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Over the past two decades, the field of Machine Learning has become one of the mainstays of 

information technology. Many successful machine learning applications have been developed, such 

as: machine vision (image processing) in the manufacturing industry for automation in assembly 

line, biometric recognition, handwriting recognition, medical diagnosis, speech recognition, text 

retrieval, natural language processing, and so on. Machine learning is so pervasive today that 

you probably use it several times a day, without knowing it. Examples of such “ubiquitous” or 

“invisible” usage include search engines, customer-adaptive web services, email managers (spam 

filters), computer network security, and so on. We are rethinking on everything we have been doing, 

with the aim of doing it differently using tools of machine learning for better success. 

 Many organizations are routinely capturing huge volumes of historical data describing their 

operations, products, and customers. At the same time, scientists and engineers are capturing 

increasingly complex datasets. For example, banks are collecting huge volumes of customer data 

to analyze how people spend their money; hospitals are recording what treatments patients are on, 

for which periods (and how they respond to them); engine monitoring systems in cars are recording 

information about the engine in order to detect when it might fail; world’s observatories are storing 

incredibly high-resolution images of night sky; medical science is storing the outcomes of medical 

tests from measurements as diverse as Magnetic Resonance Imaging (MRI) scans and simple blood 

tests; bioinformatics is storing massive amounts of data with the ability to measure gene expression 

in DNA microarrays, and so on. The field of machine learning addresses the question of how best 

to use this historical data to discover general patterns and improve the process of making decisions. 

 Terminology in the field of learning is exceptionally diverse, and very often similar concepts are 

variously named. In this book, the term machine learning has been mostly used to describe various 

concepts, though the terms: