a single item from the list, with the currently selected item being shown
as a label on the widget. The combo box is suited to selection of a choice from a
long list of options.

You have probably seen the combo box used for selection of font faces,
or size, in word processing applications. Although Qt actually provides a
specific font-selection combo box as QFontComboBox.

You can add items to a QComboBox by passing a list of strings to .addItems(). Items
will be added in the order they are provided.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = QComboBox()
9 widget.addItems(["One", "Two", "Three"])
10

11 # The default signal from currentIndexChanged sends the index
12 widget.currentIndexChanged.connect(self.index_changed)
13

14 # The same signal can send a text string
15 widget.currentIndexChanged[str].connect(self.text_changed)
16

17 self.setCentralWidget(widget)
18

19

20 def index_changed(self, i): # i is an int
21 print(i)
22

23 def text_changed(self, s): # s is a str
24 print(s)

Basic Qt Features 49

The .currentIndexChanged signal is triggered when the currently selected item is
updated, by default passing the index of the selected item in the list. However,
when connecting to the signal you can also request an alternative version of the
signal by appending [str] (think of the signal as a dict). This alternative interface
instead provides the label of the currently selected item, which is often more
useful.

QComboBox can also be editable, allowing users to enter values not currently in the
list and either have them inserted, or simply used as a value. To make the box
editable:

1 widget.setEditable(True)

You can also set a flag to determine how the insert is handled. These flags are
stored on the QComboBox class itself and are listed below:

Flag Behaviour
QComboBox.NoInsert No insert
QComboBox.InsertAtTop Insert as first item
QComboBox.InsertAtCurrent Replace currently selected item
QComboBox.InsertAtBottom Insert after last item
QComboBox.InsertAfterCurrent Insert after current item
QComboBox.InsertBeforeCurrent Insert before current item
QComboBox.InsertAlphabetically Insert in alphabetical order

To use these, apply the flag as follows:

1 widget.setInsertPolicy(QComboBox.InsertAlphabetically)

You can also limit the number of items allowed in the box by using .setMaxCount,
e.g.

1 widget.setMaxCount(10)

Basic Qt Features 50

QListBox

Next QListBox. It’s very similar to QComboBox, differing mainly in the signals avail-
able.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = QListWidget()
9 widget.addItems(["One", "Two", "Three"])
10

11 # In QListWidget there are two separate signals for the item, and the s\
12 tr
13 widget.currentItemChanged.connect(self.index_changed)
14 widget.currentTextChanged.connect(self.text_changed)
15

16 self.setCentralWidget(widget)
17

18

19 def index_changed(self, i): # Not an index, i is a QListItem
20 print(i.text())
21

22 def text_changed(self, s): # s is a str
23 print(s)

QListBox offers an currentItemChanged signal which sends the QListItem (the
element of the list box), and a currentTextChanged signal which sends the text.

Basic Qt Features 51

QLineEdit

The QLineEditwidget is a simple single-line text editing box, into which users can
type input. These are used for form fields, or settings where there is no restricted
list of valid inputs. For example, when entering an email address, or computer
name.

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = QLineEdit()
9 widget.setMaxLength(10)
10 widget.setPlaceholderText("Enter your text")
11

12 #widget.setReadOnly(True) # uncomment this to make readonly
13

14 widget.returnPressed.connect(self.return_pressed)
15 widget.selectionChanged.connect(self.selection_changed)
16 widget.textChanged.connect(self.text_changed)
17 widget.textEdited.connect(self.text_edited)
18

19 self.setCentralWidget(widget)
20

21

22 def return_pressed(self):
23 print("Return pressed!")
24 self.centralWidget().setText("BOOM!")
25

26 def selection_changed(self):
27 print("Selection changed")
28 print(self.centralWidget().selectedText())
29

30 def text_changed(self, s):
31 print("Text changed...")

Basic Qt Features 52

32 print(s)
33

34 def text_edited(self, s):
35 print("Text edited...")
36 print(s)

As demonstrated in the above code, you can set a maximum length for the text in
a line edit.

Layouts

So far we’ve successfully created a window, and we’ve added a widget to it.
However we normally want to add more than one widget to a window, and have
some control over where it ends up. To do this in Qt we use layouts. There are 4
basic layouts available in Qt, which are listed in the following table.

Layout Behaviour
QHBoxLayout Linear horizontal layout
QVBoxLayout Linear vertical layout
QGridLayout In indexable grid XxY
QStackedLayout Stacked (z) in front of one another

Qt Designer
You can actually design and lay out your interface graphically using theQt
designer, which we will cover later. Here we’re using code, as it’s simpler
to understand and experiment with the underlying system.

As you can see, there are three positional layouts available in Qt. The VBoxLayout,
QHBoxLayout and QGridLayout. In addition there is also QStackedLayout which
allows you to place widgets one on top of the other within the same space, yet
showing only one layout at a time.

Load up a fresh copy of MyApp_window.py and save it under a new name
for this section.

Basic Qt Features 53

Beforewe start experimentingwith the different layouts, we’re first going to create
a very simple custom widget that we can use to visualise the layouts that we use.
Add the following code to your file as a new class at the top level:

Custom color widget

1 class Color(QWidget):
2

3 def __init__(self, color, *args, **kwargs):
4 super(Color, self).__init__(*args, **kwargs)
5 self.setAutoFillBackground(True)
6

7 palette = self.palette()
8 palette.setColor(QPalette.Window, QColor(color))
9 self.setPalette(palette)

In this code we subclass QWidget to create our own custom widget Color. We
accept a single parameter when creating the widget — color (a str). We first
set .setAutoFillBackground to True to tell the widget to automatically fill its
background with the window cooler. Next we get the current palette (which is the
global desktop palette by default) and change the current QPalette.Window color
to a new QColor described by the value color we passed in. Finally we apply this
palette back to thewidget. The end result is awidget that is filledwith a solid color,
that we specified when we created it.

If you find the above confusing, don’t worry toomuch. We’ll cover customwidgets
inmore detail later. For now it’s sufficient that you understand that calling you can
create a solid-filled red widget by doing the following:

1 Color('red')

First let’s test our new Color widget by using it to fill the entire window in a single
color. Once it’s completewe can add it to the QMainWindowusing .setCentralWidget
and we get a solid red window.

Basic Qt Features 54

Adding a widget to the layout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 widget = Color('red')
9 self.setCentralWidget(widget)

Run it!

The window will appear, filled completely with the color red. Notice how
the widget expands to fill all the available space.

Next we’ll look at each of the available Qt layouts in turn. Note that to add our
layouts to the window we will need a dummy QWidget to hold the layout.

QVBoxLayout vertically arranged widgets

With QVBoxLayout you arrange widgets one above the other linearly. Adding a
widget adds it to the bottom of the column.

A QVBoxLayout, filled from top to bottom.

Let’s add our widget to a layout. Note that in order to add a layout to the
QMainWindow we need to apply it to a dummy QWidget. This allows us to then
use .setCentralWidget to apply the widget (and the layout) to the window. Our

Basic Qt Features 55

coloured widgets will arrange themselves in the layout, contained within the
QWidget in the window. First we just add the red widget as before.

QVBoxLayout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout = QVBoxLayout()
9

10 layout.addWidget(Color('red'))
11

12 widget = QWidget()
13 widget.setLayout(layout)
14 self.setCentralWidget(widget)

Run it!

Notice the border now visible around the red widget. This is the layout
spacing — we’ll see how to adjust that later.

If you add a few more coloured widgets to the layout you’ll notice that they line
themselves up vertical in the order they are added.

Basic Qt Features 56

QVBoxLayout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout = QVBoxLayout()
9

10 layout.addWidget(Color('red'))
11 layout.addWidget(Color('green'))
12 layout.addWidget(Color('blue'))
13

14 widget = QWidget()
15 widget.setLayout(layout)
16 self.setCentralWidget(widget)

QHBoxLayout horizontally arranged widgets

QHBoxLayout is the same, except moving horizontally. Adding a widget adds it to
the right hand side.

A QHBoxLayout, filled from left to right.

To use it we can simply change the QVBoxLayout to a QHBoxLayout. The boxes now
flow left to right.

Basic Qt Features 57

QHBoxLayout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout = QHBoxLayout()
9

10 layout.addWidget(Color('red'))
11 layout.addWidget(Color('green'))
12 layout.addWidget(Color('blue'))
13

14 widget = QWidget()
15 widget.setLayout(layout)
16 self.setCentralWidget(widget)

Nesting layouts

Formore complex layouts youcannest layouts insideoneanother using .addLayout
on a layout. Below we add a QVBoxLayout into the main QHBoxLayout. If we add
some widgets to the QVBoxLayout, they’ll be arranged vertically in the first slot of
the parent layout.

Nested layouts

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout1 = QHBoxLayout()
9 layout2 = QVBoxLayout()

Basic Qt Features 58

10 layout3 = QVBoxLayout()
11

12 layout2.addWidget(Color('red'))
13 layout2.addWidget(Color('yellow'))
14 layout2.addWidget(Color('purple'))
15

16 layout1.addLayout(layout2)
17

18 layout1.addWidget(Color('green'))
19

20 layout3.addWidget(Color('red'))
21 layout3.addWidget(Color('purple'))
22

23 layout1.addLayout(layout3)
24

25 widget = QWidget()
26 widget.setLayout(layout1)
27 self.setCentralWidget(widget)

Run it!

The widgets should arrange themselves in 3 columns horizontally, with
the first columnalso containing 3widgets stacked vertically. Experiment!

You can set the spacing around the layout using .setContentMargins or set the
spacing between elements using .setSpacing.

1 layout1.setContentsMargins(0,0,0,0)
2 layout1.setSpacing(20)

The following code shows the combination of nested widgets and layout margins
and spacing. Experiment with the numbers til you get a feel for them.

Basic Qt Features 59

Margins and spacing

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout1 = QHBoxLayout()
9 layout2 = QVBoxLayout()
10 layout3 = QVBoxLayout()
11

12 layout1.setContentsMargins(0,0,0,0)
13 layout1.setSpacing(20)
14

15 layout2.addWidget(Color('red'))
16 layout2.addWidget(Color('yellow'))
17 layout2.addWidget(Color('purple'))
18

19 layout1.addLayout(layout2)
20

21 layout1.addWidget(Color('green'))
22

23 layout3.addWidget(Color('red'))
24 layout3.addWidget(Color('purple'))
25

26 layout1.addLayout(layout3)
27

28 widget = QWidget()
29 widget.setLayout(layout1)
30 self.setCentralWidget(widget)

QGridLayout widgets arranged in a grid

As useful as they are, if you try and using QVBoxLayout and QHBoxLayout for
laying out multiple elements, e.g. for a form, you’ll find it very difficult to ensure
differently sized widgets line up. The solution to this is QGridLayout.

Basic Qt Features 60

A QGridLayout showing the grid positions for each location.

QGridLayout allows you to position items specifically in a grid. You specify row and
column positions for each widget. You can skip elements, and they will be left
empty.

Usefully, for QGridLayout you don’t need to fill all the positions in the grid.

A QGridLayout with unfilled slots.

QGridLayout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout = QGridLayout()

Basic Qt Features 61

9

10 layout.addWidget(Color('red'), 0, 0)
11 layout.addWidget(Color('green'), 1, 0)
12 layout.addWidget(Color('blue'), 1, 1)
13 layout.addWidget(Color('purple'), 2, 1)
14

15 widget = QWidget()
16 widget.setLayout(layout)
17 self.setCentralWidget(widget)

QStackedLayoutmultiple widgets in the same space

The final layout we’ll cover is the QStackedLayout. As described, this layout allows
you to position elements directly in front of one another. You can then select
which widget you want to show. You could use this for drawing layers in a graphics
application, or for imitating a tab-like interface. Note there is also QStackedWidget
which is a container widget that works in exactly the same way. This is useful if
you want to add a stack directly to a QMainWindow with .setCentralWidget.

QStackedLayout — in use only the uppermost widget is visible, which is by default the first widget
added to the layout.

Basic Qt Features 62

QStackedLayout, with the 2nd (1) widget selected and brought to the front.

QStackedLayout

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 layout = QStackedLayout()
9

10 layout.addWidget(Color('red'))
11 layout.addWidget(Color('green'))
12 layout.addWidget(Color('blue'))
13 layout.addWidget(Color('yellow'))
14

15 layout.setCurrentIndex(3)
16

17 widget = QWidget()
18 widget.setLayout(layout)
19 self.setCentralWidget(widget)

QStackedWidget is exactly how tabbed views in applications work. Only one view
(‘tab’) is visible at any one time. You can control which widget to show at any time

Basic Qt Features 63

by using .setCurrentIndex() or .setCurrentWidget() to set the item by either the
index (in order the widgets were added) or by the widget itself.

Below is a short demo using QStackedLayout in combination with QButton to to
provide a tab-like interface to an application:

Tabbed interface

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 pagelayout = QVBoxLayout()
9 button_layout = QHBoxLayout()
10 layout = QStackedLayout()
11

12 pagelayout.addLayout(button_layout)
13 pagelayout.addLayout(layout)
14

15 for n, color in enumerate(['red','green','blue','yellow']):
16 btn = QPushButton(str(color))
17 btn.pressed.connect(lambda n=n: layout.setCurrentIndex(n))
18 button_layout.addWidget(btn)
19 layout.addWidget(Color(color))
20

21 widget = QWidget()
22 widget.setLayout(pagelayout)
23 self.setCentralWidget(widget)

Helpfully. Qt actually provide a built-in TabWidget that provides this kind of layout
out of the box - albeit in widget form. Below the tab demo is recreated using
QTabWidget:

Basic Qt Features 64

QTabWidget

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8

9 tabs = QTabWidget()
10 tabs.setDocumentMode(True)
11 tabs.setTabPosition(QTabWidget.East)
12 tabs.setMovable(True)
13

14 for n, color in enumerate(['red','green','blue','yellow']):
15 tabs.addTab(Color(color), color)
16

17 self.setCentralWidget(tabs)

As you can see, it’s a little more straightforward — and a bit more attractive! You
can set the position of the tabs using the cardinal directions, toggle whether tabs
are moveable with .setMoveable and turn a ‘document mode’ on and off which
(on OS X) shows a slimmer tab interface. We encounter more of these advanced
widgets later.

Dialogs

Dialogs are useful GUI components that allow you to communicate with the user
(hence the name dialog). They are commonly used for file Open/Save, settings,
preferences, or for functions that do not fit into themainUI of the application. They
are small modal (or blocking) windows that sit in front of themain application until
they are dismissed. Qt actually provides a number of ‘special’ dialogs for themost
common use-cases, allowing you to take advantage of desktop-specific tools for
a better user experience.

Basic Qt Features 65

Standard GUI features — A search dialog

Standard GUI features — A file Open dialog

In Qt dialog boxes are handled by the QDialog class. To create a new dialog box
simply create a new object of QDialog type (or a subclass), passing in a parent
widget, e.g. QMainWindow as its parent.

Let’s create our own QDialog, we’ll use our menu example code so we can start a
dialog window when a button on the toolbar is pressed.

Load up a fresh copy of MyApp_menus.py and save it under a new name for
this section.

Basic Qt Features 66

1 class MainWindow(QMainWindow):
2

3 # def __init__ etc.
4 # ... not shown for clarity
5

6 def onMyToolBarButtonClick(self, s):
7 print("click", s)
8

9

10 dlg = QDialog(self)
11 dlg.setWindowTitle("HELLO!")
12 dlg.exec_()
13

In the triggered function (that receives the signal from the button) we create the
dialog instance, passing our QMainWindow instance as a parent. This will make the
dialog amodalwindow of QMainWindow. Thismeans thedialogwill completely block
interaction with the parent window.

Once we have created the dialog, we start it using .exec_() - just like we did
for QApplication to create the main event loop of our application. That’s not a
coincidence: when you exec the QDialog an entirely new event loop - specific for
the dialog - is created.

Remember that there can be only one Qt event loop running at any
time! The QDialog completely blocks your application execution. Don’t
start a dialog and expect anything else to happen anywhere else in your
application.

We’ll cover how you can use multithreading to get you out of this pickle in a later
chapter.

Run it! The window will display, now click the bug button and a modal
window should appear. You can exit by clicking the [x].

Like our very firstwindow, this isn’t very interesting. Let’s fix that by adding adialog
title and a set of OK and Cancel buttons to allow the user to accept or reject the
modal.

Basic Qt Features 67

To customise the QDialogwe can subclass it — again you can customise the dialog
without subclassing, but it’s nicer if you do.

1 class CustomDialog(QDialog):
2

3 def __init__(self, *args, **kwargs):
4 super(CustomDialog, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("HELLO!")
7

8 QBtn = QDialogButtonBox.Ok | QDialogButtonBox.Cancel
9

10 self.buttonBox = QDialogButtonBox(QBtn)
11 self.buttonBox.accepted.connect(self.accept)
12 self.buttonBox.rejected.connect(self.reject)
13

14 self.layout = QVBoxLayout()
15 self.layout.addWidget(self.buttonBox)
16 self.setLayout(self.layout)
17

18

19 class MainWindow(QMainWindow):
20

21

22 # def __init__ etc.
23 # ... not shown for clarity
24

25

26 def onMyToolBarButtonClick(self, s):
27 print("click", s)
28

29

30 dlg = CustomDialog(self)
31 if dlg.exec_():
32 print("Success!")
33 else:
34 print("Cancel!")

Basic Qt Features 68

In the above code, we first create our subclass of QDialog which we’ve called
CustomDialog. As for the QMainWindow we customise it within the __init__ block
to ensure that our customisations are created as the object is created. First we set
a title for the QDialog using .setWindowTitle(), exactly the same as we did for our
main window.

The next block of code is concerned with creating and displaying the dialog
buttons. This is probably a bit more involved than you were expecting. However,
this is due to Qt’s flexibility in handling dialog button positioning on different
platforms.

You could choose to ignore this and use a standard QButton in a layout,
but the approach outlined here ensures that your dialog respects the
host desktop standards (Ok on left vs. right for example). Breaking these
expectations can be incredibly annoying to your users, so I wouldn’t
recommend it.

The first step in creating a dialog button box is to define the buttons want to show,
usingnamespaceattributes from QDialogButtonBox. Constructing a line ofmultiple
buttons is as simple asOR-ing them together using apipe (|). The full list of buttons
available is below:

Button types
—————————
QDialogButtonBox.Ok
QDialogButtonBox.Open
QDialogButtonBox.Save
QDialogButtonBox.Cancel
QDialogButtonBox.Close
QDialogButtonBox.Discard
QDialogButtonBox.Apply
QDialogButtonBox.Reset
QDialogButtonBox.RestoreDefaults
QDialogButtonBox.Help
QDialogButtonBox.SaveAll
QDialogButtonBox.Yes
QDialogButtonBox.YesToAll
QDialogButtonBox.No
QDialogButtonBox.NoToAll|
QDialogButtonBox.Abort

Basic Qt Features 69

QDialogButtonBox.Retry
QDialogButtonBox.Ignore
QDialogButtonBox.NoButton

These should be sufficient to create any dialog box you can think of. For example,
to show an OK and a Cancel button we used:

1 buttons = QDialogButtonBox.Ok | QDialogButtonBox.Cancel

The variable buttons now contains a bit mask flag representing those two buttons.
Next, we must create the QDialogButtonBox instance to hold the buttons. The flag
for the buttons to display is passed in as the first parameter.

Tomake thebuttonshaveanyeffect, youmust connect the correct QDialogButtonBox
signals to the slots on the dialog. In our case we’ve connected the .accepted and
.rejected signals from the QDialogButtonBox to the handlers for .accept() and
.reject() on our subclass of QDialog.

Lastly, to make the QDialogButtonBox appear in our dialog box we must add it to
the dialog layout. So, as for the main window we create a layout, and add our
QDialogButtonBox to it (QDialogButtonBox is a widget), and then set that layout on
our dialog.

Run it!Click to launch thedialog andyouwill see adialogboxwithbuttons
in it.

Congratulations! You’ve created your first dialog box. Of course, you can continue
to add any other content to the dialog box that you like. Simply insert it into the
layout as normal.

Qt Creator
So far we have been creating apps using Python code. This is fine for simple
applications, but as your applications get larger or interfaces become more com-
plicated, it can get a bit cumbersome to define all elements programmatically in
this way. The good news is that Qt comes with a graphical editor — Qt Creator —
which contains a drag-and-drop UI editor.

In this chapter we’ll cover the basics of creating UIs with Qt Creator. The prin-
ciples, layouts and widgets are identical, so you can apply everything you’ve
already learnt. You’ll also need your knowledge of the Python API to hook up your
application logical later.

You can download this from the Qt website. Just go to
https://www.qt.io/download and download the Qt package. You can opt
to install only Creator during the installation.

Creating a .ui file

Open upQt Creator and youwill be presentedwith themain window. The designer
is available via the tab on the left hand side. However, to activate this you first need
to start creating a .ui file.

Qt Creator 71

The Qt Creator interface, with the Design section shown on the left.

To create a .ui file go to File -> New File or Project… In the window that appears
select Qt under Files and Classes on the left, then select Qt Designer Form on the
right. You’ll notice the icon has “ui” on it, showing the type of file you’re creating.

Qt Creator 72

Create a new Qt .ui file.

In the next step you’ll be asked what type of widget you want to create. If you are
starting an application then Main Window is the right choice. However, you can
also create .ui files for dialog boxes, forms and custom compound widgets.

Qt Creator 73

Select the type of widget to create, for most applications this will be Main Window.

Next choose a filename and save folder for your file. Save your .ui file with
the same name as the class you’ll be creating, just to make make subsequent
commands simpler.

Qt Creator 74

Choose save name and folder your your file.

Finally, you can choose to add the file to your version control system if you’re using
one. Feel free to skip this step — it doesn’t affect your UI.

Qt Creator 75

Optionally add the file to your version control, e.g. Git.

Laying out your Main Window

You’ll be presentedwith your newly createdmainwindow in theUI designer. There
isn’t much to see to begin with, just a grey working area representing the window,
together with the beginnings of a window menu bar.

Qt Creator 76

The initial view of the created main window.

You can resize the window by clicking the window and dragging the blue handles
on each corner.

Qt Creator 77

The initial view of the created main window.

The first step in building an application is to add some widgets to your window. In
our first applications we learnt that to set the central widget for a QMainWindowwe
need to use .setCentralWidget(). We also saw that to addmultiple widgets with a
layout, we need an intermediary QWidget to apply the layout to, rather than adding
the layout to the window directly.

Qt Creator takes care of this for you automatically, although it’s not particularly
obvious about it.

To add multiple widgets to the main window with a layout, first drag your widgets
onto the QMainWindow. Here we’re dragging 3 labels. It doesn’t matter where you
drop them.

Qt Creator 78

Main window with 1 labels and 1 button added.

We’ve created 2 widgets by dragging them onto the window, made them children
of that window. We can now apply a layout.

Find the QMainWindow in the right hand panel (it should be right at the top).
Underneath you see centralwidget representing the window’s central widget. The
icon for the central widget show the current layout applied. Initially it has a red
circle-cross through it, showing that there is no layout active.

Right click on the QMainWindow object, and find ‘Layout’ in the resulting dropdown.

Qt Creator 79

Right click on the main window, and choose layout.

Next you’ll see a list of layouts which you can apply to the window. Select Lay Out
Horizontally and the layout will be applied to the widget.

Qt Creator 80

Select layout to apply to the main window.

The selected layout is applied to the the centralwidget of the QMainWindow and the
widgets are added the layout, being laid out depending on the selected layout.
Note that in Qt Creator you can actually drag and re-order the widgets within the
layout, or select a different layout, as you like. This makes it especially nice to
prototyping and trying out things.

Qt Creator 81

Verticallayout applied to widgets on the main window.

Using your generated .ui file

We’ve created a very simple UI. The next step is to get this into Python and use it
to construct a working application.

First save your .ui file — by default it will save at the location you chosen while
creating it, although you can choose another location if you like.

The .ui file is in XML format. To use our UI from Python we have two alternative
methods available —

1. load into into a class using the .loadUI()method
2. convert it to Python using the pyuic5 tool.

These two approaches are covered below. Personally I prefer to convert the UI to
a Python file to keep things similar from a programming & packaging point of view.

Qt Creator 82

Loading the .ui file directly

To load .ui files we can use the uicmodule included with PyQt5, specifically the
uic.loadUI()method. This takes the filename of a UI file and loads it creating a
fully-functional PyQt5 object.

1 import sys
2 from PyQt5 import QtWidgets, uic
3

4 app = QtWidgets.QApplication(sys.argv)
5

6 window = uic.loadUi("mainwindow.ui")
7 window.show()
8 app.exec()
9 ````
10

11 T> As the `uid.loadUI()` method turns an instance object you cannot attach cust\
12 om `__init__()` code. You can however handle this through a custom setup functi\
13 on.
14

15 ```python
16 import sys
17 from PyQt5 import QtWidgets, uic
18

19 def mainwindow_setup(w):
20 w.setTitle("MainWindow Title")
21

22 app = QtWidgets.QApplication(sys.argv)
23

24 window = uic.loadUi("mainwindow.ui")
25 mainwindow_setup(window)
26 window.show()
27 app.exec()

Qt Creator 83

Converting your .ui file to Python

Togenerate aPythonoutput file run pyuic5 from the command line, passing the .ui
file and the target file for output, with a -o parameter. The following will generate
a Python file named MainWindow.py which contains our created UI.

1 pyuic5 mainwindow.ui -o MainWindow.py

If you’re using PyQt4 the tool is named pyuic4, but is otherwise com-
pletely identical.

You can open the resulting MainWindow.py file in an editor to take a look, although
you should not edit this file. The power of using Qt Creator is being able to edit,
tweak and update your application while you develop. Any changes made to this
file will be lost when you update it. However, you can override and tweak anything
you like when you import and use the file in your applications.

Importing the resulting Python file works as for any other. You can import your
class as follows. The pyuic5 tool appends Ui_ to the name of the object defined in
Qt Creator, and it is this object you want to import.

1 from MainWindow import Ui_MainWindow

To create the main window in your application, create a class as normal but
subclassing from both QMainWindow and your imported Ui_MainWindow class. Fi-
nally, call self.setupUi(self) from within the __init__ to trigger the setup of the
interface.

1 class MainWindow(QMainWindow, Ui_MainWindow):
2 def __init__(self, *args, **kwargs):
3 super(MainWindow, self).__init__(*args, **kwargs)
4 self.setupUi(self)

That’s it. Your window is now fully set up.

Qt Creator 84

Adding application logic

You can interact with widgets created through Qt Creator just as you would those
createdwith code. Tomake things simpler uic adds all childwidgets to thewindow
object by their id name.

Extended Signals
We’ve previously covered the basics of what Qt signals are and how you can
use them to make your application respond to actions and other occurrences.
However, this merely scratches the surface of what you can achieve with the Qt
signal/slot system.

In this chapter we’ll look at ways you can extend andmodify signal behaviour from
within Python and how you can create custom signals yourself.

Modifying Signal Data

As you find yourself using signals more often, you’ll often find that you want to be
able to customise the data that is sent with them. Unfortunately there is no way to
do this in Qt directly, but we can exploit some features of Python to make it work
for us.

To start with, we’ll look at how to send less data.

Imagine we have a function that accepts two parameters, with default values.
However, neither of these is a string.Howcanweconnect our .windowTitleChanged
signal to this function?

By using a wrapper function (or a lambda) we can accept the signal’s data, discard
it, then call our target slot. So, for example, to discard data from a signal that emits
a single value we could use the following construction.

1 def wrapper_function(x):
2 real_function() # To call target, discarding x

The wrapper_function accepts the x value, but does not pass it when calling real_-
function. We can also write this using a lambda as follows:

Extended Signals 86

1 lambda x: fn()

Just like the function, the lambda accepts a single parameter x, then discards it
calling the real target fn with no parameters:

It doesn’t matter whether you use a normal function or lambda (anony-
mous function) for these. However, I tend to use the lambda syntax
because it makes for tidier code.

If we want to send more data we can use a similar construction, but instead of
discarding a parameter we add another. For example:

1 def wrapper_function(x)
2 real_function(x, some_more_data)

Or again, with lambda syntax:

1 lambda x: fn(x, some_more_data)

There is a gotcha to be aware of here however. If you are wrapping a number of
signals in turn and use a loop, you need to be aware of Python scoping behaviour
for your loop variable and the wrapped function.

Here we’re going to use a layout to create a list of widgets (don’t worry about
layouts yet, that’ll be explained later). Copy the following code into a file and run
it with Python.

Extended Signals 87

1 from PyQt5.QtWidgets import *
2 from PyQt5.QtCore import *
3 from PyQt5.QtGui import *
4

5

6 class MainWindow(QMainWindow):
7

8 def __init__(self, *args, **kwargs):
9 super(MainWindow, self).__init__(*args, **kwargs)
10

11 self.setWindowTitle("My Awesome App")
12

13 layout = QVBoxLayout()
14

15 for n in range(10):
16 btn = QPushButton(str(n))
17 btn.pressed.connect(lambda: self.my_custom_fn(n))
18

19 layout.addWidget(btn)
20

21 widget = QWidget()
22 widget.setLayout(layout)
23

24 self.setCentralWidget(widget)
25

26 def my_custom_fn(self, n):
27 print("Button %d was clicked" % n)
28

29

30 app = QApplication([])
31

32 window = MainWindow()
33 window.show()
34 app.exec_()

You’ll notice that as we iterate to add the widgets, we redirect using a lambda to
our custom clicked function, passing the loop variable. The expectation is that
clicking on each button will print a message along with the button’s number in the

Extended Signals 88

console. Try it.

Did you notice that clicking on all of the widgets gives the same result?

1 python3 signals_lambda.py
2 Button 9 was clicked
3 Button 9 was clicked
4 Button 9 was clicked
5 Button 9 was clicked

What’s going on? The variable scoping rules of Pythonmean that when we use the
loop variable inside the lambda, this is the same object as the loop variable. Each
wrapped method will then contain a reference to the same variable, which will —
once the loop is completed — contain the same final value of the loop. Each call to
each wrapper will send the same value.

To prevent this we need to pass the extra data in as a named parameter to
the lambda or wrapper function. This creates a new object, unique to that new
namespace, holding the value of the loop at the time of its creation.

1 lambda x, data=data: fn(x, data)

So, now you should be able to pass just about anything to any function using
signals! The final code now looks like this:

Extended Signals 89

1 class MainWindow(QMainWindow):
2

3 def __init__(self, *args, **kwargs):
4 super(MainWindow, self).__init__(*args, **kwargs)
5

6 self.setWindowTitle("My Awesome App")
7

8 # QHBoxLayout is a horizontally stacking layout with new widgets
9 # added to the right of previous widgets.
10 layout = QVBoxLayout()
11

12 for n in range(10):
13 # Create a push button labeled with the loop number 0-9
14 btn = QPushButton(str(n))
15 # SIGNAL: The .pressed signal fires whenever the button is pressed.
16 # We connect this to self.my_custom_fn via a lambda to pass in
17 # additional data.
18 # IMPORTANT: You must pass the additional data in as a named
19 # parameter on the lambda to create a new namespace. Otherwise
20 # the value of n will be bound to the final value in the parent
21 # for loop (always 9).
22 btn.pressed.connect(lambda n=n: self.my_custom_fn(n))
23

24 # Add the button to the layout. It will go to the right by default.
25 layout.addWidget(btn)
26

27 # Create a empty widget to hold the layout containing our buttons.
28 widget = QWidget()
29

30 # Set the layout containing our buttons onto the blank widget. We only
31 # need to do this here because we can't set a layout on a QMainWindow.
32 # So instead we're setting a layout on a widget, and then adding that
33 # widget to the window(!)
34 widget.setLayout(layout)
35

36 self.setCentralWidget(widget)
37

38

39 # SLOT: This function will receive the single value passed from the signal

Extended Signals 90

40 def my_custom_fn(self, n):
41 print("Button %d was clicked" % n)

Extended Signals 91

Custom Signals

The final bit of signals we’re going to cover is custom signals. These allow you to
use theQt event loop to send data around your application. It’s a greatway to keep
your app modular and responsive.

You can define your own signals using the pyQtSignalmethod provided by PyQt5.
Signalsmust be defined as attributes of the class, passing in the type that will sent
with the signals when creating it. You can choose any valid Python variable name
for the name of the signal.

1 def MainWindow(QMainWindow):
2 message = pyqtSignal(str)
3 value = pyqtSignal(int)

These signals can then be used as normal:

1 window.value.emit(23) # Signal on another object.
2 self.message.emit("my message") # Signal on self.

You can create your own signals on any class that is a subclass of QObject. That
includes all widgets, including the main window, dialog boxes, and so on.

You can send any Python type, includingmultiple types, and compound types (e.g.
dictionaries, lists).

1 def MyClass(QObject):
2 keyvalue = pyqtSignal(dict)
3 data = pyqtSignal(tuple)

If you define your signal as pyqtSignal(object) it will be able to send any
Python type. But this isn’t recommend, as receiving handlers will then
need to deal with all types.

QPainter and Bitmap Graphics
The first step towards creating custom widgets in PyQt5 is understanding bitmap
(pixel-based) graphic operations. All standardwidgetsdraw themselves asbitmaps
on a rectangular “canvas” that forms the shape of the widget. Once you under-
stand how this works you can draw any widget you like!

Bitmaps are rectangular grids of pixels, where each pixel (and its color)
is represented by a number of “bits”. They are distinct from vector
graphics, where the image is stored as a series of line (or vector) drawing
instructions which are repeated form the image. If you’re viewing vector
graphics on your screen they are being rasterised (i.e. converted into a
bitmap image) to be displayed as pixels on the screen.

In this tutorial we’ll take a look at QPainter, Qt’s API for performing bitmap graphic
operations and the basis for drawing your own widgets. We’ll go through some
basic drawing operations and finally put it all together to create our own little Paint
app.

QPainter

Bitmap drawing operations in Qt are handled through the QPainter class. This is
a generic interface which can be used to draw on various surfaces including, for
example, QPixmap. In this chapter we’ll look at the QPainter drawingmethods, first
using primitive operations on a QPixmap surface, and then building a simple Paint
application using what we’ve learnt.

To make this easy to demonstrate we’ll be using the following stub application
which handles creating our container (a QLabel) creating a pixmap canvas, setting
that into the container and adding the container to the main window.

QPainter and Bitmap Graphics 93

1 import sys
2 from PyQt5 import QtCore, QtGui, QtWidgets, uic
3 from PyQt5.QtCore import Qt
4

5

6 class MainWindow(QtWidgets.QMainWindow):
7 def __init__(self):
8 super().__init__()
9

10 self.label = QtWidgets.QLabel()
11 canvas = QtGui.QPixmap(400, 300)
12 self.label.setPixmap(canvas)
13 self.setCentralWidget(self.label)
14 self.draw_something()
15

16 def draw_something(self):
17 painter = QtGui.QPainter(self.label.pixmap())
18 painter.drawLine(10, 10, 300, 200)
19 painter.end()
20

21

22 app = QtWidgets.QApplication(sys.argv)
23 window = MainWindow()
24 window.show()
25 app.exec_()

Why do we use QLabel to draw on? The QLabel widget can also be used
to show images, and it’s the simplest widget available for displaying a
QPixmap.

Save this to a file and run it and you should see the following — a single black line
inside the window frame —

QPainter and Bitmap Graphics 94

A single black line on the canvas

All the drawing occurs within the draw_somethingmethod — we create a QPainter
instance, passing in the canvas (self.label.pixmap()) and then issue a command
to draw a line. Finally we call .end() to close the painter and apply the changes.

You would usually also need to call .update() to trigger a refresh of the
widget, but as we’re drawing before the application window is shown a
refresh is already going to occur automatically.

QPainter and Bitmap Graphics 95

Drawing primitives

QPainter provides a huge number of methods for drawing shapes and lines on
a bitmap surface (in 5.12 there are 192 QPainter specific non-event methods).
The good news is that most of these are overloaded methods which are simply
different ways of calling the same base methods.

For example, there are 5 different drawLinemethods, all of which draw the same
line, but differ in how the coordinates of what to draw are defined.

Method Description
drawLine(const QLineF &line) Draw a QLineF instance
drawLine(const QLine &line) Draw a QLine instance
drawLine(int x1, int y1, int x2, int
y2)

Draw a line between x1, y2 and
x2, y2

drawLine(const QPoint &p1,
const QPoint &p2)

Draw a line between QPoint 1
and QPoint 2

drawLine(const QPointF &p1,
const QPointF &p2)

Draw a line between QPointF 1
and QPointF 2

If you’rewonderingwhat the difference is between a QLine and a QLineF , the latter
has its coordinates specified as float. This is convenient if you have float positions
as the result of other calculations, but otherwise not so much.

Ignoring the F-variants, we have 3 unique ways to draw a line — with a line object,
with two sets of coordinates (x1, y1), (x2, y2) or with two QPoint objects. When
you discover that a QLine itself is defined as QLine(const QPoint & p1, const
QPoint & p2)orQLine(int x1, int y1, int x2, int y2)you see that they are all
in fact, exactly the same thing. The different call signatures are simply there for
convenience.

Given the x1, y1, x2, y2 coordinates, the two QPointobjects would be
defined as QPoint(x1, y1) and QPoint(x2, y2).

So, leaving out the duplicates we have the following draw operations —drawArc ,
drawChord, drawConvexPolygon, drawEllipse,drawLine, drawPath, drawPie, drawPoint,
drawPolygon, drawPolyline, drawRect, drawRects and drawRoundedRect. To avoid get
overwhelmed we’ll focus first on the primitive shapes and lines first and return to
the more complicated operations once we have the basics down.

QPainter and Bitmap Graphics 96

For each example, replace the draw_something method in your stub
application and re-run it to see the output.

drawPoint

This draws a point, or pixel at a given point on the canvas.Each call to drawPoint
draws one pixel. Replace your draw_something code with the following.

1 def draw_something(self):
2 painter = QtGui.QPainter(self.label.pixmap())
3 painter.drawPoint(200, 150)
4 painter.end()

If you re-run the file you will see a window, but this time there is a single dot, in
black in the middle of it. You’ll probably need to move the window around to spot
it.

QPainter and Bitmap Graphics 97

Drawing a single point (pixel) with QPainter

That really isn’t much to look at. To make things more interesting we can change
the colour and size of the point we’re drawing. In PyQt the colour and thickness of
lines is defined using the active pen on the QPainter. You can set this by creating
a QPen instance and applying it.

QPainter and Bitmap Graphics 98

1 def draw_something(self):
2 painter = QtGui.QPainter(self.label.pixmap())
3 pen = QtGui.QPen()
4 pen.setWidth(40)
5 pen.setColor(QtGui.QColor('red'))
6 painter.setPen(pen)
7 painter.drawPoint(200, 150)
8 painter.end()

This will give the following mildly more interesting result..

You
are free to perform multiple draw operations with your QPainter until the painter
is ended. Drawing onto the canvas is very quick — here we’re drawing 10k dots at

QPainter and Bitmap Graphics 99

random.

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(3)
6 painter.setPen(pen)
7

8 for n in range(10000):
9 painter.drawPoint(
10 200+randint(-100, 100), # x
11 150+randint(-100, 100) # y
12)
13 painter.end()

The dots are 3 pixel-width and black (the default pen).

QPainter and Bitmap Graphics 100

10k 3-pixel dots on a canvas

Youwill oftenwant to update the current penwhile drawing—e.g. to drawmultiple
points in different colourswhile keeping other characteristics (width) the same. To
do this without recreating a new QPen instance each time you can get the current
active pen from the QPainterusing pen = painter.pen(). You can also re-apply an
existing pen multiple times, changing it each time.

QPainter and Bitmap Graphics 101

1 def draw_something(self):
2 from random import randint, choice
3 colors = ['#FFD141', '#376F9F', '#0D1F2D', '#E9EBEF', '#EB5160']
4

5 painter = QtGui.QPainter(self.label.pixmap())
6 pen = QtGui.QPen()
7 pen.setWidth(3)
8 painter.setPen(pen)
9

10 for n in range(10000):
11 # pen = painter.pen() you could get the active pen here
12 pen.setColor(QtGui.QColor(choice(colors)))
13 painter.setPen(pen)
14 painter.drawPoint(
15 200+randint(-100, 100), # x
16 150+randint(-100, 100) # y
17)
18 painter.end()

Will produce the following output —

QPainter and Bitmap Graphics 102

Random pattern of 3 width dots

There can only ever be one QPen active on a QPainter — the current pen.

That’s about as much excitement as you can have drawing dots onto a screen, so
we’ll move on to look at some other drawing operations.

drawLine

We already drew a line on the canvas at the beginning to test things are working.
But what we didn’t try was setting the pen to control the line appearance.

QPainter and Bitmap Graphics 103

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(15)
6 pen.setColor(QtGui.QColor('blue'))
7 painter.setPen(pen)
8 painter.drawLine(
9 QtCore.QPoint(100, 100),
10 QtCore.QPoint(300, 200)
11)
12 painter.end()

In this example we’re also using QPoint to define the two points to connect with a
line, rather than passing individual x1, y1, x2, y2 parameters — remember that
both methods are functionally identical.

QPainter and Bitmap Graphics 104

A thick blue line

drawRect, drawRects and drawRoundedRect

These functions all draw rectangles, defined by a series of points, or by QRect or
QRectF instances.

QPainter and Bitmap Graphics 105

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(3)
6 pen.setColor(QtGui.QColor("#EB5160"))
7 painter.setPen(pen)
8 painter.drawRect(50, 50, 100, 100)
9 painter.drawRect(60, 60, 150, 100)
10 painter.drawRect(70, 70, 100, 150)
11 painter.drawRect(80, 80, 150, 100)
12 painter.drawRect(90, 90, 100, 150)
13 painter.end()

A square is just a rectangle with the same width and height

QPainter and Bitmap Graphics 106

Drawing rectangles

You can also replace the multiple calls to drawRect with a single call to drawRects
passing in multiple QRect objects. This will product exactly the same result.

1 painter.drawRects(
2 QtCore.QRect(50, 50, 100, 100),
3 QtCore.QRect(60, 60, 150, 100),
4 QtCore.QRect(70, 70, 100, 150),
5 QtCore.QRect(80, 80, 150, 100),
6 QtCore.QRect(90, 90, 100, 150),
7)

QPainter and Bitmap Graphics 107

Drawn shapes can be filled in PyQt by setting the current active painter brush,
passing in a QBrush instance to painter.setBrush(). The following example fills all
rectangles with a patterned yellow colour.

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(3)
6 pen.setColor(QtGui.QColor("#376F9F"))
7 painter.setPen(pen)
8

9 brush = QtGui.QBrush()
10 brush.setColor(QtGui.QColor("#FFD141"))
11 brush.setStyle(Qt.Dense1Pattern)
12 painter.setBrush(brush)
13

14 painter.drawRects(
15 QtCore.QRect(50, 50, 100, 100),
16 QtCore.QRect(60, 60, 150, 100),
17 QtCore.QRect(70, 70, 100, 150),
18 QtCore.QRect(80, 80, 150, 100),
19 QtCore.QRect(90, 90, 100, 150),
20)
21 painter.end()

QPainter and Bitmap Graphics 108

As
for the pen, there is only ever one brush active on a given painter, but you can
switch between them or change themwhile drawing. There are a number of brush
style patterns available. You’ll probably use Qt.SolidPatternmore than any others
though.

Youmust set a style to see any fill at all as the default is Qt.NoBrush.

The drawRoundedRect methods draw a rectangle, but with rounded edges, and so
take two extra parameters for the x & y radius of the corners.

https://doc.qt.io/qt-5/qt.html#BrushStyle-enum
https://doc.qt.io/qt-5/qt.html#BrushStyle-enum

QPainter and Bitmap Graphics 109

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(3)
6 pen.setColor(QtGui.QColor("#376F9F"))
7 painter.setPen(pen)
8 painter.drawRoundedRect(40, 40, 100, 100, 10, 10)
9 painter.drawRoundedRect(80, 80, 100, 100, 10, 50)
10 painter.drawRoundedRect(120, 120, 100, 100, 50, 10)
11 painter.drawRoundedRect(160, 160, 100, 100, 50, 50)
12 painter.end()

QPainter and Bitmap Graphics 110

Rounded rectangles

There is an optional final parameter to toggle between the x & y
ellipse radii of the corners being defined in absolute pixel terms
Qt.RelativeSize (the default) or relative to the size of the rectangle
(passed as a value 0…100). Pass Qt.RelativeSize to enable this.

drawEllipse

The final primitive drawmethodwe’ll look at now is drawEllipsewhich canbeused
to draw an ellipse or a circle.

QPainter and Bitmap Graphics 111

A circle is just an ellipse with an equal width and height.

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4 pen = QtGui.QPen()
5 pen.setWidth(3)
6 pen.setColor(QtGui.QColor(204,0,0)) # r, g, b
7 painter.setPen(pen)
8

9 painter.drawEllipse(10, 10, 100, 100)
10 painter.drawEllipse(10, 10, 150, 200)
11 painter.drawEllipse(10, 10, 200, 300)
12 painter.end()

In this example drawEllipse is taking 4 parameters, with the first two being the x
& y position of the top left of the rectangle in which the ellipse will be drawn, while
the last two parameters are the width and height of that rectangle respectively.

QPainter and Bitmap Graphics 112

T>
You can achieve the same by passing in a QRect

There is another call signature which takes the centre of the ellipse as the first
parameter, provided as QPoint or QPointF object, and then a x and y radius. The
example below shows it in action.

1 painter.drawEllipse(QtCore.QPoint(100, 100), 10, 10)
2 painter.drawEllipse(QtCore.QPoint(100, 100), 15, 20)
3 painter.drawEllipse(QtCore.QPoint(100, 100), 20, 30)
4 painter.drawEllipse(QtCore.QPoint(100, 100), 25, 40)
5 painter.drawEllipse(QtCore.QPoint(100, 100), 30, 50)
6 painter.drawEllipse(QtCore.QPoint(100, 100), 35, 60)

QPainter and Bitmap Graphics 113

Drawing an ellipse using Point & radius

You can fill ellipses using the same QBrush approach described for rectangles.

Text

Finally, we’ll take a brief tour through the QPainter text drawing methods. To
control the current font on a QPainter you use setFont passing in a QFont instance.
With this you can control the family, weight and size (among other things) of the
text you write. The colour of the text is still defined using the current pen however.

QPainter and Bitmap Graphics 114

1 def draw_something(self):
2 from random import randint
3 painter = QtGui.QPainter(self.label.pixmap())
4

5 pen = QtGui.QPen()
6 pen.setWidth(1)
7 pen.setColor(QtGui.QColor('green'))
8 painter.setPen(pen)
9

10 font = QtGui.QFont()
11 font.setFamily('Times')
12 font.setBold(True)
13 font.setPointSize(40)
14 painter.setFont(font)
15

16 painter.drawText(100, 100, 'Hello, world!')
17 painter.end()

You can also specify location with QPoint or QPointF.

The width of the pen has no effect on the appearance of the text.

QPainter and Bitmap Graphics 115

Bitmap text hello world example

There are also methods for drawing text within a specified area. Here the param-
eters define the x & y position and the width & height of the bounding box. Text
outside this box is clipped (hidden). The 5th parameter flags can be used to control
alignment of the text within the box among other things.

1 painter.drawText(100, 100, 100, 100, Qt.AlignHCenter, 'Hello, world!')

QPainter and Bitmap Graphics 116

Bounding box clipped on drawText

You have complete control over the display of text by setting the active font
on the painter via a QFont object. Check out the QFont documentation for more
information.

A bit of fun with QPainter

The got a bit heavy, so let’s take a breather and make something fun. So far we’ve
been programmatically defining the draw operations to perform on the QPixmap
surface. But we can just as easily draw in response to user input — for example
allowing a user to scribble all over the canvas. Let’s take what we’ve learned so far

https://doc.qt.io/archives/qt-4.8/qfont.html

QPainter and Bitmap Graphics 117

and use it to build a rudimentary Paint app.

We can start with the same simple application outline, adding a mouseMoveEvent
handler to the MainWindow class in place of our draw method. Here we’ll take the
current position of the user’s mouse and draw it to the canvas.

1 import sys
2 from PyQt5 import QtCore, QtGui, QtWidgets, uic
3 from PyQt5.QtCore import Qt
4

5

6 class MainWindow(QtWidgets.QMainWindow):
7

8 def __init__(self):
9 super().__init__()
10

11 self.label = QtWidgets.QLabel()
12 canvas = QtGui.QPixmap(400, 300)
13 self.label.setPixmap(canvas)
14 self.setCentralWidget(self.label)
15

16 def mouseMoveEvent(self, e):
17 painter = QtGui.QPainter(self.label.pixmap())
18 painter.drawPoint(e.x(), e.y())
19 painter.end()
20 self.update()
21

22

23 app = QtWidgets.QApplication(sys.argv)
24 window = MainWindow()
25 window.show()
26 app.exec_()

Why no click event? Widgets by default only receive mouse move events
when a mouse button is pressed, unlessmouse tracking is enabled. This
can be configured using the .setMouseTrackingmethod — setting this to
True (it is False by default) will track the mouse continuously.

QPainter and Bitmap Graphics 118

If you save this and run it you should be able to move your mouse over the screen
and click to draw individual points. It should look something like this —

Drawing individual mouseMoveEvent points

The issue here is that when you move the mouse around quickly it actually jumps
between locations on the screen, rather than moving smoothly from one place to
the next. The mouseMoveEventis fired for each location the mouse is in, but that’s
not enough to draw a continuous line, unless you move very slowly.

The solution to this is to draw lines instead of points. On each event we simply
draw a line from where we were (previous e.x() and e.y()) to where we are now
(current e.x() and e.y()). We can do this by tracking last_x and last_y ourselves.

We also need to forget the last position when releasing the mouse, or we’ll start

QPainter and Bitmap Graphics 119

drawing from that location again after moving themouse across the page— i.e. we
won’t be able to break the line.

1 import sys
2 from PyQt5 import QtCore, QtGui, QtWidgets, uic
3 from PyQt5.QtCore import Qt
4

5

6 class MainWindow(QtWidgets.QMainWindow):
7

8 def __init__(self):
9 super().__init__()
10

11 self.label = QtWidgets.QLabel()
12 canvas = QtGui.QPixmap(400, 300)
13 self.label.setPixmap(canvas)
14 self.setCentralWidget(self.label)
15

16 self.last_x, self.last_y = None, None
17

18 def mouseMoveEvent(self, e):
19 if self.last_x is None: # First event.
20 self.last_x = e.x()
21 self.last_y = e.y()
22 return # Ignore the first time.
23

24 painter = QtGui.QPainter(self.label.pixmap())
25 painter.drawLine(self.last_x, self.last_y, e.x(), e.y())
26 painter.end()
27 self.update()
28

29 # Update the origin for next time.
30 self.last_x = e.x()
31 self.last_y = e.y()
32

33 def mouseReleaseEvent(self, e):
34 self.last_x = None
35 self.last_y = None

QPainter and Bitmap Graphics 120

36

37

38 app = QtWidgets.QApplication(sys.argv)
39 window = MainWindow()
40 window.show()
41 app.exec_()
42 ````
43

44 If you run this you should be able to scribble on the screen as you would expec\
45 t.
46

47 ![Drawing with the mouse, using a continuous line](images/bitmap-draw.png)
48

49 It's still a bit dull, so let's add a simple palette to allow us to change the \
50 pen colour.
51

52 This requires a bit of re-architecting to ensure the mouse position is detected\
53 accurately. So far we've using the `mouseMoveEvent` on the `QMainWindow` . Wh\
54 en we only have a single widget in the window this is fine — as long as you don\
55 't resize the window, the coordinates of the container and the single nested wi\
56 dget line up. However, if we add other widgets to the layout this won't hold — \
57 the coordinates of the `QLabel` will be offset from the window, and we'll be dr\
58 awing in the wrong location.
59

60 This is easily fixed by moving the mouse handling onto the `QLabel` itself— it'\
61 s event coordinates are always relative to itself. This we wrap up as an indivi\
62 dual `Canvas` object, which handles the creation of the pixmap surface, sets up\
63 the x & y locations and the holds the current pen colour (set to black by defa\
64 ult).
65

66 T> This self-contained `Canvas` is a drop-in drawable surface you could use in \
67 your own apps.
68

69 ```python
70 import sys
71 from PyQt5 import QtCore, QtGui, QtWidgets, uic
72 from PyQt5.QtCore import Qt
73

74 class Canvas(QtWidgets.QLabel):

QPainter and Bitmap Graphics 121

75

76 def __init__(self):
77 super().__init__()
78 pixmap = QtGui.QPixmap(600, 300)
79 self.setPixmap(pixmap)
80

81 self.last_x, self.last_y = None, None
82 self.pen_color = QtGui.QColor('#000000')
83

84 def set_pen_color(self, c):
85 self.pen_color = QtGui.QColor(c)
86

87 def mouseMoveEvent(self, e):
88 if self.last_x is None: # First event.
89 self.last_x = e.x()
90 self.last_y = e.y()
91 return # Ignore the first time.
92

93 painter = QtGui.QPainter(self.pixmap())
94 p = painter.pen()
95 p.setWidth(4)
96 p.setColor(self.pen_color)
97 painter.setPen(p)
98 painter.drawLine(self.last_x, self.last_y, e.x(), e.y())
99 painter.end()
100 self.update()
101

102 # Update the origin for next time.
103 self.last_x = e.x()
104 self.last_y = e.y()
105

106 def mouseReleaseEvent(self, e):
107 self.last_x = None
108 self.last_y = None

For the colour selectionwe’re going tobuild a customwidget, basedoff QPushButton.
Thiswidget accepts a colorparameterwhich canbe a QColour instance, or a colour
name (‘red’, ‘black’) or hex value. This colour is set on thebackgroundof thewidget

QPainter and Bitmap Graphics 122

to make it identifiable. We can use the standard QPushButton.pressed signal to
hook it up to any actions.

1 COLORS = [
2 # 17 undertones https://lospec.com/palette-list/17undertones
3 '#000000', '#141923', '#414168', '#3a7fa7', '#35e3e3', '#8fd970', '#5ebb49',
4 '#458352', '#dcd37b', '#fffee5', '#ffd035', '#cc9245', '#a15c3e', '#a42f3b',
5 '#f45b7a', '#c24998', '#81588d', '#bcb0c2', '#ffffff',
6]
7

8

9 class QPaletteButton(QtWidgets.QPushButton):
10

11 def __init__(self, color):
12 super().__init__()
13 self.setFixedSize(QtCore.QSize(24,24))
14 self.color = color
15 self.setStyleSheet("background-color: %s;" % color)

With those twonewparts defined,we simply need to iterate over our list of colours,
create a QPaletteButton passing in the colour, connect its pressed signal to the
set_pen_color handler on the canvas (indirectly through a lambda to pass the
additional colour data) and add it to the palette layout.

1 class MainWindow(QtWidgets.QMainWindow):
2

3 def __init__(self):
4 super().__init__()
5

6 self.canvas = Canvas()
7

8 w = QtWidgets.QWidget()
9 l = QtWidgets.QVBoxLayout()
10 w.setLayout(l)
11 l.addWidget(self.canvas)
12

13 palette = QtWidgets.QHBoxLayout()

QPainter and Bitmap Graphics 123

14 self.add_palette_buttons(palette)
15 l.addLayout(palette)
16

17 self.setCentralWidget(w)
18

19 def add_palette_buttons(self, layout):
20 for c in COLORS:
21 b = QPaletteButton(c)
22 b.pressed.connect(lambda c=c: self.canvas.set_pen_color(c))
23 layout.addWidget(b)
24

25

26 app = QtWidgets.QApplication(sys.argv)
27 window = MainWindow()
28 window.show()
29 app.exec_()

This should give you a fully-functioning multicolour paint application, where you
can draw lines on the canvas and select colours from the palette.

QPainter and Bitmap Graphics 124

Unfortunately, it doesn’t make you good.

Unfortunately, it doesn’t make you a good artist.

Spray

For a final bit of fun you can switch out the mouseMoveEvent with the following
to draw with a “spray can” effect instead of a line. This is simulated using
random.gauss to generate a series of normally distributed dots around the current
mouse position which we plot with drawPoint.

QPainter and Bitmap Graphics 125

1 def mouseMoveEvent(self, e):
2 painter = QtGui.QPainter(self.pixmap())
3 p = painter.pen()
4 p.setWidth(1)
5 p.setColor(self.pen_color)
6 painter.setPen(p)
7

8 for n in range(SPRAY_PARTICLES):
9 xo = random.gauss(0, SPRAY_DIAMETER)
10 yo = random.gauss(0, SPRAY_DIAMETER)
11 painter.drawPoint(e.x() + xo, e.y() + yo)
12

13 self.update()

Define the SPRAY_PARTICLES and SPRAY_DIAMETER variables at the top of your file
and import the random standard library module. The image below shows the spray
behaviour when using the following settings:

1 import random
2

3 SPRAY_PARTICLES = 100
4 SPRAY_DIAMMETER = 10

QPainter and Bitmap Graphics 126

Just call me Picasso

Just call me Picasso.

N> For the spray can we don’t need to track the previous position, as we always
spray around the current point.

If you want a challenge, you could try adding an additional button to toggle
between draw and spray mode, or an input to define the brush/spray diameter.

For a fully-functional drawing program written with PyQt5 check out my
15Minute App “Piecasso” available here: https://github.com/mfitzp/15-
minute-apps/tree/master/paint

This introduction should have given you a good idea of what you can do with
QPainter. As described, this system is the basis of all widget drawing. If you want
to look further, check out the widget .paint()method, which receives a QPainter
instance, to allow the widget to draw on itself. The same methods you’ve learnt
here can be used in .paint() to draw some basic custom widgets.

Creating CustomWidgets
In the previous chapter we introduced QPainter and looked at some basic bitmap
drawing operations which you can used to draw dots, lines, rectangles and circles
on a QPainter surface such as a QPixmap.

This process of drawing on a surface with QPainter is in fact the basis by which
all widgets in Qt are drawn.Now you know how to use QPainter you know how to
draw your own custom widgets!

In this chapter we’ll take what we’ve learnt so far and use it to construct a
completely new custom widget. For a working example we’ll be building the
following widget — a customisable PowerBar meter with a dial control.

Creating CustomWidgets 128

PowerBar-meter

This widget is actually a mix of a compound widget and custom widget in that we
are using the built-in Qt QDial component for the dial, while drawing the power bar
ourselves. We then assemble these two parts together into a parent widget which
can be dropped into place seamlessly in any application, without needing to know
how it’s put together. The resulting widget provides the common QAbstractSlider
interface with some additions for configuring the bar display.

After following this example you will be able to build your very own custom
widgets — whether they are compounds of built-ins or completely novel self-
drawn wonders.

Creating CustomWidgets 129

Getting started

As we’ve previously seen compound widgets are simply widgets with a layout
applied, which itself contains >1 other widget. The resulting “widget” can then
be used as any other, with the internals hidden/exposed as you like.

The outline for ourPowerBarwidget is given below—we’ll build our customwidget
up gradually from this outline stub.

1 from PyQt5 import QtCore, QtGui, QtWidgets
2 from PyQt5.QtCore import Qt
3

4

5 class _Bar(QtWidgets.QWidget):
6 pass
7

8 class PowerBar(QtWidgets.QWidget):
9 """
10 Custom Qt Widget to show a power bar and dial.
11 Demonstrating compound and custom-drawn widget.
12 """
13

14 def __init__(self, steps=5, *args, **kwargs):
15 super(PowerBar, self).__init__(*args, **kwargs)
16

17 layout = QtWidgets.QVBoxLayout()
18 self._bar = _Bar()
19 layout.addWidget(self._bar)
20

21 self._dial = QtWidgets.QDial()
22 layout.addWidget(self._dial)
23

24 self.setLayout(layout)

This simply defines our custom power bar is defined in the _Bar object — here just
unaltered subclass of QWidget. The PowerBarwidget (which is the completewidget)
combines this, using a QVBoxLayoutwith the built in QDial to display them together.

Creating CustomWidgets 130

Save this to a file named power_bar.py

We also need a little demo application to display the widget.

1 from PyQt5 import QtCore, QtGui, QtWidgets
2 from power_bar import PowerBar
3

4

5 app = QtWidgets.QApplication([])
6 volume = PowerBar()
7 volume.show()
8 app.exec_()

N> We don’t need to create a QMainWindow since any widget without a parent is a
window in it’s own right. Our custom PowerBar widget will appear as any normal
window.

This is all you need, just save it in the same folder as the previous file, under
something like demo.py. You can run this file at any time to see your widget in
action. Run it now and you should see something like this:

PowerBar-dial

If you stretch the window down you’ll see the dial has more space above it than
below — this is being taken up by our (currently invisible) _Bar widget.

Creating CustomWidgets 131

paintEvent

The paintEvent handler is the core of all widget drawing in PyQt.

Every complete and partial re-draw of a widget is triggered through a paintEvent
which the widget handles to draw itself. A paintEvent can be triggered by —

• repaint() or update() was called
• the widget was obscured and has now been uncovered
• the widget has been resized

— but it can also occur for many other reasons. What is important is that when a
paintEvent is triggered your widget is able to redraw it.

If a widget is simple enough (like ours is) you can often get away with simply
redrawing the entire thing any time anything happens. But for more complicated
widgets this can get very inefficient. For these cases the paintEvent includes the
specific region that needs to be updated. We’ll make use of this in later, more
complicated examples.

For nowwe’ll do something very simple, and just fill the entire widget with a single
colour. This will allow us to see the area we’re working with to start drawing the
bar.

1 def paintEvent(self, e):
2 painter = QtGui.QPainter(self)
3 brush = QtGui.QBrush()
4 brush.setColor(QtGui.QColor('black'))
5 brush.setStyle(Qt.SolidPattern)
6 rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().he\
7 ight())
8 painter.fillRect(rect, brush)

Positioning

Nowwe can see the _Barwidget we can tweak its positioning and size. If you drag
around the shape of the window you’ll see the two widgets changing shape to fit

https://doc.qt.io/qt-5/qwidget.html#repaint
https://doc.qt.io/qt-5/qwidget.html#update

Creating CustomWidgets 132

the space available. This iswhatwewant, but the QDial is also expanding vertically
more than it should, and leaving empty space we could use for the bar.

PowerBar-stretch

We can use setSizePolicy on our _Bar widget to make sure it expands as far as
possible. By using the QSizePolicy.MinimumExpanding the provided sizeHint will
be used as a minimum, and the widget will expand as much as possible.

Creating CustomWidgets 133

1 class _Bar(QtWidgets.QWidget):
2

3 def __init__(self, *args, **kwargs):
4 super().__init__(*args, **kwargs)
5

6 self.setSizePolicy(
7 QtWidgets.QSizePolicy.MinimumExpanding,
8 QtWidgets.QSizePolicy.MinimumExpanding
9)
10

11 def sizeHint(self):
12 return QtCore.QSize(40,120)

It’s still not perfect as the QDial widget resizes itself a bit awkwardly, but our bar
is now expanding to fill all the available space.

Creating CustomWidgets 134

PowerBar-policy

With the positioning sorted we can now move on to define our paint methods to
draw our PowerBar meter in the top part (currently black) of the widget.

Updating the display

We now have our canvas completely filled in black, next we’ll use QPainter draw
commands to actually draw something on the widget.

Before we start on the bar, we’ve got a bit of testing to do to make sure we can
update the display with the values of our dial. Update the paintEventwith the
following code.

Creating CustomWidgets 135

1 def paintEvent(self, e):
2 painter = QtGui.QPainter(self)
3

4 brush = QtGui.QBrush()
5 brush.setColor(QtGui.QColor('black'))
6 brush.setStyle(Qt.SolidPattern)
7 rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().he\
8 ight())
9 painter.fillRect(rect, brush)
10

11 # Get current state.
12 dial = self.parent()._dial
13 vmin, vmax = dial.minimum(), dial.maximum()
14 value = dial.value()
15

16 pen = painter.pen()
17 pen.setColor(QtGui.QColor('red'))
18 painter.setPen(pen)
19

20 font = painter.font()
21 font.setFamily('Times')
22 font.setPointSize(18)
23 painter.setFont(font)
24

25 painter.drawText(25, 25, "{}-->{}<--{}".format(vmin, value, vmax))
26 painter.end()

This draws the black background as before, then uses .parent() to access our
parent PowerBar widget and through that the QDial via _dial. From there we get
the current value, as well as the allowed range minimum and maximum values.
Finally we draw those using the painter, just like we did in the previous part.

We’re leaving handling of the current value, min and max values to the
QDial here, but we could also store that value ourselves and use signals
to/from the dial to keep things in sync.

Run this, wiggle the dial around and …..nothing happens. Although we’ve defined
the paintEvent handler we’re not triggering a repaint when the dial changes.

Creating CustomWidgets 136

You can force a refresh by resizing the window, as soon as you do this
you should see the text appear. Neat, but terrible UX — “just resize your
app to see your settings!”

To fix this we need to hook up our _Barwidget to repaint itself in response to
changing values on the dial. We can do this using the QDial.valueChangedsignal,
hooking it up to a custom slot method which calls .refresh() — triggering a full-
repaint.

Add the following method to the _Bar widget.

1 def _trigger_refresh(self):
2 self.update()

…and add the following to the __init__ block for the parent PowerBar widget.

1 self._dial.valueChanged.connect(self._bar._trigger_refresh)

If you re-run the code now, you will see the display updating automatically as you
turn the dial (click and drag with your mouse). The current value is displayed as
text.

Creating CustomWidgets 137

PowerBar-text

Drawing the bar

Nowwe have the display updating and displaying the current value of the dial, we
can move onto drawing the actual bar display. This is a little complicated, with a
bit of maths to calculate bar positions, but we’ll step through it to make it clear
what’s going on.

The sketch below shows what we are aiming for — a series of N boxes, inset from
the edges of the widget, with spaces between them.

power-goal

Creating CustomWidgets 138

Calculating what to draw

The number of boxes to draw is determined by the current value — and how far
along it is between the minimum and maximum value configured for the QDial.
We already have that information in the example above.

1 dial = self.parent()._dial
2 vmin, vmax = dial.minimum(), dial.maximum()
3 value = dial.value()

If value is half way between vmin and vmax then we want to draw half of the boxes
(if we have 4 boxes total, draw 2). If value is at vmax we want to draw them all.

To do this we first convert our value into a number between 0 and 1, where 0 =
vmin and 1 = vmax. We first subtract vmin from value to adjust the range of possible
values to start from zero — i.e. from vmin...vmax to 0…(vmax-vmin). Dividing this
value by vmax-vmin (the new maximum) then gives us a number between 0 and 1.

The trick then is to multiply this value (called pc below) by the number of steps
and that gives us a number between 0 and 5 — the number of boxes to draw.

1 pc = (value - vmin) / (vmax - vmin)
2 n_steps_to_draw = int(pc * 5)

We’re wrapping the result in int to convert it to a whole number (rounding down)
to remove any partial boxes.

Update the drawTextmethod in your paint event to write out this number instead.

1 pc = (value - vmin) / (vmax - vmin)
2 n_steps_to_draw = int(pc * 5)
3 painter.drawText(25, 25, "{}".format(n_steps_to_draw))

As you turn the dial you will now see a number between 0 and 5.

Creating CustomWidgets 139

Drawing boxes

Next we want to convert this number 0…5 to a number of bars drawn on the
canvas. Start by removing the drawText and font and pen settings, as we no longer
need those.

To draw accurately we need to know the size of our canvas — i.e the size of the
widget. We will also add a bit of padding around the edges to give space around
the edges of the blocks against the black background.

All measurements in the QPainter are in pixels.

1 padding = 5
2

3 # Define our canvas.
4 d_height = painter.device().height() - (padding * 2)
5 d_width = painter.device().width() - (padding * 2)

We take the height andwidth and subtract 2 * padding fromeach— it’s 2x because
we’re padding both the left and right (and top and bottom) edges. This gives us our
resulting active canvas area in d_height and d_width.

power-padding

We need to break up our d_height into 5 equal parts, one for each block — we can
calculate that height simply by d_height / 5. Additionally, since we want spaces

Creating CustomWidgets 140

between the blocks we need to calculate how much of this step size is taken up
by space (top and bottom, so halved) and how much is actual block.

1 step_size = d_height / 5
2 bar_height = step_size * 0.6
3 bar_spacer = step_size * 0.4 / 2

These values are all we need to draw our blocks on our canvas. To do this we count
up to the number of steps-1 starting from 0 using range and then draw a fillRect
over a region for each block.

1 brush.setColor(QtGui.QColor('red'))
2

3 for n in range(5):
4 rect = QtCore.QRect(
5 padding,
6 padding + d_height - ((n+1) * step_size) + bar_spacer,
7 d_width,
8 bar_height
9)
10 painter.fillRect(rect, brush)

N> The fill is set to a red brush to begin with but we will customise this later.

The box to draw with fillRect is defined as a QRect object to which we pass, in
turn, the left x, top y, width and height.

The width is the full canvas width minus the padding, which we previously calcu-
lated and stored in d_width. The left x is similarly just the padding value (5px) from
the left hand side of the widget.

The height of the bar bar_heightwe calculated as 0.6 times the step_size.

This leaves parameter 2 d_height - ((1 + n) * step_size) + bar_spacer which
gives the top y position of the rectangle to draw. This is the only calculation that
changes as we draw the blocks.

A key fact to remember here is that y coordinates in QPainter start at the top and
increase down the canvas. This means that plotting at d_height will be plotting at

Creating CustomWidgets 141

the very bottom of the canvas. When we draw a rectangle from a point it is drawn
to the right and down from the starting position.

To draw a block at the very bottom we must start drawing at d_-
height-step_size i.e. one block up to leave space to draw downwards.

In our bar meter we’re drawing blocks, in turn, starting at the bottom and working
upwards. So our very first block must be placed at d_height-step_size and the
second at d_height-(step_size*2). Our loop iterates from 0 upwards, so we can
achieve this with the following formula —

1 d_height - ((1 + n) * step_size

The final adjustment is to account for our blocks only taking up part of each step_-
size (currently 0.6). We add a little padding tomove the block away from the edge
of the box and into the middle, and finally add the padding for the bottom edge.
That gives us the final formula —

1 padding + d_height - ((n+1) * step_size) + bar_spacer,

This produces the following layout.

In the picture below the current value of n has been printed over the box,
and a blue box has been drawn around the complete step_size so you
can see the padding and spacers in effect.

Creating CustomWidgets 142

PowerBar-spacer

Putting this all together gives the following code, which when run will produce a
working power-bar widget with blocks in red. You can drag the wheel back and
forth and the bars will move up and down in response.

Creating CustomWidgets 143

1 from PyQt5 import QtCore, QtGui, QtWidgets
2 from PyQt5.QtCore import Qt
3

4 class _Bar(QtWidgets.QWidget):
5

6 def __init__(self, *args, **kwargs):
7 super().__init__(*args, **kwargs)
8

9 self.setSizePolicy(
10 QtWidgets.QSizePolicy.MinimumExpanding,
11 QtWidgets.QSizePolicy.MinimumExpanding
12)
13

14 def sizeHint(self):
15 return QtCore.QSize(40,120)
16

17 def paintEvent(self, e):
18 painter = QtGui.QPainter(self)
19

20 brush = QtGui.QBrush()
21 brush.setColor(QtGui.QColor('black'))
22 brush.setStyle(Qt.SolidPattern)
23 rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().he\
24 ight())
25 painter.fillRect(rect, brush)
26

27 # Get current state.
28 dial = self.parent()._dial
29 vmin, vmax = dial.minimum(), dial.maximum()
30 value = dial.value()
31

32 padding = 5
33

34 # Define our canvas.
35 d_height = painter.device().height() - (padding * 2)
36 d_width = painter.device().width() - (padding * 2)
37

38 # Draw the bars.
39 step_size = d_height / 5

Creating CustomWidgets 144

40 bar_height = step_size * 0.6
41 bar_spacer = step_size * 0.4 / 2
42

43 pc = (value - vmin) / (vmax - vmin)
44 n_steps_to_draw = int(pc * 5)
45 brush.setColor(QtGui.QColor('red'))
46 for n in range(n_steps_to_draw):
47 rect = QtCore.QRect(
48 padding,
49 padding + d_height - ((n+1) * step_size) + bar_spacer,
50 d_width,
51 bar_height
52)
53 painter.fillRect(rect, brush)
54

55 painter.end()
56

57 def _trigger_refresh(self):
58 self.update()
59

60

61 class PowerBar(QtWidgets.QWidget):
62 """
63 Custom Qt Widget to show a power bar and dial.
64 Demonstrating compound and custom-drawn widget.
65 """
66

67 def __init__(self, steps=5, *args, **kwargs):
68 super(PowerBar, self).__init__(*args, **kwargs)
69

70 layout = QtWidgets.QVBoxLayout()
71 self._bar = _Bar()
72 layout.addWidget(self._bar)
73

74 self._dial = QtWidgets.QDial()
75 self._dial.valueChanged.connect(
76 self._bar._trigger_refresh
77)
78

Creating CustomWidgets 145

79 layout.addWidget(self._dial)
80 self.setLayout(layout)

PowerBar-basic

That already does the job, but we can go further to provide more customisation,
add some UX improvements and improve the API for working with our widget.

Creating CustomWidgets 146

Customising the Bar

We now have a working power bar, controllable with a dial. But it’s nice when
creating widgets to provide options to configure the behaviour of your widget to
make it more flexible. In this part we’ll addmethods to set customisable numbers
of segments, colours, padding and spacing.

The elements we’re going to provide customisation of are as follows —

Option Description
number of bars How many bars are displayed on the

widget
colours Individual colours for each of the bars
background colour The colour of the draw canvas (default

black)
padding Space around the widget edge, between

bars and edge of canvas.
bar height / bar percent Proportion (0…1) of the bar which is solid

(the rest will be spacing between adjacent
bars)

We can store each of these as attributes on the _bar object, and use them from
the paintEventmethod to change its behaviour.

The _Bar.__init__ is updated to accept an initial argument for either the number
of bars (as an integer) or the colours of the bars (as a list of QColor, hex values
or names). If a number is provided, all bars will be coloured red. If the a list of
colours is provided the number of bars will be determined from the length of the
colour list. Default values forself._bar_solid_percent, self._background_color,
self._padding are also set.

Creating CustomWidgets 147

1 class _Bar(QtWidgets.QWidget):
2 clickedValue = QtCore.pyqtSignal(int)
3

4 def __init__(self, steps, *args, **kwargs):
5 super().__init__(*args, **kwargs)
6

7 self.setSizePolicy(
8 QtWidgets.QSizePolicy.MinimumExpanding,
9 QtWidgets.QSizePolicy.MinimumExpanding
10)
11

12 if isinstance(steps, list):
13 # list of colours.
14 self.n_steps = len(steps)
15 self.steps = steps
16

17 elif isinstance(steps, int):
18 # int number of bars, defaults to red.
19 self.n_steps = steps
20 self.steps = ['red'] * steps
21

22 else:
23 raise TypeError('steps must be a list or int')
24

25 self._bar_solid_percent = 0.8
26 self._background_color = QtGui.QColor('black')
27 self._padding = 4.0 # n-pixel gap around edge.

Likewise we update the PowerBar.__init__ to accept the steps parameter, and
pass it through.

Creating CustomWidgets 148

1 class PowerBar(QtWidgets.QWidget):
2 def __init__(self, steps=5, *args, **kwargs):
3 super().__init__(*args, **kwargs)
4

5 layout = QtWidgets.QVBoxLayout()
6 self._bar = _Bar(steps)
7

8 #...continued as before.

We now have the parameters in place to update the paintEvent method. The
modified code is shown below.

1 def paintEvent(self, e):
2 painter = QtGui.QPainter(self)
3

4 brush = QtGui.QBrush()
5 brush.setColor(self._background_color)
6 brush.setStyle(Qt.SolidPattern)
7 rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().he\
8 ight())
9 painter.fillRect(rect, brush)
10

11 # Get current state.
12 parent = self.parent()
13 vmin, vmax = parent.minimum(), parent.maximum()
14 value = parent.value()
15

16 # Define our canvas.
17 d_height = painter.device().height() - (self._padding * 2)
18 d_width = painter.device().width() - (self._padding * 2)
19

20 # Draw the bars.
21 step_size = d_height / self.n_steps
22 bar_height = step_size * self._bar_solid_percent
23 bar_spacer = step_size * (1 - self._bar_solid_percent) / 2
24

25 # Calculate the y-stop position, from the value in range.
26 pc = (value - vmin) / (vmax - vmin)

Creating CustomWidgets 149

27 n_steps_to_draw = int(pc * self.n_steps)
28

29 for n in range(n_steps_to_draw):
30 brush.setColor(QtGui.QColor(self.steps[n]))
31 rect = QtCore.QRect(
32 self._padding,
33 self._padding + d_height - ((1 + n) * step_size) + bar_spacer,
34 d_width,
35 bar_height
36)
37 painter.fillRect(rect, brush)
38

39 painter.end()

You can now experiment with passing in different values for the init to PowerBar,
e.g. increasing the number of bars, or providing a colour list. Some examples are
shown below — a good source of hex palettes is the Bokeh source.

1 PowerBar(10)
2 PowerBar(3)
3 PowerBar(["#5e4fa2", "#3288bd", "#66c2a5", "#abdda4", "#e6f598", "#ffffbf", "#f\
4 ee08b", "#fdae61", "#f46d43", "#d53e4f", "#9e0142"])
5 PowerBar(["#a63603", "#e6550d", "#fd8d3c", "#fdae6b", "#fdd0a2", "#feedde"])

power-examples

You could fiddle with the padding settings through the variables e.g. self._bar_-
solid_percent but it’d be nicer to provide proper methods to set these.

N>We’re following theQt standard of camelCasemethodnames for these external
methods for consistency with the others inherited from QDial.

https://github.com/bokeh/bokeh/blob/master/bokeh/palettes.py

Creating CustomWidgets 150

1 def setColor(self, color):
2 self._bar.steps = [color] * self._bar.n_steps
3 self._bar.update()
4

5 def setColors(self, colors):
6 self._bar.n_steps = len(colors)
7 self._bar.steps = colors
8 self._bar.update()
9

10 def setBarPadding(self, i):
11 self._bar._padding = int(i)
12 self._bar.update()
13

14 def setBarSolidPercent(self, f):
15 self._bar._bar_solid_percent = float(f)
16 self._bar.update()
17

18 def setBackgroundColor(self, color):
19 self._bar._background_color = QtGui.QColor(color)
20 self._bar.update()

In each case we set the private variable on the _bar object and then call _-
bar.update() to trigger a redraw of the widget. The method support changing the
colour to a single colour, or updating a list of them — setting a list of colours can
also be used to change the number of bars.

N> There is nomethod to set the bar count, since expanding a list of colours would
be faffy. But feel free to try adding this yourself!

Here’s an example using 25px padding, a fully solid bar and a grey background.

1 bar = PowerBar(["#49006a", "#7a0177", "#ae017e", "#dd3497", "#f768a1", "#fa9fb5\
2 ", "#fcc5c0", "#fde0dd", "#fff7f3"])
3 bar.setBarPadding(2)
4 bar.setBarSolidPercent(0.9)
5 bar.setBackgroundColor('gray')

With these settings you get the following result.

Creating CustomWidgets 151

power-attributes

Adding the QAbstractSlider Interface

We’ve added methods to configure the behaviour of the power bar. But we
currently provide no way to configure the standard QDialmethods — for example,
setting the min, max or step size — from our widget. We could work through and
add wrapper methods for all of these, but it would get very tedious very quickly.

1 # Example of a single wrapper, we'd need 30+ of these.
2 def setNotchesVisible(self, b):
3 return self._dial.setNotchesVisible(b)

Instead we can add a little handler onto our outer widget to automatically look
for methods (or attributes) on the QDial instance, if they don’t exist on our
class directly. This way we can implement our own methods, yet still get all the
QAbstractSlider goodness for free.

The wrapper is shown below, implemented as a custom __getattr__method.

Creating CustomWidgets 152

1 def __getattr__(self, name):
2 if name in self.__dict__:
3 return self[name]
4

5 try:
6 return getattr(self._dial, name)
7 except AttributeError:
8 raise AttributeError(
9 "'{}' object has no attribute '{}'".format(self.__class__.__name__, n\
10 ame)
11)

Whenaccessing aproperty (ormethod)—e.g.whenwhencall PowerBar.setNotchesVisible(true)
Python internally uses __getattr__ to get the property from the current object.
This handler does this through the object dictionary self.__dict__. We’ve over-
ridden this method to provide our custom handling logic.

Now, when we call PowerBar.setNotchesVisible(true), this handler first looks on
our current object (a PowerBar instance) to see if .setNotchesVisible exists and if
it does uses it. If not it then calls getattr() on self._dial instead returning what
it finds there. This gives us access to all the methods of QDial from our custom
PowerBarwidget.

If QDial doesn’t have the attribute either, and raises an AttributeError we catch
it and raise it again from our custom widget, where it belongs.

This works for any properties or methods, including signals. So the
standard QDial signals such as .valueChanged are available too.

Updating from the Meter display

Currently you can update the current value of the PowerBar meter by twiddling
with the dial. But it would be nice if you could also update the value by clicking a
position on the power bar, or by dragging you mouse up and down. To do this we
can update our _Bar widget to handle mouse events.

Creating CustomWidgets 153

1 class _Bar(QtWidgets.QWidget):
2

3 clickedValue = QtCore.pyqtSignal(int)
4

5 # ... existing code ...
6

7 def _calculate_clicked_value(self, e):
8 parent = self.parent()
9 vmin, vmax = parent.minimum(), parent.maximum()
10 d_height = self.size().height() + (self._padding * 2)
11 step_size = d_height / self.n_steps
12 click_y = e.y() - self._padding - step_size / 2
13

14 pc = (d_height - click_y) / d_height
15 value = vmin + pc * (vmax - vmin)
16 self.clickedValue.emit(value)
17

18 def mouseMoveEvent(self, e):
19 self._calculate_clicked_value(e)
20

21 def mousePressEvent(self, e):
22 self._calculate_clicked_value(e)

In the __init__block for the PowerBarwidgetwecanconnect to the _Bar.clickedValue
signal and send the values to self._dial.setValue to set the current value on the
dial.

1 # Take feedback from click events on the meter.
2 self._bar.clickedValue.connect(self._dial.setValue)

If you run the widget now, you’ll be able to click around in the bar area and the
value will update, and the dial rotate in sync.

The final code

Below is the complete final code for our PowerBar meter widget, called PowerBar.
You can save this over the previous file (e.g. named power_bar.py) and then use it

Creating CustomWidgets 154

in any of your own projects, or customise it further to your own requirements.

1 from PyQt5 import QtCore, QtGui, QtWidgets
2 from PyQt5.QtCore import Qt
3

4

5 class _Bar(QtWidgets.QWidget):
6

7 clickedValue = QtCore.pyqtSignal(int)
8

9 def __init__(self, steps, *args, **kwargs):
10 super().__init__(*args, **kwargs)
11

12 self.setSizePolicy(
13 QtWidgets.QSizePolicy.MinimumExpanding,
14 QtWidgets.QSizePolicy.MinimumExpanding
15)
16

17 if isinstance(steps, list):
18 # list of colours.
19 self.n_steps = len(steps)
20 self.steps = steps
21

22 elif isinstance(steps, int):
23 # int number of bars, defaults to red.
24 self.n_steps = steps
25 self.steps = ['red'] * steps
26

27 else:
28 raise TypeError('steps must be a list or int')
29

30 self._bar_solid_percent = 0.8
31 self._background_color = QtGui.QColor('black')
32 self._padding = 4.0 # n-pixel gap around edge.
33

34 def paintEvent(self, e):
35 painter = QtGui.QPainter(self)
36

Creating CustomWidgets 155

37 brush = QtGui.QBrush()
38 brush.setColor(self._background_color)
39 brush.setStyle(Qt.SolidPattern)
40 rect = QtCore.QRect(0, 0, painter.device().width(), painter.device().he\
41 ight())
42 painter.fillRect(rect, brush)
43

44 # Get current state.
45 parent = self.parent()
46 vmin, vmax = parent.minimum(), parent.maximum()
47 value = parent.value()
48

49 # Define our canvas.
50 d_height = painter.device().height() - (self._padding * 2)
51 d_width = painter.device().width() - (self._padding * 2)
52

53 # Draw the bars.
54 step_size = d_height / self.n_steps
55 bar_height = step_size * self._bar_solid_percent
56 bar_spacer = step_size * (1 - self._bar_solid_percent) / 2
57

58 # Calculate the y-stop position, from the value in range.
59 pc = (value - vmin) / (vmax - vmin)
60 n_steps_to_draw = int(pc * self.n_steps)
61

62 for n in range(n_steps_to_draw):
63 brush.setColor(QtGui.QColor(self.steps[n]))
64 rect = QtCore.QRect(
65 self._padding,
66 self._padding + d_height - ((1 + n) * step_size) + bar_spacer,
67 d_width,
68 bar_height
69)
70 painter.fillRect(rect, brush)
71

72 painter.end()
73

74 def sizeHint(self):
75 return QtCore.QSize(40, 120)

Creating CustomWidgets 156

76

77 def _trigger_refresh(self):
78 self.update()
79

80 def _calculate_clicked_value(self, e):
81 parent = self.parent()
82 vmin, vmax = parent.minimum(), parent.maximum()
83 d_height = self.size().height() + (self._padding * 2)
84 step_size = d_height / self.n_steps
85 click_y = e.y() - self._padding - step_size / 2
86

87 pc = (d_height - click_y) / d_height
88 value = vmin + pc * (vmax - vmin)
89 self.clickedValue.emit(value)
90

91 def mouseMoveEvent(self, e):
92 self._calculate_clicked_value(e)
93

94 def mousePressEvent(self, e):
95 self._calculate_clicked_value(e)
96

97

98 class PowerBar(QtWidgets.QWidget):
99 """
100 Custom Qt Widget to show a power bar and dial.
101 Demonstrating compound and custom-drawn widget.
102

103 Left-clicking the button shows the color-chooser, while
104 right-clicking resets the color to None (no-color).
105 """
106

107 colorChanged = QtCore.pyqtSignal()
108

109 def __init__(self, steps=5, *args, **kwargs):
110 super().__init__(*args, **kwargs)
111

112 layout = QtWidgets.QVBoxLayout()
113 self._bar = _Bar(steps)
114 layout.addWidget(self._bar)

Creating CustomWidgets 157

115

116 # Create the QDial widget and set up defaults.
117 # - we provide accessors on this class to override.
118 self._dial = QtWidgets.QDial()
119 self._dial.setNotchesVisible(True)
120 self._dial.setWrapping(False)
121 self._dial.valueChanged.connect(self._bar._trigger_refresh)
122

123 # Take feedback from click events on the meter.
124 self._bar.clickedValue.connect(self._dial.setValue)
125

126 layout.addWidget(self._dial)
127 self.setLayout(layout)
128

129 def __getattr__(self, name):
130 if name in self.__dict__:
131 return self[name]
132

133 return getattr(self._dial, name)
134

135 def setColor(self, color):
136 self._bar.steps = [color] * self._bar.n_steps
137 self._bar.update()
138

139 def setColors(self, colors):
140 self._bar.n_steps = len(colors)
141 self._bar.steps = colors
142 self._bar.update()
143

144 def setBarPadding(self, i):
145 self._bar._padding = int(i)
146 self._bar.update()
147

148 def setBarSolidPercent(self, f):
149 self._bar._bar_solid_percent = float(f)
150 self._bar.update()
151

152 def setBackgroundColor(self, color):
153 self._bar._background_color = QtGui.QColor(color)

Creating CustomWidgets 158

154 self._bar.update()

You should be able to use many of these ideas in creating your own custom
widgets. For more examples, take a look at the Learn PyQt widget library — these
widgets are all open source and freely available to use in your own projects.

https://www.learnpyqt.com/widgets/

The Model View Architecture
As you start to build more complex applications with PyQt5 you’ll likely come
across issues keeping widgets in sync with your data.

Data stored in widgets (e.g. a simple QListWidget) is not readily available to
manipulate from Python — changes require you to get an item, get the data,
and then set it back. The default solution to this is to keep an external data
representation in Python, and then either duplicate updates to the both the data
and thewidget, or simple rewrite thewholewidget from the data. This can get ugly
quickly, and results in a lot of boilerplate just for fiddling the data.

Thankfully Qt has a solution for this — ModelViews. ModelViews are a powerful
alternative to the standard display widgets, which use a regular model interface
to interact with data sources — from simple data structures to external databases.
This isolates your data, allowing it to be kept in any structure you like, while the
view takes care of presentation and updates.

This chapter introduces the key aspects of Qt’s ModelView architecture and uses
it to build simple desktop Todo application in PyQt5.

Model View Controller

Model–View–Controller (MVC) is an architectural pattern used for developing
user interfaces which divides an application into three interconnected parts. This
separates the internal representation of data from how information is presented
to and accepted from the user.

The MVC design pattern decouples three major components —

• Model holds the data structure which the app is working with.
• View is any representation of information as shown to the user, whether
graphical or tables. Multiple views of the same data model are allowed.

• Controller accepts input from the user, transforming it into commands to for
the model or view.

The Model View Architecture 160

It Qt land the distinction between the View & Controller gets a little murky. Qt
accepts input events from the user (via the OS) and delegates these to thewidgets
(Controller) to handle. However, widgets also handle presentation of the current
state to the user, putting them squarely in the View. Rather than agonize over
where to draw the line, in Qt-speak the View and Controller are instead merged
together creating a Model/ViewController architecture — called “Model View” for
simplicity sake.

Importantly, the distinction between the data and how it is presented is preserved.

The Model View

The Model acts as the interface between the data store and the ModelView. The
Model holds the data (or a reference to it) and presents this data through a
standardised API which Views then consume and present to the user. Multiple
Views can share the same data, presenting it in completely different ways.

You can use any “data store” for your model, including for example a standard
Python list or dictionary, or a database (via e.g. SQLAlchemy) — it’s entirely up to
you.

The two parts are essentially responsible for —

1. Themodel stores thedata, or a reference to it and returns individual or ranges
of records, and associated metadata or display instructions.

2. The view requests data from the model and displays what is returned on the
widget.

There is an in-depth view of the Qt architecture here: http://doc.qt.io/qt-
5/model-view-programming.html

A simple Model View — a Todo List

To demonstrate how to use the ModelViews in practise, we’ll put together a very
simple implementation of a desktop Todo List. This will consist of a QListView for

The Model View Architecture 161

the list of items, a QLineEdit to enter new items, and a set of buttons to add, delete,
or mark items as done.

The code and associated files for this example are in the downloadable
source file.

The UI

The simple UI was laid out using Qt Creator and saved as mainwindow.ui. The .ui
file is included in the downloads for this book.

Designing the UI in Qt Creator

The running app is shown below.

The Model View Architecture 162

The MainWindow

Thewidgets available in the interfacewere given the IDs shown in the table below.

The Model View Architecture 163

objectName Type Description
todoView QListView The list of current todos
todoEdit QLineEdit The text input for creating a new

todo item
addButton QPushButton Create the new todo, adding it to

the todos list
deleteButton QPushButton Delete the current selected todo,

removing it from the todos list
completeButton QPushButton Mark the current selected todo as

done

We’ll use these identifiers to hook up the application logic later.

The Model

Wedefine our custommodel by subclassing fromabase implementation, allowing
us to focus on the parts unique to our model. Qt provides a number of differ-
ent model bases, including those with support for multidimensional data (think
spreadsheet).

But for this example we only need a simple list for our data and are displaying the
result to a QListView. Thematching basemodel for this is QAbstractListModel. The
outline definition for our model is shown below.

1 class TodoModel(QtCore.QAbstractListModel):
2 def __init__(self, *args, todos=None, **kwargs):
3 super(TodoModel, self).__init__(*args, **kwargs)
4 self.todos = todos or []
5

6 def data(self, index, role):
7 if role == Qt.DisplayRole:
8 # See below for the data structure.
9 status, text = self.todos[index.row()]
10 # Return the todo text only.
11 return text
12

13 def rowCount(self, index):
14 return len(self.todos)

The Model View Architecture 164

The.todos variable is our data store and the two methods rowcount() and data()
are standardModelmethodswemust implement for a list model. We’ll go through
these in turn below.

.todos list

The data store for our model is .todos, a simple Python list in which we’ll store a
tuple of values in the format [(bool, str), (bool, str), (bool, str)] where
bool is the done state of a given entry, and str is the text of the todo.

We initialise self.todo to an empty list on startup, unless a list is passed in view
the todos keyword argument.

self.todos = todos or []will set self.todos to the value of the provided
todos variable if it is truthy (i.e. anything other than an empty list, the bool
‘ False or None the default value), otherwise it will be set to
the empty list []‘.

To create an instance of this model we can simply do —

1 model = TodoModel() # create an empty todo list

Or to pass in an existing list —

1 todos = [(False, 'an item'), (False, 'another item')]
2 model = TodoModel(todos)
3 ````
4

5 #### .rowcount()
6

7 The `.rowcount()` method is called by the view to get the number of rows in the\
8 current data. This is required for the view to know what the maximum index it \
9 can request from the data store is (`row count-1`). Since we're using a Python \
10 list as our data store, the return value for this is simply the `len()` of the \
11 list.
12

The Model View Architecture 165

13 #### .data()
14

15 This is the core of your model, which handles requests for data from the view a\
16 nd returns the appropriate result. It receives two parameters `index` and `role\
17 .`
18

19 `index` is the position/coordinates of the data which the view is requesting sp\
20 ecified by two methods `.row()` and `.column()` which give the position in a pa\
21 rticular dimension.
22

23 T> For our `QListView` the column is always 0 and can be ignored, but you would\
24 need to use this for 2D data in a spreadsheet view.
25

26 `role` is a flag indicating the *type* of data the view is requesting. This is\
27 because the `.data()` method actually has more responsibility than just the co\
28 re data. It also handles requests for style information, tooltips, status bars,\
29 etc. — basically anything that could be informed by the data itself.
30

31 The naming of `Qt.DisplayRole` is a bit weird, but this indicates that the *vie\
32 w* is asking us "please give me data for display". There are other *roles* whic\
33 h the `data` can receive for styling requests or requesting data in "edit-ready\
34 " format.
35

36 | Role | Value | Description \
37 |
38 | ------------------- | ----- | ---\
39 ------------- |
40 | `Qt.DisplayRole` | `0` | The key data to be rendered in the form of text\
41 . ([QString](https://doc.qt.io/qt-5/qstring.html)) |
42 | `Qt.DecorationRole` | `1` | The data to be rendered as a decoration in the \
43 form of an icon. ([QColor](https://doc.qt.io/qt-5/qcolor.html), [QIcon](https:/\
44 /doc.qt.io/qt-5/qicon.html) or [QPixmap](https://doc.qt.io/qt-5/qpixmap.html)) \
45 |
46 | `Qt.EditRole` | `2` | The data in a form suitable for editing in an e\
47 ditor. ([QString](https://doc.qt.io/qt-5/qstring.html)) |
48 | `Qt.ToolTipRole` | `3` | The data displayed in the item's tooltip. ([QSt\
49 ring](https://doc.qt.io/qt-5/qstring.html)) |
50 | `Qt.StatusTipRole` | `4` | The data displayed in the status bar. ([QString\
51](https://doc.qt.io/qt-5/qstring.html)) |

The Model View Architecture 166

52 | `Qt.WhatsThisRole` | `5` | The data displayed for the item in "What's This\
53 ?" mode. ([QString](https://doc.qt.io/qt-5/qstring.html)) |
54 | `Qt.SizeHintRole` | `13` | The size hint for the item that will be supplie\
55 d to views. ([QSize](https://doc.qt.io/qt-5/qsize.html)) |
56

57 For a full list of available *roles* that you can receive see [the Qt ItemDataR\
58 ole documentation](https://doc.qt.io/qt-5/qt.html#ItemDataRole-enum). Our todo \
59 list will only be using `Qt.DisplayRole` and `Qt.DecorationRole`.
60

61 ### Basic implementation
62

63 Below is the basic stub application needed to load the UI and display it. We'll\
64 add our model code and application logic to this base.
65

66 ```python
67 import sys
68 from PyQt5 import QtCore, QtGui, QtWidgets, uic
69 from PyQt5.QtCore import Qt
70

71

72 qt_creator_file = "mainwindow.ui"
73 Ui_MainWindow, QtBaseClass = uic.loadUiType(qt_creator_file)
74

75

76 class TodoModel(QtCore.QAbstractListModel):
77 def __init__(self, *args, todos=None, **kwargs):
78 super(TodoModel, self).__init__(*args, **kwargs)
79 self.todos = todos or []
80

81 def data(self, index, role):
82 if role == Qt.DisplayRole:
83 status, text = self.todos[index.row()]
84 return text
85

86 def rowCount(self, index):
87 return len(self.todos)
88

89

90 class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):

The Model View Architecture 167

91 def __init__(self):
92 QtWidgets.QMainWindow.__init__(self)
93 Ui_MainWindow.__init__(self)
94 self.setupUi(self)
95 self.model = TodoModel()
96 self.todoView.setModel(self.model)
97

98

99 app = QtWidgets.QApplication(sys.argv)
100 window = MainWindow()
101 window.show()
102 app.exec_()

We define our TodoModel as before, and initialise the MainWindow object. In the __-
init__ for the MainWindow we create an instance of our todo model and set this
model on the todo_view. Save this file as todo.py and run it with —

1 python3 todo.py

While there isn’t much to see yet, the QListView and our model are actually
working — if you add some default data you’ll see it appear in the list.

1 self.model = TodoModel(todos=[(False, 'my first todo')])

The Model View Architecture 168

QListView showing hard-coded todo item

You can keep adding items manually like this and they will show up in order in the
QListView. Next we’ll make it possible to add items from within the application.

First create a newmethod on the MainWindow named add_todo. This is our callback

The Model View Architecture 169

which will take care of adding the current text from the input as a new todo. Con-
nect this method to the addButton.pressed signal at the end of the __init__ block.

1 class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):
2 def __init__(self):
3 QtWidgets.QMainWindow.__init__(self)
4 Ui_MainWindow.__init__(self)
5 self.setupUi(self)
6 self.model = TodoModel()
7 self.todoView.setModel(self.model)
8 # Connect the button.
9 self.addButton.pressed.connect(self.add)
10

11 def add(self):
12 """
13 Add an item to our todo list, getting the text from the QLineEdit .todo\
14 Edit
15 and then clearing it.
16 """
17 text = self.todoEdit.text()
18 if text: # Don't add empty strings.
19 # Access the list via the model.
20 self.model.todos.append((False, text))
21 # Trigger refresh.
22 self.model.layoutChanged.emit()
23 # Empty the input
24 self.todoEdit.setText("")

In the add_todo block notice the line self.model.layoutChanged.emit(). Here
we’re emitting a model signal .layoutChanged to let the view know that the shape
of the data has been altered. This triggers a refresh of the entirety of the view. If
you omit this line, the todo will still be added but the QListView won’t update.

If the just data is altered, but the number of rows/columns are unaffected you can
use the .dataChanged() signal to let Qt know about this. This also a top-left and
bottom-right location in the data, to avoid redrawing the entire view.

The Model View Architecture 170

Hooking up the other actions

We can now connect the rest of the button’s signals and add helper functions for
performing the delete and complete operations. We add the button signals to the
__init__ block as before.

1 self.addButton.pressed.connect(self.add)
2 self.deleteButton.pressed.connect(self.delete)
3 self.completeButton.pressed.connect(self.complete)

Then define a new deletemethod as follows —

1 def delete(self):
2 indexes = self.todoView.selectedIndexes()
3 if indexes:
4 # Indexes is a list of a single item in single-select mode.
5 index = indexes[0]
6 # Remove the item and refresh.
7 del self.model.todos[index.row()]
8 self.model.layoutChanged.emit()
9 # Clear the selection (as it is no longer valid).
10 self.todoView.clearSelection()

We use self.todoView.selectedIndexes to get the indexes (actually a list of a
single item, aswe’re in single-selectionmode) and then use the .row() as an index
into our list of todos on our model. We delete the indexed item using Python’s del
operator, and then trigger a layoutChanged signal because the shape of the data
has been modified.

Finally, we clear the active selection since the item it relates to may now out of
bounds (if you had selected the last item).

You could try make this smarter, and select the last item in the list
instead.

The completemethod looks like this —

The Model View Architecture 171

1 def complete(self):
2 indexes = self.todoView.selectedIndexes()
3 if indexes:
4 index = indexes[0]
5 row = index.row()
6 status, text = self.model.todos[row]
7 self.model.todos[row] = (True, text)
8 # .dataChanged takes top-left and bottom right, which are equal
9 # for a single selection.
10 self.model.dataChanged.emit(index, index)
11 # Clear the selection (as it is no longer valid).
12 self.todoView.clearSelection()

This uses the same indexing as for delete, but this time we fetch the item from the
model .todos list and then replace the status with True.

We have to do this fetch-and-replace, as our data is stored as Python
tuples which cannot be modified.

Thekeydifferencehere vs. standardQtwidgets is thatwemakechangesdirectly to
our data, and simply need to notify Qt that some change has occurred — updating
the widget state is handled automatically.

Using Qt.DecorationRole

If you run the application now you should find that adding and deleting both work,
but while completing items is working, there is no indication of it in the view. We
need to update our model to provide the viewwith an indicator to display when an
item is complete. The updated model is shown below.

The Model View Architecture 172

1 tick = QtGui.QImage('tick.png')
2

3

4 class TodoModel(QtCore.QAbstractListModel):
5 def __init__(self, *args, todos=None, **kwargs):
6 super(TodoModel, self).__init__(*args, **kwargs)
7 self.todos = todos or []
8

9 def data(self, index, role):
10 if role == Qt.DisplayRole:
11 _, text = self.todos[index.row()]
12 return text
13

14 if role == Qt.DecorationRole:
15 status, _ = self.todos[index.row()]
16 if status:
17 return tick
18

19 def rowCount(self, index):
20 return len(self.todos)

We’re using a tick icon tick.png to indicate completed items, which we load into
a QImage object named tick. In the model we’ve implemented a handler for the
Qt.DecorationRole which returns the tick icon for rows who’s status is True (for
complete).

The icon I’m using is taken from the Fugue set by p.yusukekamiyamane

Instead of an icon you can also return a color, e.g. QtGui.QColor('green')
which will be drawn as solid square.

Running the app you should now be able to mark items as complete.

http://p.yusukekamiyamane.com/

The Model View Architecture 173

Todos complete

The Model View Architecture 174

A persistent data store

Our todo app works nicely, but it has one fatal flaw — it forgets your todos as soon
as you close the application While thinking you have nothing to do when you do
may help to contribute to short-term feelings of Zen, long term it’s probably a bad
idea.

The solution is to implement some sort of persistent data store. The simplest
approach is a simple file store, where we load items from a JSON or Pickle file
at startup, and write back on changes.

To do this we define two new methods on our MainWindow class — load and save.
These load data from a JSON file name data.json (if it exists, ignoring the error if
it doesn’t) to self.model.todos and write the current self.model.todos out to the
same file, respectively.

1 def load(self):
2 try:
3 with open('data.json', 'r') as f:
4 self.model.todos = json.load(f)
5 except Exception:
6 pass
7

8 def save(self):
9 with open('data.json', 'w') as f:
10 data = json.dump(self.model.todos, f)

To persist the changes to the dataweneed to add the .save() handler to the end of
any method that modifies the data, and the .load() handler to the __init__ block
after the model has been created.

The final code looks like this —

The Model View Architecture 175

1 import sys
2 import json
3 from PyQt5 import QtCore, QtGui, QtWidgets, uic
4 from PyQt5.QtCore import Qt
5

6

7 qt_creator_file = "mainwindow.ui"
8 Ui_MainWindow, QtBaseClass = uic.loadUiType(qt_creator_file)
9 tick = QtGui.QImage('tick.png')
10

11

12 class TodoModel(QtCore.QAbstractListModel):
13 def __init__(self, *args, todos=None, **kwargs):
14 super(TodoModel, self).__init__(*args, **kwargs)
15 self.todos = todos or []
16

17 def data(self, index, role):
18 if role == Qt.DisplayRole:
19 _, text = self.todos[index.row()]
20 return text
21

22 if role == Qt.DecorationRole:
23 status, _ = self.todos[index.row()]
24 if status:
25 return tick
26

27 def rowCount(self, index):
28 return len(self.todos)
29

30

31 class MainWindow(QtWidgets.QMainWindow, Ui_MainWindow):
32 def __init__(self):
33 QtWidgets.QMainWindow.__init__(self)
34 Ui_MainWindow.__init__(self)
35 self.setupUi(self)
36 self.model = TodoModel()
37 self.load()
38 self.todoView.setModel(self.model)
39 self.addButton.pressed.connect(self.add)

The Model View Architecture 176

40 self.deleteButton.pressed.connect(self.delete)
41 self.completeButton.pressed.connect(self.complete)
42

43 def add(self):
44 """
45 Add an item to our todo list, getting the text from the QLineEdit .todo\
46 Edit
47 and then clearing it.
48 """
49 text = self.todoEdit.text()
50 if text: # Don't add empty strings.
51 # Access the list via the model.
52 self.model.todos.append((False, text))
53 # Trigger refresh.
54 self.model.layoutChanged.emit()
55 # Empty the input
56 self.todoEdit.setText("")
57 self.save()
58

59 def delete(self):
60 indexes = self.todoView.selectedIndexes()
61 if indexes:
62 # Indexes is a list of a single item in single-select mode.
63 index = indexes[0]
64 # Remove the item and refresh.
65 del self.model.todos[index.row()]
66 self.model.layoutChanged.emit()
67 # Clear the selection (as it is no longer valid).
68 self.todoView.clearSelection()
69 self.save()
70

71 def complete(self):
72 indexes = self.todoView.selectedIndexes()
73 if indexes:
74 index = indexes[0]
75 row = index.row()
76 status, text = self.model.todos[row]
77 self.model.todos[row] = (True, text)
78 # .dataChanged takes top-left and bottom right, which are equal

The Model View Architecture 177

79 # for a single selection.
80 self.model.dataChanged.emit(index, index)
81 # Clear the selection (as it is no longer valid).
82 self.todoView.clearSelection()
83 self.save()
84

85 def load(self):
86 try:
87 with open('data.db', 'r') as f:
88 self.model.todos = json.load(f)
89 except Exception:
90 pass
91

92 def save(self):
93 with open('data.db', 'w') as f:
94 data = json.dump(self.model.todos, f)
95

96

97 app = QtWidgets.QApplication(sys.argv)
98 window = MainWindow()
99 window.show()
100 app.exec_()

If the data in your application has the potential to get large or more complex, you
may prefer to use an actual database to store it. In this case the model will wrap
the interface to the database and query it directly for data to display.

For another interesting example of a QListView see this examplemedia player ap-
plication: https://www.learnpyqt.com/apps/failamp-multimedia-player/ This uses
the Qt built-in QMediaPlaylist as the datastore, with the contents displayed to a
QListView.

Multithreading
As you start to build more complex applications, you may come across problems
where long-running tasks “lock up” your interface.

The event loop started by calling .exec_() on your QApplication object and runs
within the same thread as your Python code. The thread which runs this event
loop — commonly referred to as the GUI thread — also handles all window
communication with the host operating system.

By default, any execution triggered by the event loop will also run synchronously
within this thread. In practise this means that any time your PyQt application
spends doing something in your code, window communication andGUI interaction
are frozen.

If what you’re doing is simple, and returns control to the GUI loop quickly, this
freeze will be imperceptible to the user. However, if you need to perform longer-
running tasks, for example opening/writing a large file, downloading some data,
or rendering some complex image, there are going to be problems. To your user
the application will appear to be unresponsive (because it is). Because your app
is no longer communicating with the OS, on MacOS X if you click on your app you
will see the spinning wheel of death. And, nobody wants that.

The solution is simple: get your work out of the GUI thread and into another . PyQt
(via Qt) provides a straightforward interface to do exactly that.

Preparation

To demonstrate multi-threaded execution we need an application to work with.
Below is a minimal stub application for PyQt which will allow us to demonstrate
multithreading, and see the outcome in action. Simply copy and paste this into
a new file, and save it with an appropriate filename like multithread.py. The
remainder of the code will be added to this file (there is also a complete working
example at the bottom if you’re impatient).

Multithreading 179

1 from PyQt5.QtGui import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtCore import *
4

5 import time
6

7

8 class MainWindow(QMainWindow):
9 def __init__(self, *args, **kwargs):
10 super(MainWindow, self).__init__(*args, **kwargs)
11

12 self.counter = 0
13

14 layout = QVBoxLayout()
15

16 self.l = QLabel("Start")
17 b = QPushButton("DANGER!")
18 b.pressed.connect(self.oh_no)
19

20 layout.addWidget(self.l)
21 layout.addWidget(b)
22

23 w = QWidget()
24 w.setLayout(layout)
25

26 self.setCentralWidget(w)
27

28 self.show()
29

30 self.timer = QTimer()
31 self.timer.setInterval(1000)
32 self.timer.timeout.connect(self.recurring_timer)
33 self.timer.start()
34

35 def oh_no(self):
36 time.sleep(5)
37

38 def recurring_timer(self):
39 self.counter += 1

Multithreading 180

40 self.l.setText("Counter: %d" % self.counter)
41

42

43 app = QApplication([])
44 window = MainWindow()
45 app.exec_()

Run the file as normal:

1 python3 multithread.py

You should see a demonstration window with a number counting upwards. This a
generated by a simple recurring time, firing once per second. Think of this as our
event loop indicator, a simple way to let us known that out application is ticking
over normally. There is also a button with the word “DANGER!”.

Push it.

Multithreading 181

Push the button

You’ll notice that each time you push the button the counter stops ticking and
your application freezes entirely. On Windows you may see the window turn pale,
indicating it is not responding, while on a Mac you may see the spinning wheel of
death.

The dumb approach

What appears as a frozen interface is in fact caused by the Qt event loop being
blocked from processing (and responding to) window events. Your clicks on the
window as still registered by the host OS and sent to your application, but because
it’s sat in your big ol’ lump of code (time.sleep), it can’t accept or react to them.
Your application does not respond to the OS and it interprets this as a frozen
application.

The simplest way get around this is to accept events from within your code. This

Multithreading 182

allows Qt to continue to respond to the host OS and your application will stay
responsive. You can do this easily by using the static .processEvents() function
on the QApplication class. Simply add a line like the following, somewhere in your
long-running code block:

1 QApplication.processEvents()

If we can take our long-running time.sleep code and break it down into multiple
steps, we can insert .processEvents in between. The code for this would be:

1 def oh_no(self):
2 for n in range(5):
3 QApplication.processEvents()
4 time.sleep(1)

Now when you push the button your code is entered as before. However, now
QApplication.processEvents() intermittently passes control back to Qt, and al-
lows it to respond to OS events as normal. Qt will now accept events and handle
them before returning to run the remainder of your code.

This works, but it’s horrible for a few reasons —

1. When you pass control back to Qt, your code is no longer running. Thismeans
that whatever long-running thing you’re trying to do will take longer. That is
definitely not what you want.

2. You can only do this if your long-running task is broken into multiple short-
running steps. If you increase the the duration to time.sleep(30) and re-run
it you’ll see theUI freeze again. The individual step is now so long that control
is not passed back frequently enough.

3. Processing events outside the main event loop (app.exec_()) causes your
application to branchoff into handling code (e.g. for triggered slots, or events)
while within your loop. If your code depends on/responds to external state
this can cause undefined behaviour. The code below demonstrates this in
action:

Multithreading 183

1 from PyQt5.QtGui import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtCore import *
4

5 import time
6

7

8 class MainWindow(QMainWindow):
9 def __init__(self, *args, **kwargs):
10 super(MainWindow, self).__init__(*args, **kwargs)
11

12 self.counter = 0
13

14 layout = QVBoxLayout()
15

16 self.l = QLabel("Start")
17 b = QPushButton("DANGER!")
18 b.pressed.connect(self.oh_no)
19

20 c = QPushButton("?")
21 c.pressed.connect(self.change_message)
22

23 layout.addWidget(self.l)
24 layout.addWidget(b)
25

26 layout.addWidget(c)
27

28 w = QWidget()
29 w.setLayout(layout)
30

31 self.setCentralWidget(w)
32

33 self.show()
34

35 def change_message(self):
36 self.message = "OH NO"
37

38 def oh_no(self):
39 self.message = "Pressed"

Multithreading 184

40

41 for n in range(100):
42 time.sleep(0.1)
43 self.l.setText(self.message)
44 QApplication.processEvents()
45

46

47 app = QApplication([])
48 window = MainWindow()
49 app.exec_()

If you run this code you’ll see the counter as before. Pressing “DANGER!” will
change the displayed text to “Pressed”, as defined at the entry point to the oh_no
function. However, if you press the “?” button while oh_no is still running you’ll see
that the message changes. State is being changed from outside your loop.

This is a toy example. However, if you havemultiple long-running processeswithin
your application, with each calling QApplication.processEvents() to keep things
ticking, your application behaviour can be unpredictable.

Threads and Processes

If you take a step back and think about what you want to happen in your appli-
cation, it can probably be summed up with “stuff to happen at the same time as
other stuff happens”.

There are two main approaches to running independent tasks within a PyQt
application: threads and processes.

Threads share the same memory space, so are quick to start up and consume
minimal resources. The shared memory makes it trivial to pass data between
threads, however reading/writing memory from different threads can lead to race
conditions or segfaults. In Python there is the added issue that multiple threads
areboundby the sameGlobal Interpreter Lock (GIL)—meaning non-GIL-releasing
Python code can only execute in one thread at a time. However, this is not a major
issue with PyQt where most of the time is spent outside of Python.

Processes use separate memory space (and an entirely separate Python inter-
preter). This side-steps any potential problems with the GIL, but at the cost of

Multithreading 185

slower start-up times, larger memory overhead and complexity in sending/receiv-
ing data.

For simplicity’s sake it usuallymakes sense to use threads, unless you have a good
reason to use processes (see caveats later). Subprocesses in Qt are better suited
to running and communicating with external programs.

QRunnable and QThreadPool

Qt provides a very simple interface for running jobs in other threads, which is ex-
posed nicely in PyQt. This is built around two classes: QRunnable and QThreadPool.
The former is the container for the work you want to perform, while the latter is
the method by which you pass that work to alternate threads.

The neat thing about using QThreadPool is that it handles queuing and execution
of workers for you. Aside from queuing up jobs and retrieving the results, there is
not very much to do at all.

To define a custom QRunnable you can subclass the base QRunnable class, then
place the code you wish you execute within the run() method. The following is
an implementation of our long running time.sleep job as a QRunnable. Add the
following code to multithread.py, above the MainWindow class definition.

1 class Worker(QRunnable):
2 '''
3 Worker thread
4 '''
5

6 @pyqtSlot()
7 def run(self):
8 '''
9 Your code goes in this function
10 '''
11 print("Thread start")
12 time.sleep(5)
13 print("Thread complete")

Multithreading 186

Executing our function in another thread is simply amatter of creating an instance
of the Worker and then pass it to our QThreadPool instance and it will be executed
automatically.

Next add the following within the __init__ block, to set up our thread pool.

1 self.threadpool = QThreadPool()
2 print("Multithreading with maximum %d threads" % self.threadpool.maxThreadCount\
3 ())

Finally, add the following lines to our oh_no function.

1 def oh_no(self):
2 worker = Worker()
3 self.threadpool.start(worker)

Now, clicking on the button will create a worker to handle the (long-running)
process and spin that off into another thread via thread pool. If there are not
enough threads available to process incoming workers, they’ll be queued and
executed in order at a later time.

Try it out and you’ll see that your application now handles you bashing the button
with no problems.

Check what happens if you hit the button multiple times. You should see your
threads executed immediately up to the number reported by .maxThreadCount. If
you hit the button again after there are already this number of active workers, the
subsequent workers will be queued until a thread becomes available.

Extended Runners

If you want to pass custom data into the execution function you can set up your
runner to take arguments or keywords and then store the data on the runner itself.
The data will be accessible while running via self of your QRunnable object.

In fact, you can even take advantage of the fact that in Python functions are objects
and pass in the function to execute rather than subclassing each time. In the

Multithreading 187

following construction we only require a single Worker class to handle all of our
execution jobs.

1 class Worker(QRunnable):
2 '''
3 Worker thread
4

5 :param fn: The function to be executed
6 :param args: Arguments to make available to the run code
7 :param kwargs: Keywords arguments to make available to the run
8 :code
9 :
10 '''
11

12 def __init__(self, fn, *args, **kwargs):
13 super(Worker, self).__init__()
14 self.fn = fn
15 self.args = args
16 self.kwargs = kwargs
17

18 @pyqtSlot()
19 def run(self):
20 '''
21 Execute the runner function with passed self.args,
22 self.kwargs.
23 '''
24 self.fn(args, kwargs)

You can nowpass in any Python function and have it executed in a separate thread.

Multithreading 188

1 def execute_this_fn(self):
2 print("Hello!")
3

4 def oh_no(self):
5 # Pass the function to execute
6 worker = Worker(self.execute_this_fn) # Any other args, kwargs are passed t\
7 o the run function
8

9 # Execute
10 threadpool.start(worker)

Thread IO

Sometimes it’s helpful to be able to pass back state and data from running work-
ers. This could include the outcome of calculations, raised exceptions or ongoing
progress (think progress bars). Qt provides the signals and slots framework which
allows you to do just that and is thread-safe, allowing safe communication directly
from running threads to your GUI frontend. Signals allow you to .emit values,
which are then picked up elsewhere in your code by slot functions which have
been linked with .connect.

Below is a simple WorkerSignals class defined to contain a number of example
signals.

Custom signals can only be defined on objects derived from QObject.
Since QRunnable is not derived from QObject we can’t define the signals
on it directly. A custom QObject to hold the signals is the simplest
solution.

Multithreading 189

1 import traceback, sys
2

3

4 class WorkerSignals(QObject):
5 '''
6 Defines the signals available from a running worker thread.
7

8 Supported signals are:
9

10 finished
11 No data
12

13 error
14 `tuple` (exctype, value, traceback.format_exc())
15

16 result
17 `object` data returned from processing, anything
18

19 '''
20 finished = pyqtSignal()
21 error = pyqtSignal(tuple)
22 result = pyqtSignal(object)

In this example we’ve defined 5 custom signals:

1. finished signal, with no data to indicate when the task is complete.
2. error signal which receives a tuple of Exception type, Exception value and

formatted traceback.
3. result signal receiving any object type from the executed function.

You may not find a need for all of these signals, but they are included to give an
indication of what is possible. In the following code we’re going to implement a
long-running task that makes use of these signals to provide useful information to
the user.

Multithreading 190

1 class Worker(QRunnable):
2 '''
3 Worker thread
4

5 Inherits from QRunnable to handler worker thread setup, signals and wrap-up.
6

7 :param callback: The function callback to run on this worker
8 :thread. Supplied args and
9 kwargs will be passed through to the runner.
10 :type callback: function
11 :param args: Arguments to pass to the callback function
12 :param kwargs: Keywords to pass to the callback function
13 :
14 '''
15

16 def __init__(self, fn, *args, **kwargs):
17 super(Worker, self).__init__()
18 # Store constructor arguments (re-used for processing)
19 self.fn = fn
20 self.args = args
21 self.kwargs = kwargs
22 self.signals = WorkerSignals()
23

24 @pyqtSlot()
25 def run(self):
26 '''
27 Initialise the runner function with passed args, kwargs.
28 '''
29

30 # Retrieve args/kwargs here; and fire processing using them
31 try:
32 result = self.fn(
33 *self.args, **self.kwargs,
34 status=self.signals.status,
35 progress=self.signals.progress,
36)
37 except:
38 traceback.print_exc()
39 exctype, value = sys.exc_info()[:2]

Multithreading 191

40 self.signals.error.emit((exctype, value, traceback.format_exc()))
41 else:
42 self.signals.result.emit(result) # Return the result of the proces\
43 sing
44 finally:
45 self.signals.finished.emit() # Done

You can connect your ownhandler functions to these signals to receive notification
of completion (or the result) of threads.

1 def execute_this_fn(self):
2 for n in range(0, 5):
3 time.sleep(1)
4 return "Done."
5

6 def print_output(self, s):
7 print(s)
8

9 def thread_complete(self):
10 print("THREAD COMPLETE!")
11

12 def oh_no(self):
13 # Pass the function to execute
14 worker = Worker(self.execute_this_fn) # Any other args, kwargs are passed t\
15 o the run function
16 worker.signals.result.connect(self.print_output)
17 worker.signals.finished.connect(self.thread_complete)
18

19 # Execute
20 self.threadpool.start(worker)

QRunnable Examples

The features of QRunnables described can be used to build runners suited for
a variety of tasks. Below are some examples for how to construct runners and
applications to use them in a number of different scenarios.

Multithreading 192

The Updater

You often want to receive progress information information from long-running
threads. This can be done easily defining a signal on the WorkerSignals object,
through which you pass a number indicating % completion. The example below
uses this to update a running progress bar.

1 from PyQt5.QtGui import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtCore import *
4

5 import time
6

7

8 class WorkerSignals(QObject):
9 '''
10 Defines the signals available from a running worker thread.
11

12 progress
13 int progress complete,from 0-100
14 '''
15 progress = pyqtSignal(int)
16

17

18 class Worker(QRunnable):
19 '''
20 Worker thread
21

22 Inherits from QRunnable to handler worker thread setup, signals
23 and wrap-up.
24 '''
25

26 def __init__(self):
27 super(Worker, self).__init__()
28

29 self.signals = WorkerSignals()
30

31 @pyqtSlot()

Multithreading 193

32 def run(self):
33 total_n = 1000
34 for n in range(total_n):
35 progress_pc = int(100*float(n)/total_n) # Progress 0-100% as int
36 self.signals.progress.emit(progress_pc)
37 time.sleep(0.01)
38

39

40 class MainWindow(QMainWindow):
41

42

43 def __init__(self, *args, **kwargs):
44 super(MainWindow, self).__init__(*args, **kwargs)
45

46

47 layout = QVBoxLayout()
48

49 self.bar = QProgressBar()
50

51 button = QPushButton("START IT UP")
52 button.pressed.connect(self.execute)
53

54 layout.addWidget(self.bar)
55 layout.addWidget(button)
56

57 w = QWidget()
58 w.setLayout(layout)
59

60 self.setCentralWidget(w)
61

62 self.show()
63

64 self.threadpool = QThreadPool()
65 print("Multithreading with maximum %d threads" % self.threadpool.maxThr\
66 eadCount())
67

68 def execute(self):
69 worker = Worker()
70 worker.signals.progress.connect(self.update_progress)

Multithreading 194

71

72 # Execute
73 self.threadpool.start(worker)
74

75 def update_progress(self, progress):
76 self.bar.setValue(progress)
77

78

79

80 app = QApplication([])
81 window = MainWindow()
82 app.exec_()

Progress bar showing current progress for a long-running worker.

If you want to support variable runners by passing in a function it will not
have access to the progress callback. You can get around this by passing
it into your function directly. See the Generic Logger description below.

Multithreading 195

The Logger

Threading is a good option where you need to run IO operations and receive the
data from them. This can mean interacting with APIs or websites, or receiving
serial data from hardware.

In this example we create multiple runners, each sending back their data live,
tagged with their own identifier. This allows the returning data to be associated
with the runner it has come from, and forwarded to the correct output.

1 from PyQt5.QtGui import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtCore import *
4

5 import requests
6

7 class WorkerSignals(QObject):
8 '''
9 Defines the signals available from a running worker thread.
10

11 data
12 tuple of (identifier, data)
13 '''
14 data = pyqtSignal(tuple)
15

16

17 class Worker(QRunnable):
18 '''
19 Worker thread
20

21 Inherits from QRunnable to handler worker thread setup, signals
22 and wrap-up.
23

24 :param id: The id for this worker
25 :param url: The url to retrieve
26 '''
27

28 def __init__(self, id, url):

Multithreading 196

29 super(Worker, self).__init__()
30 self.id = id
31 self.url = url
32

33 self.signals = WorkerSignals()
34

35 @pyqtSlot()
36 def run(self):
37 r = requests.get(self.url)
38

39 for line in r.text.splitlines():
40 self.signals.data.emit((self.id, line))
41

42

43 class MainWindow(QMainWindow):
44

45

46 def __init__(self, *args, **kwargs):
47 super(MainWindow, self).__init__(*args, **kwargs)
48

49 self.urls = [
50 'http://www.example.com',
51 'https://www.mfitzp.com',
52 'https://www.google.com',
53 'https://www.udemy.com/create-simple-gui-applications-with-python-a\
54 nd-qt/',
55 'https://books.mfitzp.com/create-simple-gui-applications/'
56]
57

58 layout = QVBoxLayout()
59

60 self.text = QPlainTextEdit()
61 self.text.setReadOnly(True)
62

63 button = QPushButton("GO GET EM!")
64 button.pressed.connect(self.execute)
65

66 layout.addWidget(self.text)
67 layout.addWidget(button)

Multithreading 197

68

69 w = QWidget()
70 w.setLayout(layout)
71

72 self.setCentralWidget(w)
73

74 self.show()
75

76 self.threadpool = QThreadPool()
77 print("Multithreading with maximum %d threads" % self.threadpool.maxThr\
78 eadCount())
79

80

81 def execute(self):
82 for n, url in enumerate(self.urls):
83 worker = Worker(n, url)
84 worker.signals.data.connect(self.display_output)
85

86 # Execute
87 self.threadpool.start(worker)
88

89

90 def display_output(self, data):
91 id, s = data
92 self.text.appendPlainText("WORKER %d: %s" % (id, s))
93

94

95

96 app = QApplication([])
97 window = MainWindow()
98 app.exec_()

If you run this example and press the button you’ll see the HTML output from a
number of websites, prepended by the worker ID that retrieve them. Note that
output from different workers is interleaved.

Multithreading 198

Logging output frommultiple workers to the main window.

The tuple is of course optional, you could send back bare strings if you have
only one runner, or don’t need to associated outputs with a source. It is also
possible to send a bytestring, or any other type of data, by setting up the signals
appropriately.

Multithreading 199

The Generic

If you have multiple similar jobs to run, or the runners have no specific require-
ments, a generic runnermaybeall youneed. Pass in the function to runand receive
output, errors and progress.

A complete working example is given below, showcasing the custom QRunnable
worker together with the worker & progress signals. You should be able to easily
adapt this code to any application you develop.

1 from PyQt5.QtGui import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtCore import *
4

5 import time
6 import traceback, sys
7

8

9 class WorkerSignals(QObject):
10 '''
11 Defines the signals available from a running worker thread.
12

13 Supported signals are:
14

15 finished
16 No data
17

18 error
19 `tuple` (exctype, value, traceback.format_exc())
20

21 result
22 `object` data returned from processing, anything
23

24 progress
25 `int` indicating % progress
26

27 '''
28 finished = pyqtSignal()

Multithreading 200

29 error = pyqtSignal(tuple)
30 result = pyqtSignal(object)
31 progress = pyqtSignal(int)
32

33

34 class Worker(QRunnable):
35 '''
36 Worker thread
37

38 Inherits from QRunnable to handler worker thread setup, signals
39 and wrap-up.
40

41 :param callback: The function callback to run on this worker
42 :thread. Supplied args and
43 kwargs will be passed through to the runner.
44 :type callback: function
45 :param args: Arguments to pass to the callback function
46 :param kwargs: Keywords to pass to the callback function
47 :
48 '''
49

50 def __init__(self, fn, *args, **kwargs):
51 super(Worker, self).__init__()
52 # Store constructor arguments (re-used for processing)
53 self.fn = fn
54 self.args = args
55 self.kwargs = kwargs
56 self.signals = WorkerSignals()
57

58 # Add the callback to our kwargs
59 kwargs['progress_callback'] = self.signals.progress
60

61 @pyqtSlot()
62 def run(self):
63 '''
64 Initialise the runner function with passed args, kwargs.
65 '''
66

67 # Retrieve args/kwargs here; and fire processing using them

Multithreading 201

68 try:
69 result = self.fn(*self.args, **self.kwargs)
70 except:
71 traceback.print_exc()
72 exctype, value = sys.exc_info()[:2]
73 self.signals.error.emit((exctype, value, traceback.format_exc()))
74 else:
75 self.signals.result.emit(result) # Return the result of the proces\
76 sing
77 finally:
78 self.signals.finished.emit() # Done
79

80

81

82 class MainWindow(QMainWindow):
83

84

85 def __init__(self, *args, **kwargs):
86 super(MainWindow, self).__init__(*args, **kwargs)
87

88 self.counter = 0
89

90 layout = QVBoxLayout()
91

92 self.l = QLabel("Start")
93 b = QPushButton("DANGER!")
94 b.pressed.connect(self.oh_no)
95

96 layout.addWidget(self.l)
97 layout.addWidget(b)
98

99 w = QWidget()
100 w.setLayout(layout)
101

102 self.setCentralWidget(w)
103

104 self.show()
105

106 self.threadpool = QThreadPool()

Multithreading 202

107 print("Multithreading with maximum %d threads" % self.threadpool.maxThr\
108 eadCount())
109

110 self.timer = QTimer()
111 self.timer.setInterval(1000)
112 self.timer.timeout.connect(self.recurring_timer)
113 self.timer.start()
114

115 def progress_fn(self, n):
116 print("%d%% done" % n)
117

118 def execute_this_fn(self, progress_callback):
119 for n in range(0, 5):
120 time.sleep(1)
121 progress_callback.emit(n*100/4)
122

123 return "Done."
124

125 def print_output(self, s):
126 print(s)
127

128 def thread_complete(self):
129 print("THREAD COMPLETE!")
130

131 def oh_no(self):
132 # Pass the function to execute
133 worker = Worker(self.execute_this_fn) # Any other args, kwargs are pass\
134 ed to the run function
135 worker.signals.result.connect(self.print_output)
136 worker.signals.finished.connect(self.thread_complete)
137 worker.signals.progress.connect(self.progress_fn)
138

139 # Execute
140 self.threadpool.start(worker)
141

142

143 def recurring_timer(self):
144 self.counter +=1
145 self.l.setText("Counter: %d" % self.counter)

Multithreading 203

146

147

148 app = QApplication([])
149 window = MainWindow()
150 app.exec_()

Using Python multithreading in PyQt

You may have spotted the slight flaw in this master plan — we are still making use
of the event loop (and the GUI thread) to process the output of our workers.

This isn’t a problemwhen we’re simply tracking progress, completion or returning
metadata. However, if you have workers which return large amounts of data —
e.g. loading large files, performing complex analysis and need (large) results, or
querying databases — passing this data back through the GUI thread may cause
performance problems and is best avoided.

Similarly, if your application makes use of a large number of threads and Python
result handlers, youmay come up against the limitations of the GIL. Asmentioned
previously, when using threads execution of Python is limited to a single thread at
one time. The Python code that handles signals from your threads can be blocked
by your workers and vice versa. Since blocking your slot functions blocks the event
loop, this can directly impact GUI responsiveness.

In these cases it is often better to use a pure-Python thread pool (e.g. concur-
rent futures) implementation to keep your processing and thread-event handling
further isolated from your GUI.

Example PyQt5 Applications
By now you should have a firm grasp of how to go about building simple applica-
tions with PyQt. To show how you can put what you’ve learnt into practise, I’ve
included a few example applications in this chapter.

These applications are functional, simple and in someways incomplete. Use them
for inspiration, to pull apart and as an opportunity to improve. Read on for a
walkthrough of each app’s most interesting parts.

The full source for both apps is available for download, along with 13 other
applications in my 15 Minute Apps repository on Github. Have fun!

Mozzarella Ashbadger

Mozzarella Ashbadger is the latest revolution in web browsing! Go back and
forward! Print! Save files! Get help! (you’ll need it). Any similarity to other browsers
is entirely coincidental.

https://github.com/mfitzp/15-minute-apps

Example PyQt5 Applications 205

Mozzarella Ashbadger.

This application makes use of features covered in Extended Signals.

The source code forMozzarellaAshbadger is provided in two forms, onwith tabbed
browsing and one without. Adding tabs complicates the signal handling a little bit,
so the tab-less version is covered first.

Source code

The full source for the tab-less browser is included in the downloads for this book.
The browser code has the name browser.py.

1 python3 browser.py

Run it! Explore the Mozzarella Ashbadger interface and features before
moving onto the code.

Example PyQt5 Applications 206

It is recommend you download and take a quick look at the source
code before continuing. The walkthrough below highlights the key (and
interesting) parts of the code, but there is more to see.

The browser widget

Thecoreof our browser is the QWebEngineViewwhichwe import from PyQt5.QtWebEngineWidgets.
This provides a complete browser window, which handles the rendering of the
downloaded pages.

Below is the bare-minimum of code required to use web browser widget in PyQt.

1 from PyQt5.QtCore import *
2 from PyQt5.QtWidgets import *
3 from PyQt5.QtGui import *
4 from PyQt5.QtWebEngineWidgets import *
5

6 import sys
7

8 class MainWindow(QMainWindow):
9

10 def __init__(self, *args, **kwargs):
11 super(MainWindow,self).__init__(*args, **kwargs)
12

13 self.browser = QWebEngineView()
14 self.browser.setUrl(QUrl("http://google.com"))
15

16 self.setCentralWidget(self.browser)
17

18 self.show()
19

20 app = QApplication(sys.argv)
21 window = MainWindow()
22

23 app.exec_()

If you click around a bit you’ll discover that the browser behaves as expected —
links work correctly, and you can interact with the pages. However, you’ll also

Example PyQt5 Applications 207

notice things you take for granted are missing — like an URL bar, controls or any
sort of interface whatsoever. This makes it a little tricky to use.

Navigation

To convert this bare-bones browser into something usable we add some controls,
as a series of QActions on a QToolbar. We add these definitions to the __init__-
block of the QMainWindow.

62 navtb = QToolBar("Navigation")
63 navtb.setIconSize(QSize(16,16))
64 self.addToolBar(navtb)
65

66 back_btn = QAction(QIcon(os.path.join('icons','arrow-180.png')), "Back\
67 ", self)
68 back_btn.setStatusTip("Back to previous page")
69 back_btn.triggered.connect(self.browser.back)
70 navtb.addAction(back_btn)

The QWebEngineView includes slots for forward, back and reload navigation, which
we can connect to directly to our action’s .triggered signals.

We use the same QAction structure for the remaining controls.

73 next_btn = QAction(QIcon(os.path.join('icons','arrow-000.png')), "Forw\
74 ard", self)
75 next_btn.setStatusTip("Forward to next page")
76 next_btn.triggered.connect(self.browser.forward)
77 navtb.addAction(next_btn)
78

79 reload_btn = QAction(QIcon(os.path.join('icons','arrow-circle-315.png'\
80)), "Reload", self)
81 reload_btn.setStatusTip("Reload page")
82 reload_btn.triggered.connect(self.browser.reload)
83 navtb.addAction(reload_btn)
84

85 home_btn = QAction(QIcon(os.path.join('icons','home.png')), "Home", se\

Example PyQt5 Applications 208

86 lf)
87 home_btn.setStatusTip("Go home")
88 home_btn.triggered.connect(self.navigate_home)
89 navtb.addAction(home_btn)

Notice that while forward, back and reload can use built-in slots, the navigate
home button requires a custom slot function. The slot function is defined on
our QMainWindow class, and simply sets the URL of the browser to the Google
homepage. Note that the URL must be passed as a QUrl object.

197 def navigate_home(self):
198 self.browser.setUrl(QUrl("http://www.google.com"))

Try making the home navigation location configurable. You could create
a Preferences QDialog with an input field.

Any decent web browser also needs an URL bar, and some way to stop the
navigation — either when it’s by mistake, or the page is taking too long.

92 self.httpsicon = QLabel() # Yes, really!
93 self.httpsicon.setPixmap(QPixmap(os.path.join('icons','lock-nossl.png\
94 ')))
95 navtb.addWidget(self.httpsicon)
96

97 self.urlbar = QLineEdit()
98 self.urlbar.returnPressed.connect(self.navigate_to_url)
99 navtb.addWidget(self.urlbar)
100

101 stop_btn = QAction(QIcon(os.path.join('icons','cross-circle.png')), "S\
102 top", self)
103 stop_btn.setStatusTip("Stop loading current page")
104 stop_btn.triggered.connect(self.browser.stop)
105 navtb.addAction(stop_btn)

Example PyQt5 Applications 209

As before the ‘stop’ functionality is available on the QWebEngineView, and we can
simply connect the .triggered signal from the stop button to the existing slot.
However, other features of the URL bar we must handle independently.

First we add a QLabel to hold our SSL or non-SSL icon to indicate whether the page
is secure. Next, we add the URL bar which is simply a QLineEdit. To trigger the
loading of the URL in the bar when entered (return key pressed) we connect to
the .returnPressed signal on the widget to drive a custom slot function to trigger
navigation to the specified URL.

202 def navigate_to_url(self): # Does not receive the Url
203 q = QUrl(self.urlbar.text())
204 if q.scheme() == "":
205 q.setScheme("http")
206

207 self.browser.setUrl(q)

We also want the URL bar to update in response to page changes. To do this we
can use the .urlChanged and .loadFinished signals from the QWebEngineView. We
set up the connections from the signals in the __init__ block as follows:

57 self.browser.urlChanged.connect(self.update_urlbar)
58 self.browser.loadFinished.connect(self.update_title)

Then we define the target slot functions which for these signals. The first, to
update the URL bar accepts a QUrl object and determines whether this is a http or
https URL, using this to set the SSL icon.

WARNING: This is a terrible way to test if a connection is ‘secure’. To be correct
we should perform a certificate validation.

The QUrl is converted to a string and the URL bar is updated with the value. Note
that we also set the cursor position back to the beginning of the line to prevent the
QLineEdit widget scrolling to the end.

Example PyQt5 Applications 210

211 def update_urlbar(self, q):
212

213 if q.scheme() == 'https':
214 # Secure padlock icon
215 self.httpsicon.setPixmap(QPixmap(os.path.join('icons','lock-ssl.p\
216 ng')))
217

218 else:
219 # Insecure padlock icon
220 self.httpsicon.setPixmap(QPixmap(os.path.join('icons','lock-nossl\
221 .png')))
222

223 self.urlbar.setText(q.toString())
224 self.urlbar.setCursorPosition(0)

It’s also a nice touch to update the title of the application window with the title of
the current page. We can get this via browser.page().title() which returns the
contents of the <title></title> tag in the currently loaded web page.

149 def update_title(self):
150 title = self.browser.page().title()
151 self.setWindowTitle("%s - Mozarella Ashbadger" % title)

File operations

A standard File menu with self.menuBar().addMenu("&File") is created assigning
the F key as an Alt-shortcut (as normal). Once we have the menu object, we can
can assign QAction objects to create the entries. We create two basic entries here,
for opening and saving HTML files (from a local disk). These both require custom
slot functions.

Example PyQt5 Applications 211

110 file_menu = self.menuBar().addMenu("&File")
111

112 open_file_action = QAction(QIcon(os.path.join('icons','disk--arrow.pn\
113 g')), "Open file...", self)
114 open_file_action.setStatusTip("Open from file")
115 open_file_action.triggered.connect(self.open_file)
116 file_menu.addAction(open_file_action)
117

118 save_file_action = QAction(QIcon(os.path.join('icons','disk--pencil.p\
119 ng')), "Save Page As...", self)
120 save_file_action.setStatusTip("Save current page to file")
121 save_file_action.triggered.connect(self.save_file)
122 file_menu.addAction(save_file_action)

The slot function for opening a file uses thebuilt-in QFileDialog.getOpenFileName()
function to create a file-open dialog and get a name. We restrict the names by
default to files matching *.htm or *.html.

We read the file into a variable html using standard Python functions, then use
.setHtml() to load the HTML into the browser.

164 def open_file(self):
165 filename, _ = QFileDialog.getOpenFileName(self, "Open file", "",
166 "Hypertext Markup Language (*.htm *.html);;"
167 "All files (*.*)")
168

169 if filename:
170 with open(filename, 'r') as f:
171 html = f.read()
172

173 self.browser.setHtml(html)
174 self.urlbar.setText(filename)

Similarly to save theHTML from the current page,weuse thebuilt-in QFileDialog.getSaveFileName()
to get a filename.However, this timeweget theHTML from self.browser.page().toHtml()
and write it to the selected filename. Again we use standard Python functions for
the file handler.

Example PyQt5 Applications 212

178 def save_file(self):
179 filename, _ = QFileDialog.getSaveFileName(self, "Save Page As", "",
180 "Hypertext Markup Language (*.htm *html);;"
181 "All files (*.*)")
182

183 if filename:
184 html = self.browser.page().toHtml()
185 with open(filename, 'w') as f:
186 f.write(html)

Printing

We can add a print option to the File menu using the same approach we used
earlier. Again this needs a custom slot function to perform the print action.

124 print_action = QAction(QIcon(os.path.join('icons','printer.png')), "\
125 Print...", self)
126 print_action.setStatusTip("Print current page")
127 print_action.triggered.connect(self.print_page)
128 file_menu.addAction(print_action)

Qt provides a complete print framework. QPrintPreviewDialog to request the
settings from the user. The dialog object has a .paintRequested signal, which we
can connect to the print handler of the widget we wish to print. Thankfully, the
QWebEngineView provides a compatible interface for us to connect to.

The .paintRequested signal will be triggered if the dialog is accepted, and the page
will be printed.

190 def print_page(self):
191 dlg = QPrintPreviewDialog()
192 dlg.paintRequested.connect(self.browser.print_)
193 dlg.exec_()

Example PyQt5 Applications 213

Help

Finally, to complete the standard interfacewecan addaHelpmenu. This is defined
as before, two two custom slot functions to handle the display of an About dialog,
and to load the ‘browser page’ with more information.

131 help_menu = self.menuBar().addMenu("&Help")
132

133 about_action = QAction(QIcon(os.path.join('icons','question.png')), \
134 "About Mozarella Ashbadger", self)
135 about_action.setStatusTip("Find out more about Mozarella Ashbadger") # \
136 Hungry!
137 about_action.triggered.connect(self.about)
138 help_menu.addAction(about_action)
139

140 navigate_mozarella_action = QAction(QIcon(os.path.join('icons','lifeb\
141 uoy.png')), "Mozarella Ashbadger Homepage", self)
142 navigate_mozarella_action.setStatusTip("Go to Mozarella Ashbadger Homep\
143 age")
144 navigate_mozarella_action.triggered.connect(self.navigate_mozarella)
145 help_menu.addAction(navigate_mozarella_action)

We define two methods to be used as slots for the Help menu signals. The first
navigate_mozzarella opens up a page with more information on the browser (or
in this case, this book). The second creates and executes a custom QDialog class
AboutDialog which we will define next.

155 def navigate_mozarella(self):
156 self.browser.setUrl(QUrl("https://www.udemy.com/522076"))
157

158 def about(self):
159 dlg = AboutDialog()
160 dlg.exec_()

The definition for the about dialog is given below. The structure follows that seen
earlier in the book, with a QDialogButtonBox and associated signals to handle user
input, and a series of QLabels to display the application information and a logo.

Example PyQt5 Applications 214

The only trick here is adding all the elements to the layout, then iterate over them
to set the alignment to the center in a single loop. This saves duplication for the
individual sections.

Moonsweeper

Explore the mysterious moon of Q’tee without getting too close to the alien
natives!

Moonsweeper is a single-player puzzle video game. The objective of the game is
to explore the area around your landed space rocket, without coming too close to
the deadly B’ug aliens. Your trusty tri-counter will tell you the number of B’ugs in
the vicinity.

This application makes use of features covered in Extended Signals.

Example PyQt5 Applications 215

Moonsweeper

This a simple single-player exploration gamemodelled onMinesweeperwhere you
must reveal all the tiles without hitting hidden mines. This implementation uses
custom QWidget objects for the tiles, which individually hold their state as mines,

Example PyQt5 Applications 216

status and the adjacent count of mines. In this version, the mines are replaced
with alien bugs (B’ug) but they could just as easily be anything else.

In many Minesweeper variants the initial turn is considered a free go — if you hit
a mine on the first click, it is moved somewhere else. Here we cheat a little bit by
taking the first go for the player, ensuring that it is on a non-mine spot. This allows
us not to worry about the bad first move which would require us to recalculate
the adjacencies. We can explain this away as the “initial exploration around the
rocket” and make it sound completely sensible.

If you want to implement this, you can catch the first click on a position
and at that point generate mines/adjacencies, excluding your location,
before handling the click. You will need to give your custom widgets
access to the parent window object.

Source code

The full source for the Moonsweeper game is included in the downloads for this
book. The game file is saved with the name minesweeper.py.

1 python3 minesweeper.py

It is recommend you download and take a quick look at the source
code before continuing. The walkthrough below highlights the key (and
interesting) parts of the code, but there is more to see.

Playing Field

The playing area forMoonsweeper is a NxN grid, containing a set number ofmines.
The dimensions and mine counts we’ll used are taken from the default values
for the Windows version of Minesweeper. The values used are shown in the table
below:

Example PyQt5 Applications 217

.Table Dimensions and mine counts |=== |Level |Dimensions |Number of Mines
|Easy |8 x 8 |10 |Medium |16 x 16 |40 |Hard |24 x 24 |99 |===

We store these values as a constant LEVELS defined at the top of the file. Since all
the playing fields are square we only need to store the value once (8, 16 or 24).

1 LEVELS = [
2 ("Easy", 8, 10),
3 ("Medium", 16, 40),
4 ("Hard", 24, 99)
5]

The playing grid could be represented in a number of ways, including for example
a 2D ‘list of lists’ representing the different states of the playing positions (mine,
revealed, flagged).

However, in our implementation we’ll be using an object-orientated approach,
where individual positions on the map hold all relevant data about themselves.
Taking this a step further, we can make these objects individually responsible for
drawing themselves. In Qt we can do this simply by subclassing from QWidget and
then implementing a custom paint function.

We’ll cover the construction andbehaviour of these customwidgets beforemoving
onto its appearance. Since our tile objects are subclassing from QWidgetwe can lay
them out like any other widget. We do this, by setting up a QGridLayout.

1 self.grid = QGridLayout()
2 self.grid.setSpacing(5)
3 self.grid.setSizeConstraint(QLayout.SetFixedSize)

Next we need to set up the playing field, creating our position tile widgets and
adding them our grid. The initial setup for the level is defined in custom method,
which reads from LEVELS and assigns a number of variables to the window. The
window title andmine counter are updated, and then the setupof the grid is begun.

Example PyQt5 Applications 218

234 def set_level(self, level):
235 self.level_name, self.b_size, self.n_mines = LEVELS[level]
236

237 self.setWindowTitle("Moonsweeper - %s" % (self.level_name))
238 self.mines.setText("%03d" % self.n_mines)
239

240 self.clear_map()
241 self.init_map()
242 self.reset_map()

The setup functions will be covered next.

We’re using a custom Pos class here, which we’ll look at in detail later. For now
you just need to know that this holds all the relevant information for the relevant
position in themap— including, for example,whether it’s amine, revealed, flagged
and the number of mines in the immediate vicinity.

Each Pos object also has 3 custom signals clicked, revealed and expandablewhich
we connect to custom slot methods. Finally, we call resize to adjust the size of the
window to the new contents. Note that this is actually only necessary when the
window shrinks — it will grow automatically.

257 def init_map(self):
258 # Add positions to the map
259 for x in range(0, self.b_size):
260 for y in range(0, self.b_size):
261 w = Pos(x,y)
262 self.grid.addWidget(w, y, x)
263 # Connect signal to handle expansion.
264 w.clicked.connect(self.trigger_start)
265 w.revealed.connect(self.on_reveal)
266 w.expandable.connect(self.expand_reveal)
267

268 # Place resize on the event queue, giving control back to Qt before.
269 QTimer.singleShot(0, lambda: self.resize(1,1)) # <1>

Example PyQt5 Applications 219

1. The singleShot timer is required to ensure the resize runs after Qt
is aware of the newcontents. By using a timerwe guarantee control
will return to Qt before the resize occurs.

We also need to implement the inverse of the init_map function to remove tile
objects from the map. Removing tiles will be necessary when moving from a
higher to a lower level. It would be possible to be a little smarter here and
adding/removing only those tiles that are necessary to get to the correct size. But,
since we already have the function to add all up to the right size, we can cheat a
bit.

Update this code to add/remove the neccessary tiles to size the new level
dimensions.

Notice that we both remove the item from the grid with self.grid.removeItem(c)
and clear the parent c.widget().setParent(None). This second step is necessary,
since adding the items assigning them the parent window as a parent. Just
removing them leaves them floating in the window outside the layout.

246 def clear_map(self):
247 # Remove all positions from the map, up to maximum size.
248 for x in range(0, LEVELS[-1][1]): # <1>
249 for y in range(0, LEVELS[-1][1]):
250 c = self.grid.itemAtPosition(y,x)
251 if c: # <2>
252 self.grid.removeItem(c)
253 c.widget().setParent(None)

1. To ensure we clear all sizes of maps we take the dimension of the
highest level.

2. If there isn’t anything in the grid at this location, we can skip it.

Example PyQt5 Applications 220

Now we have our grid of positional tile objects in place, we can begin creating the
initial conditionsof theplayingboard. This process is rather complex, so it’s broken
down into a number of functions. We name them _reset (the leading underscore
is a convention to indicate a private function, not intended for external use). The
main function reset_map calls these functions in turn to set it up.

The process is as follows —

1. Remove all mines (and reset data) from the field.
2. Add new mines to the field.
3. Calculate the number of mines adjacent to each position.
4. Add a starting marker (the rocket) and trigger initial exploration.
5. Reset the timer.

273 def reset_map(self):
274 self._reset_position_data()
275 self._reset_add_mines()
276 self._reset_calculate_adjacency()
277 self._reset_add_starting_marker()
278 self.update_timer()

The separate steps from 1-5 are described in detail in turn below, with the code
for each step.

The first step is to reset the data for each position on the map. We iterate through
every position on the board, calling .reset() on thewidget at each point. The code
for the .reset() function is defined on our custom Pos class, we’ll explore in detail
later. For now it’s enough to know it clears mines, flags and sets the position back
to being unrevealed.

Example PyQt5 Applications 221

282 def _reset_position_data(self):
283 # Clear all mine positions
284 for x in range(0, self.b_size):
285 for y in range(0, self.b_size):
286 w = self.grid.itemAtPosition(y, x).widget()
287 w.reset()

Now all the positions are blank, we can begin the process of adding mines to the
map. The maximum number of mines n_mines is defined by the level settings,
described earlier.

1 def _reset_add_mines(self):
2 # Add mine positions
3 positions = []
4 while len(positions) < self.n_mines:
5 x, y = random.randint(0, self.b_size-1), random.randint(0, self.b_s\
6 ize-1)
7 if (x ,y) not in positions:
8 w = self.grid.itemAtPosition(y,x).widget()
9 w.is_mine = True
10 positions.append((x, y))
11

12 # Calculate end-game condition
13 self.end_game_n = (self.b_size * self.b_size) - (self.n_mines + 1)
14 return positions

With mines in position, we can now calculate the ‘adjacency’ number for each
position — simply the number of mines in the immediate vicinity, using a 3x3 grid
around the given point. The custom function get_surrounding simply returns those
positions around a given x and y location. We count the number of these that is a
mine is_mine == True and store.

Pre-calculating the adjacent counts in this way helps simplify the reveal
logic later.

Example PyQt5 Applications 222

1 def _reset_calculate_adjacency(self):
2

3 def get_adjacency_n(x, y):
4 positions = self.get_surrounding(x, y)
5 return sum(1 for w in positions if w.is_mine)
6

7 # Add adjacencies to the positions
8 for x in range(0, self.b_size):
9 for y in range(0, self.b_size):
10 w = self.grid.itemAtPosition(y, x).widget()
11 w.adjacent_n = get_adjacency_n(x, y)

A starting marker is used to ensure that the first move is always_valid. This is
implemented as a _brute force search through the grid space, effectively trying
random positions until we find a position which is not amine. Since we don’t know
how many attempts this will take, we need to wrap it in a continuous loop.

Once that location is found, we mark it as the start location and then trigger the
exploration of all surrounding positions. We break out of the loop, and reset the
ready status.

1 def _reset_add_starting_marker(self):
2 # Place starting marker.
3

4 # Set initial status (needed for .click to function)
5 self.update_status(STATUS_READY)
6

7 while True:
8 x, y = random.randint(0, self.b_size - 1), random.randint(0, self.b\
9 _size - 1)
10 w = self.grid.itemAtPosition(y, x).widget()
11 # We don't want to start on a mine.
12 if not w.is_mine:
13 w.is_start = True
14 w.is_revealed = True
15 w.update()
16

17 # Reveal all positions around this, if they are not mines eithe\

Example PyQt5 Applications 223

18 r.
19 for w in self.get_surrounding(x, y):
20 if not w.is_mine:
21 w.click()
22 break
23

24 # Reset status to ready following initial clicks.
25 self.update_status(STATUS_READY)

Example PyQt5 Applications 224

Initial exporation around the rocket.

Example PyQt5 Applications 225

Position Tiles

As previously described, we’ve structured the game so that individual tile posi-
tions hold their own state information. This means that Pos objects are ideally
positioned to handle game logic which reacts to to interactions that relate to their
own state — in other words, this is where the magic is.

Since the Pos class is relatively complex, it is broken down here in tomain themes,
which are discussed in turn. The initial setup __init__ block is simple, accepting
an x and y position and storing it on the object. Pos positions never change once
created.

To complete setup the .reset() function is calledwhich resets all object attributes
back to default, zero values. This flags the mine as_not the start position, _not a
mine, not revealed and not flagged. We also reset the adjacent count.

1 class Pos(QWidget):
2

3 expandable = pyqtSignal(int,int)
4 revealed = pyqtSignal(object)
5 clicked = pyqtSignal()
6

7 def __init__(self, x, y, *args, **kwargs):
8 super(Pos, self).__init__(*args, **kwargs)
9

10 self.setFixedSize(QSize(20, 20))
11 self.x = x
12 self.y = y
13 self.reset()
14

15 def reset(self):
16 self.is_start = False
17 self.is_mine = False
18 self.adjacent_n = 0
19 self.is_revealed = False
20 self.is_flagged = False
21

22 self.update()

Example PyQt5 Applications 226

Gameplay is centered aroundmouse interactionswith the tiles in the playing field,
so detecting and reacting to mouse clicks is central. In Qt we catch mouse clicks
bydetecting the mouseReleaseEvent. To do this for our custom Poswidgetwedefine
a handler on the class. This receives QMouseEvent with the information containing
what happened. In this case we are only interested in whether the mouse release
occurred from the left or the right mouse button.

For a left mouse click we check whether the tile is flagged or already revealed. If
it is either, we ignore the click — making flagged tiles ‘safe’, unable to be click by
accident. If the tile is not flagged we simply initiation the .click() method (see
later).

For a rightmouse click, on tiles which are not revealed, we call our .toggle_flag()
method to toggle a flag on and off.

1 def mouseReleaseEvent(self, e):
2

3 if (e.button() == Qt.RightButton and not self.is_revealed):
4 self.toggle_flag()
5

6 elif (e.button() == Qt.LeftButton):
7 # Block clicking on flagged mines.
8 if not self.is_flagged and not self.is_revealed:
9 self.click()

The methods called by the mouseReleaseEvent handler are defined below.

The .toggle_flag handler simply sets .is_flagged to the inverse of itself (True
becomes False, False becomes True) having the effect of toggling it on and off.
Note that we have to call .update() to force a redraw having changed the state.We
also emit our custom .clicked signal, which is used to start the timer — because
placing a flag should also count as starting, not just revealing a square.

The .click() method handles a left mouse click, and in turn triggers the reveal
of the square. If the number of adjacent mines to this Pos is zero, we trigger the
.expandable signal to begin the process of auto-expanding the region explored
(see later). Then, we again emit .clicked to signal the start of the game.

Finally, the .reveal() method checks whether the tile is already revealed, and if
not sets .is_revealed to True. Again we call .update() to trigger a repaint of the
widget.

Example PyQt5 Applications 227

The optional emit of the .revealed signal is used only for the endgame full-map
reveal. Because each reveal triggers a further lookup to find what tiles are also
revealable, revealing the entire map would create a large number of redundant
callbacks. By suppressing the signal here we avoid that.

1 def toggle_flag(self):
2 self.is_flagged = not self.is_flagged
3 self.update()
4

5 self.clicked.emit()
6

7 def click(self):
8 self.reveal()
9 if self.adjacent_n == 0:
10 self.expandable.emit(self.x, self.y)
11

12 self.clicked.emit()
13

14 def reveal(self, emit=True):
15 if not self.is_revealed:
16 self.is_revealed = True
17 self.update()
18

19 if emit:
20 self.revealed.emit(self)

Finally, we define a custom paintEvent method for our Pos widget to handle
the display of the current position state. As described in chapter to perform
custompaint over a widget canvaswe take a QPainter and the event.rect()which
provides the boundaries in which we are to draw— in this case the outer border of
the Pos widget.

Revealed tiles are drawn differently depending on whether the tile is a start
position, bomb or empty space. The first two are represented by icons of a rocket
and bomb respectively. These are drawn into the tile QRect using .drawPixmap.
Note we need to convert the QImage constants to pixmaps, by passing through
QPixmap by passing.

Example PyQt5 Applications 228

You may think “why not just store these as QPixmap objects since that’s
what we’re using? We can’t do this and store them in constants because
you can’t create QPixmapobjects before a QApplication instance is up and
running.

For empty positions (not rockets, not bombs) we optionally show the adjacency
number if it is larger than zero. To draw text onto our QPainterwe use .drawText()
passing in the QRect, alignment flags and the number to draw as a string. We’ve
defined a standard color for each number (stored in NUM_COLORS) for usability.

For tiles that are not revealed we draw a tile, by filling a rectangle with light gray
and draw a 1 pixel border of darker grey. If .is_flagged is set, we also draw a flag
icon over the top of the tile using drawPixmap and the tile QRect.

1 def paintEvent(self, event):
2 p = QPainter(self)
3 p.setRenderHint(QPainter.Antialiasing)
4

5 r = event.rect()
6

7 if self.is_revealed:
8 if self.is_start:
9 p.drawPixmap(r, QPixmap(IMG_START))
10

11 elif self.is_mine:
12 p.drawPixmap(r, QPixmap(IMG_BOMB))
13

14 elif self.adjacent_n > 0:
15 pen = QPen(NUM_COLORS[self.adjacent_n])
16 p.setPen(pen)
17 f = p.font()
18 f.setBold(True)
19 p.setFont(f)
20 p.drawText(r, Qt.AlignHCenter | Qt.AlignVCenter, str(self.adjac\
21 ent_n))
22

23 else:
24 p.fillRect(r, QBrush(Qt.lightGray))

Example PyQt5 Applications 229

25 pen = QPen(Qt.gray)
26 pen.setWidth(1)
27 p.setPen(pen)
28 p.drawRect(r)
29

30 if self.is_flagged:
31 p.drawPixmap(r, QPixmap(IMG_FLAG))

Mechanics

We commonly need to get all tiles surrounding a given point, so we have a custom
function for that purpose. It simple iterates across a3x3grid around thepoint,with
a check to ensure we do not go out of bounds on the grid edges (0 ≥ x ≤ self.b_-
size). The returned list contains a Pos widget from each surrounding location.

1 # tag::surrounding[]
2 def get_surrounding(self, x, y):
3 positions = []
4

5 for xi in range(max(0, x - 1), min(x + 2, self.b_size)):
6 for yi in range(max(0, y - 1), min(y + 2, self.b_size)):
7 if not (xi == x and yi == y):
8 positions.append(self.grid.itemAtPosition(yi, xi).widget()\
9)
10

11 return positions

The expand_reveal method is triggered in response to a click on a tile with zero
adjacent mines. In this case we want to expand the area around the click to any
spaces which also have zero adjacent mines, and also reveal any squares around
the border of that expanded area (which aren’t mines).

We start with a list to_expand containing the positions to check on the next
iteration, a list to_reveal containing the tile widgets to reveal, and a flag any_added
to determine when to exit the loop. The loop stops the first time no new widgets
are added to to_reveal.

Example PyQt5 Applications 230

Inside the loop we reset any_added to False, and empty the to_expand list, keeping
a temporary store in l for iterating over.

For each x and y locationwe get the 8 surroundingwidgets. If any of thesewidgets
is not amine, and is not already in the to_reveal listwe add it. This ensures that the
edges of the expanded area are all revealed. If the position has no adjacentmines,
we append the coordinates onto to_expand to be checked on the next iteration.

By adding any non-mine tiles to to_reveal, and only expanding tiles that are not
already in to_reveal, we ensure that we won’t visit a tile more than once.

1 def expand_reveal(self, x, y):
2 """
3 Iterate outwards from the initial point, adding new locations to the
4 queue. This allows us to expand all in a single go, rather than
5 relying on multiple callbacks.
6 """
7 to_expand = [(x,y)]
8 to_reveal = []
9 any_added = True
10

11 while any_added:
12 any_added = False
13 to_expand, l = [], to_expand
14

15 for x, y in l:
16 positions = self.get_surrounding(x, y)
17 for w in positions:
18 if not w.is_mine and w not in to_reveal:
19 to_reveal.append(w)
20 if w.adjacent_n == 0:
21 to_expand.append((w.x,w.y))
22 any_added = True
23

24 # Iterate an reveal all the positions we have found.
25 for w in to_reveal:
26 w.reveal()

Example PyQt5 Applications 231

Endgames

Endgame states are detected during the reveal process following a click on a title.
There are two possible outcomes —

1. Tile is a mine, game over.
2. Tile is not a mine, decrement the self.end_game_n.

This continues until self.end_game_n reaches zero, which triggers the win game
process by calling either game_over or game_won. Success/failure is triggered by
revealing the map and setting the relevant status, in both cases.

1 def on_reveal(self, w):
2 if w.is_mine:
3 self.game_over()
4

5 else:
6 self.end_game_n -= 1 # decrement remaining empty spaces
7

8 if self.end_game_n == 0:
9 self.game_won()
10

11 def game_over(self):
12 self.reveal_map()
13 self.update_status(STATUS_FAILED)
14

15 def game_won(self):
16 self.reveal_map()
17 self.update_status(STATUS_SUCCESS)

Further ideas

If you want to have a go at expandingMoonsweeper, here are a few ideas —

1. Allow the player to take their own first turn. Try postponing the calculation of
mine positions til after the user first clicks, and then generate positions until
you get a miss.

Example PyQt5 Applications 232

2. Add power-ups, e.g. a scanner to reveal a certain area of the board automat-
ically.

3. Let the hidden B’ugs move around between each turn. Keep a list of free-
unrevealed positions, and allow the B’ugs to move into them. You’ll need to
recalculate the adjacencies after each click.

Packaging PyQt Applications
There is not much fun in creating your own applications if you can’t share it with
other people — whether that means publishing it commercially, sharing it online
or just giving it to someone you know. Sharing your apps allows other people to
benefit from your hard work!

Packaging Python applications for distribution has typically been a little tricky,
particularly when targeting multiple platforms (Windows, MacOS and Linux). This
is in part because of the need to bundle the source, data files, the Python runtime
and all associated libraries in a way that will work reliably on the target system.

The good news is that there is a package build system designed specifically for
PyQt — fbs. This simplifies and automates much of the build process to ensure
reliable and reproducible cross-platform packages.

fbs onlyworkswith PyQt5 or PySide2 andPython version >3.5. However,
it is built on top of PyInstaller which works with earlier versions of both.
If you are still on Python 2.7 you may wish to consult the PyInstaller
manual directly.

fbs: fman Build System

fbs is a cross-platform PyQt5 packaging system which supports building desktop
applications for Windows, Mac and Linux (Ubuntu, Fedora and Arch). Built on top
of PyInstaller it wraps some of the rough edges and defines a standard project
structure which allows the build process to be entirely automated. The included
resource API is particularly useful, simplifying the handling of external data files,
images or third-party libraries — a common pain point when bundling apps.

fbs is licensed under the GPL. Thismeans you can use the fbs system for
free in open-source packages distributed with the GPL. For commercial
(or non-GPL) packages you must buy a commercial license. See the fbs
licensing page for up-to-date information.

https://pythonhosted.org/PyInstaller/usage.html
https://pythonhosted.org/PyInstaller/usage.html
https://build-system.fman.io/#licensing
https://build-system.fman.io/#licensing

Packaging PyQt Applications 234

If you’re impatient, you can grab theMoonsweeper installers directly forWindows,
MacOS or Linux (Ubuntu).

Requirements

fbs works out of the box with both PyQt PyQt5 and Qt for Python PySide2. The
only other requirement is PyInstallerwhich handles the packaging itself. You can
install these in a virtual environment (or your applications virtual environment) to
keep your environment clean.

fbs only supports Python versions 3.5 and 3.6

1 python3 -m venv fbsenv

Once created, activate the virtual environment by running from the command line
—

1 # On Mac/Linux:
2 source fbsenv/bin/activate
3

4 # On Windows:
5 call fbsenv\scripts\activate.bat

Finally, install the required libraries. For PyQt5 you would use —

1 pip3 install fbs PyQt5 PyInstaller==3.4

Or for Qt for Python (PySide2) —

http://download.mfitzp.com/MoonsweeperSetup.exe
http://download.mfitzp.com/Moonsweeper.dmg
http://download.mfitzp.com/Moonsweeper.deb

Packaging PyQt Applications 235

1 pip3 install fbs PySide2 PyInstaller==3.4

fbs installs a command line tool fbs into your path which provides access to all
**fbs ** management commands. To see the complete list of commands available
run fbs.

1 martin@Martins-Laptop testapp $ fbs
2 usage: fbs [-h]
3 {startproject,run,freeze,installer,sign_installer,repo,upload,releas\
4 e,test,clean,buildvm,runvm,gengpgkey,register,login,init_licensing}
5 ...
6

7 fbs
8

9 positional arguments:
10 {startproject,run,freeze,installer,sign_installer,repo,upload,release,test,cl\
11 ean,buildvm,runvm,gengpgkey,register,login,init_licensing}
12 startproject Start a new project in the current directory
13 run Run your app from source
14 freeze Compile your code to a standalone executable
15 installer Create an installer for your app
16 sign_installer Sign installer, so the user's OS trusts it
17 repo Generate files for automatic updates
18 upload Upload installer and repository to fbs.sh
19 release Bump version and run clean,freeze,...,upload
20 test Execute your automated tests
21 clean Remove previous build outputs
22 buildvm Build a Linux VM. Eg.: buildvm ubuntu
23 runvm Run a Linux VM. Eg.: runvm ubuntu
24 gengpgkey Generate a GPG key for Linux code signing
25 register Create an account for uploading your files
26 login Save your account details to secret.json
27 init_licensing Generate public/private keys for licensing
28

29 optional arguments:
30 -h, --help show this help message and exit

Packaging PyQt Applications 236

Starting an app

If you’re starting aPyQt5application fromscratch, you canuse the fbs startproject
management command to create a complete, working and packageable applica-
tion stub in the current folder. This has the benefit of allowing you to test (and
continue to test) the packageability of your application as you develop it, rather
than leaving it to the end.

1 fbs startproject

The command walks you through a few questions, allowing you to fill in details
of your application. These values will be written into your app source and config-
uration. The bare-bones app will be created under the src/ folder in the current
directory.

1 martin@Martins-Laptop ~ $ fbs startproject
2 App name [MyApp] : HelloWorld
3 Author [Martin] : Martin Fitzpatrick
4 Mac bundle identifier (eg. com.martin.helloworld, optional):

If you already have your own working PyQt5 app you will need to either
a) use the generated app as a guideline for converting yours to the same
structure, or b) create a new app using startproject and migrate the
code over.

Running your new project

You can run this new application using the following fbs command in the same
folder you ran startproject from.

1 fbs run

Packaging PyQt Applications 237

If everything is working this should show you a small empty window with your
apps’ title — exciting eh?

HelloWorld on Windows

HelloWorld on Mac

Packaging PyQt Applications 238

HelloWorld on Ubuntu

The application structure

The startproject command generates the required folder structure for a fbs
PyQt5 application. This includes a src/buildwhich contains the build settings for
your package, main/iconswhich contains the application icons, and src/python for
the source.

1 .
2 └── src
3 ├── build
4 │ └── settings
5 │ ├── base.json
6 │ ├── linux.json
7 │ └── mac.json
8 └── main
9 ├── icons
10 │ ├── Icon.ico
11 │ ├── README.md
12 │ ├── base
13 │ │ ├── 16.png
14 │ │ ├── 24.png
15 │ │ ├── 32.png

Packaging PyQt Applications 239

16 │ │ ├── 48.png
17 │ │ └── 64.png
18 │ ├── linux
19 │ │ ├── 1024.png
20 │ │ ├── 128.png
21 │ │ ├── 256.png
22 │ │ └── 512.png
23 │ └── mac
24 │ ├── 1024.png
25 │ ├── 128.png
26 │ ├── 256.png
27 │ └── 512.png
28 └── python
29 └── main.py

Your bare-bones PyQt5 application is generated in src/main/python/main.py and
is a complete working example you can use to base your own code on.

1 from fbs_runtime.application_context import ApplicationContext
2 from PyQt5.QtWidgets import QMainWindow
3

4 import sys
5

6 class AppContext(ApplicationContext): # 1. Subclass ApplicationContext
7 def run(self): # 2. Implement run()
8 window = QMainWindow()
9 version = self.build_settings['version']
10 window.setWindowTitle("HelloWorld v" + version)
11 window.resize(250, 150)
12 window.show()
13 return self.app.exec_() # 3. End run() with this line
14

15 if __name__ == '__main__':
16 appctxt = AppContext() # 4. Instantiate the subclass
17 exit_code = appctxt.run() # 5. Invoke run()
18 sys.exit(exit_code)

Packaging PyQt Applications 240

If you’ve built PyQt5 applications before you’ll notice that building an application
with fbs introduces a new concept — the ApplicationContext.

The ApplicationContext

When building PyQt5 applications there are typically a number of components or
resources that are used throughout your app. These are commonly stored in the
QMainWindow or as global vars which can get a bit messy as your application grows.
The ApplicationContext provides a central location for initialising and storing
these components, as well as providing access to some core fbs features.

The ApplicationContext object also creates and holds a reference to a global
QApplication object — available under ApplicationContext.app. Every Qt appli-
cation must have one (and only one) QApplication to hold the event loop and core
settings. Without fbs you would usually define this at the base of your script, and
call .exec() to start the event loop.

Without fbs this would look something like this —

1 if __name__ == '__main__':
2 app = QApplication()
3 w = MyCustomWindow()
4 app.exec_()

The equivalent with fbs would be —

1 if __name__ == '__main__':
2 ctx = ApplicationContext()
3 w = MyCustomWindow()
4 ctx.app.exec_()

If youwant to create your own custom QApplication initialisation you can
overwrite the .app property on your ApplicationContext subclass using
cached_property (see below).

Packaging PyQt Applications 241

This basic example is clear to follow. However, once you start adding custom
styles and translations to your application the initialisation can grow quite a bit.
To keep things nicely structured fbs recommends creating a .runmethod on your
ApplicationContext.

This method should handle the setup of your application, such as creating and
showing a window, finally starting up the event loop on the .app object. This final
step is performed by calling self.app.exec_() at the end of the method.

1 class AppContext(ApplicationContext):
2 def run(self):
3 ...
4 return self.app.exec_()

As your initialisation gets more complicated you can break out subsections into
separate methods for clarity, for example —

1 class AppContext(ApplicationContext):
2 def run(self):
3 self.setup_fonts()
4 self.setup_styles()
5 self.setup_translations()
6 return self.app.exec_()
7

8 def setup_fonts(self):
9 # ...do something ...
10

11 def setup_styles(self):
12 # ...do something ...
13

14 def setup_translations(self):
15 # ...do something ...

On execution the .run() method will be called and your event loop
started. Execution continues in this event loop until the application is ex-
ited, at which point your .run()method will return (with the appropriate
exit code).

Packaging PyQt Applications 242

Building a real application

The bare-bones application doesn’t do very much, so below we’ll look at some-
thing more complete — the Moonsweeper application from the previous chapter.
The modified source code is available to download here.

Only the changes required to convert Moonsweeper over to fbs are
covered here. If you want to see howMoonsweeper itself works, see the
previous chapter. The custom application icons were created using icon
art by Freepik.

The project follows the samebasic structure as for the stub applicationwe created
above.

1 .
2 ├── README.md
3 ├── requirements.txt
4 ├── screenshot-minesweeper1.jpg
5 ├── screenshot-minesweeper2.jpg
6 └── src
7 ├── build
8 │ └── settings
9 │ ├── base.json
10 │ ├── linux.json
11 │ └── mac.json
12 └── main
13 ├── Installer.nsi
14 ├── icons
15 │ ├── Icon.ico
16 │ ├── README.md
17 │ ├── base
18 │ │ ├── 16.png
19 │ │ ├── 24.png
20 │ │ ├── 32.png
21 │ │ ├── 48.png
22 │ │ └── 64.png
23 │ ├── linux

http://download.mfitzp.com/moonsweeper-fbs-src.zip
https://www.flaticon.com/authors/freepik/

Packaging PyQt Applications 243

24 │ │ ├── 1024.png
25 │ │ ├── 128.png
26 │ │ ├── 256.png
27 │ │ └── 512.png
28 │ └── mac
29 │ ├── 1024.png
30 │ ├── 128.png
31 │ ├── 256.png
32 │ └── 512.png
33 ├── python
34 │ ├── __init__.py
35 │ └── main.py
36 └── resources
37 ├── base
38 │ └── images
39 │ ├── bomb.png
40 │ ├── bug.png
41 │ ├── clock-select.png
42 │ ├── cross.png
43 │ ├── flag.png
44 │ ├── plus.png
45 │ ├── rocket.png
46 │ ├── smiley-lol.png
47 │ └── smiley.png
48 └── mac
49 └── Contents
50 └── Info.plist

The src/build/settings/base.json stores the basic details about the application,
including the entry point to run the app with fbs run or once packaged.

Packaging PyQt Applications 244

1 {
2 "app_name": "Moonsweeper",
3 "author": "Martin Fitzpatrick",
4 "main_module": "src/main/python/main.py",
5 "version": "0.0.0"
6 }

The script entry point is at the base of src/main/python/main.py. This creates the
AppContext object and calls the .run()method to start up the app.

1 if __name__ == '__main__':
2 appctxt = AppContext()
3 exit_code = appctxt.run()
4 sys.exit(exit_code)

The ApplicationContext defines a .run() method to handle initialisation. In this
case that consists of creating and showing the main window, then starting up the
event loop.

1 from fbs_runtime.application_context import ApplicationContext, \
2 cached_property
3

4

5 class AppContext(ApplicationContext):
6 def run(self):
7 self.main_window.show()
8 return self.app.exec_()
9

10 @cached_property
11 def main_window(self):
12 return MainWindow(self) # Pass context to the window.
13

14 # ... snip ...

Packaging PyQt Applications 245

The cached_property decorator

The .run() method accesses self.main_window. You’ll notice that this method is
wrapped in an fbs @cached_property decorator. This decorator turns the method
into a property (like the Python @property decorator) and caches the return value.

The first time the property is accessed the method is executed and the return
value cached. On subsequent calls, the cached value is returned directly without
executing anything. This also has the side-effect of postponing creation of these
objects until they are needed.

You can use @cached_property to define each application component (a window,
a toolbar, a database connection or other resources). However, you don’t have to
use the @cached_property — you could alternatively declare all properties in your
ApplicationContext.__init__ block as shown below.

1 from fbs_runtime.application_context import ApplicationContext
2

3 class AppContext(ApplicationContext):
4

5 def __init__(self, *args, **kwargs):
6 super(AppContent, self).__init__(*args, **kwargs)
7

8 self.window = Window()
9

10 def run(self):
11 self.window.show()
12 return self.app.exec_()

Accessing resources with .get_resource

Applications usually require additional data files beyond the source code — for
example files icons, images, styles (Qt’s .qss files) or documentation. Youmayalso
want to bundle platform-specific libraries or binaries. To simplify this fbs defines
a folder structure and accessmethodwhich work seamlessly across development
and distributed versions.

The top level folder resources/ should contain a folder base plus any combination
of the other folders shown below. The base folder contains files common to all

Packaging PyQt Applications 246

platforms, while the platform-specific folders can be used for any files specific to
a given OS.

1 base/ # for files required on all OSs
2 windows/ # for files only required on Windows
3 mac/ # " " " " " Mac
4 linux/ # " " " " " Linux
5 arch/ # " " " " " Arch Linux
6 fedora/ # " " " " " Debian Linux
7 ubuntu/ # " " " " " Ubuntu Linux

Getting files into the right place to load from a distributed app across all
platforms is usually one of the faffiest bits of distributing PyQt applica-
tions. It’s really handy that fbs handles this for you.

To simplify the loading of resources from your resources/ folder in your applica-
tions fbs provides the ApplicationContext.get_resource()method. This method
takes the name of a file which can be found somewhere in the resources/ folder
and returns the absolute path to that file. You can use this returned absolute path
to open the file as normal.

1 from fbs_runtime.application_context import ApplicationContext, cached_property
2

3

4 class AppContext(ApplicationContext):
5

6 # ... snip ...
7

8 @cached_property
9 def img_bomb(self):
10 return QImage(self.get_resource('images/bug.png'))
11

12 @cached_property
13 def img_flag(self):
14 return QImage(self.get_resource('images/flag.png'))

Packaging PyQt Applications 247

15

16 @cached_property
17 def img_start(self):
18 return QImage(self.get_resource('images/rocket.png'))
19

20 @cached_property
21 def img_clock(self):
22 return QImage(self.get_resource('images/clock-select.png'))
23

24 @cached_property
25 def status_icons(self):
26 return {
27 STATUS_READY: QIcon(self.get_resource("images/plus.png")),
28 STATUS_PLAYING: QIcon(self.get_resource("images/smiley.png")),
29 STATUS_FAILED: QIcon(self.get_resource("images/cross.png")),
30 STATUS_SUCCESS: QIcon(self.get_resource("images/smiley-lol.png"))
31 }
32

33 # ... snip ...

In our Moonsweeper application above, we have a bomb image file available at
src/main/resources/base/images/bug.jpg. By calling ctx.get_resource('images/bug.png')
we get the absolute path to that image file on the filesystem, allowing us to open
the file within our app.

If the file does not exist FileNotFoundError will be raised instead.

The handy thing about this method is that it transparently handles the platform
folders under src/main/resources giving OS-specific files precedence. For exam-
ple, if the same filewasalsopresent under src/main/resources/mac/images/bug.jpg
andwe called ctx.get_resource('images/bug.jpg')wewould get theMac version
of the file.

Additionally get_resource works both when running from source and when run-
ning a frozen or installed version of your application. If your resources/ load
correctly locally you can be confident they will load correctly in your distributed
applications.

Packaging PyQt Applications 248

Using the ApplicationContext from app

As shown above, our ApplicationContext object has cached properties to load and
return the resources. Toallowus to access these fromour QMainWindowwecanpass
the context in and store a reference to it in our window __init__.

1 class MainWindow(QMainWindow):
2 def __init__(self, ctx):
3 super(MainWindow, self).__init__()
4

5 self.ctx = ctx # Store a reference to the context for resources, etc.
6

7 # ... snip ...

Now that we have access to the context via self.ctxwe can use it this in any place
we want to reference these external resources.

1 l = QLabel()
2 l.setPixmap(QPixmap.fromImage(self.ctx.img_bomb))
3 l.setAlignment(Qt.AlignRight | Qt.AlignVCenter)
4 hb.addWidget(l)
5

6 # ... snip ...
7

8 l = QLabel()
9 l.setPixmap(QPixmap.fromImage(self.ctx.img_clock))
10 l.setAlignment(Qt.AlignLeft | Qt.AlignVCenter)
11 hb.addWidget(l)

The first time we access self.ctx.img_bomb the file will be loaded, the QImage
created and returned. On subsequent calls, we’ll get the image from the cache.

Packaging PyQt Applications 249

1 def init_map(self):
2 # Add positions to the map
3 for x in range(0, self.b_size):
4 for y in range(0, self.b_size):
5 w = Pos(x, y, self.ctx.img_flag, self.ctx.img_start, self.ctx.i\
6 mg_bomb)
7 self.grid.addWidget(w, y, x)
8 # Connect signal to handle expansion.
9 w.clicked.connect(self.trigger_start)
10 w.expandable.connect(self.expand_reveal)
11 w.ohno.connect(self.game_over)
12

13 # ... snip ...
14

15 self.button.setIcon(self.ctx.status_icons[STATUS_PLAYING])
16

17 # ... snip ...
18

19 def update_status(self, status):
20 self.status = status
21 self.button.setIcon(self.ctx.status_icons[self.status])

Those are all the changes needed to get the Moonsweeper app packageable with
fbs. If you open up the source folder you should be able to start it up as before.

1 fbs run

If that’s working, you’re ready to move onto freezing and building in the installer.

Freezing the app

Freezing is the process of turning a Python application into a standalone exe-
cutable that can run on another user’s computer. Use the following command to
turn the app’s source code into a standalone executable:

Packaging PyQt Applications 250

1 fbs freeze

The resulting executable depends on the platform you freeze on — the executable
will only work on the OS you built it on (e.g. an executable built on Windows will
run on another Windows computer, but not on a Mac).

• Windows will create an .exe executable in the folder target/<AppName>
• MacOS X will create an .app application bundle in target/<AppName>.app
• Linux will create an executable in the folder target/<AppName>

On Windows you may need to install the Windows 10 SDK, although fbs
will prompt you if this is the case.

Creating an installer

While you can share the executable files with users, desktop applications are
normally distributed with installers which handle the process of putting the ex-
ecutable (and any other files) in the correct place. See the following sections for
platform-specific notes before creating

You must freeze your app first then create the installer.

Windows installer

The Windows installer allows your users to pick the installation directory for the
executable and adds your app to the user’s Start Menu. The app is also added to
installed programs, allowing it to be uninstalled by your users.

Before you create installers on Windows you will need to install NSIS and ensure
its installation directory is in your PATH. You can then build an installer using —

https://dev.windows.com/en-us/downloads/windows-10-sdk
http://nsis.sourceforge.net/Main_Page

Packaging PyQt Applications 251

1 fbs installer

The Windows installer will be created at target/<AppName>Setup.exe.

The Windows NSIS installer

Download the MoonsweeperSetup .exe

Mac installer

There are no additional steps to create a MacOS installer. Just run the fbs
command —

http://download.mfitzp.com/MoonsweeperSetup.exe

Packaging PyQt Applications 252

1 fbs installer

On Mac the command will generate a disk image at target/<AppName>.dmg. This
disk image will contain the app bundle and a shortcut to the Applications folder.
When your users open it they can drag the app to the Applications folder to install
it.

The .dmg installer on Mac

Download the Moonsweeper .dmg bundle

Linux installer

To build installers on Linux you need to install the Ruby tool Effing package
management! — use the installation guide to get it set up. Once that is in place
you can use the standard command to create the Linux package file.

http://download.mfitzp.com/Moonsweeper.dmg
https://github.com/jordansissel/fpm
https://github.com/jordansissel/fpm
https://fpm.readthedocs.io/en/latest/installing.html

Packaging PyQt Applications 253

1 fbs installer

The resulting packagewill be created under the target/ folder. Depending on your
platform the package file will be named <AppName>.deb, <AppName>.pkg.tar.xz or
<AppName>.rpm. Your users can install this file with their package manager.

Download the Moonsweeper .deb file

Find out more about fbs

More information about how the fbs packaging system works can be found in
the manual which also introduces more advanced features should as distributing
releases of Linux apps, reporting errors to the Sentry error logging platform and
adding license keys to your software.

http://download.mfitzp.com/Moonsweeper.deb
https://build-system.fman.io/manual/
https://build-system.fman.io/manual/#releasing
https://build-system.fman.io/manual/#releasing
https://build-system.fman.io/manual/#error-tracking
https://build-system.fman.io/manual/#license-keys

What’s next?
If you’ve made it here you should be well on your way to creating your own apps!
But there is still a lot to discover.

If you received a copy of this book from someone else (totally fine!) you might be
interested in the accompanying website, containing regular new tutorials, video
courses and demo applications. Like this book all samples are MIT licensed and
free to mix into your own app.

Finally, this book is licensed CC-BY-NC-SA. Thismeans you should feel free to give
a copy of it to someone you know (or don’t know). Help share the knowledge and
fun of creating desktop apps with Python.

Thanks for reading, and if you have any feedback or suggestions let me know!

https://www.essentialpyqt.com/

The video course
Thankyou for purchasing Create Simple GUI Applications!

If you enjoyed this book, you might also enjoy the accompanying video course,
which you can purchase at https://www.learnpyqt.com/purchase

If you bought this book remember to claim your account on
https://www.learnpyqt.com to get the upgrade price.

For latest tutorials, tips andcode samples seehttps://www.learnpyqt.com/courses/

Resources
This section is a short list of resources that you may find useful in writing your Qt
applications. They include both sources of good documentation and help, and also
useful resources for making your applications look and function well.

Tutorials

For up to date tutorials, tips and code samples, check out the associated tutorial
site for this book at https://www.learnpyqt.com

Documentation

Resource Description
Qt5.5 Documentation
Qt 4.8 Documentation
PyQt4 Library documentation
PyQt5 Library documentation
PySide Library documentation

Icon sets

The following icon sets are free to use, with the appropriate license, to give you
applications a more professional and consistent look. The Fugue set are the icons
suggested and used in the examples in this book but the others are also worth a
look.

Resource Description License
Fugue by
p.yusukekamiyamane

3,570 16x16 icons in
PNG format

CC BY 3.0

Diagona by
p.yusukekamiyamane

400 16x16 and 10x10
icons in PNG format

CC BY 3.0

http://doc.qt.io/qt-5/
http://doc.qt.io/qt-4.8/
http://pyqt.sourceforge.net/Docs/PyQt4/
http://pyqt.sourceforge.net/Docs/PyQt5/
https://srinikom.github.io/pyside-docs/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/
http://p.yusukekamiyamane.com/

Resources 257

Resource Description License
Tango Icons by The
Tango Desktop Project

Icons using the Tango
project colour theme.

Public domain

Source code

The complete source code all examples in this book is available to download from
here.

http://tango.freedesktop.org/Tango_Icon_Library
http://tango.freedesktop.org/Tango_Icon_Library
http://download.mfitzp.com/create-simple-gui-applications/all_the_source.zip

Copyright
This book is licensed under the Creative Commons Attribution Share-alike Non-
commercial license (CC BY-NC-SA) and (C)2015 Martin Fitzpatrick.

• Youare free to shareunalteredcopiesof this bookwithanyone you choose.
• If you modify this book and distribute your altered version it must be dis-
tributed under the same license.

• You are not permitted to sell this book or derivatives in any format.
• If you would like to support the author you can legally purchase a copy direct
from the author(s).

Contributions and corrections from readers (CC BY-NC-SA) are most welcome.

	Table of Contents
	Introduction
	Book format
	Qt and PyQt
	Python 3

	Getting Started
	Installation Windows
	PyQt5 for Python 3
	PyQt5 for Python 2.7
	Installation Mac
	Installation Linux (Ubuntu)

	Basic Qt Features
	My first Window
	Signals, Slots, Events
	Actions, Toolbars and Menus
	Widgets
	Layouts
	Dialogs

	Qt Creator
	Creating a .ui file
	Laying out your Main Window
	Using your generated .ui file
	Adding application logic

	Extended Signals
	Modifying Signal Data
	Custom Signals

	QPainter and Bitmap Graphics
	QPainter
	Drawing primitives
	A bit of fun with QPainter

	Creating Custom Widgets
	Getting started
	paintEvent
	Positioning
	Updating the display
	Drawing the bar
	Customising the Bar
	Adding the QAbstractSlider Interface
	Updating from the Meter display
	The final code

	The Model View Architecture
	Model View Controller
	The Model View
	A simple Model View — a Todo List
	A persistent data store

	Multithreading
	Preparation
	The dumb approach
	Threads and Processes
	QRunnable and QThreadPool
	Extended Runners
	Thread IO
	QRunnable Examples

	Example PyQt5 Applications
	Mozzarella Ashbadger
	Moonsweeper

	Packaging PyQt Applications
	fbs: fman Build System

	What’s next?
	The video course
	Resources
	Tutorials
	Documentation
	Icon sets
	Source code

	Copyright

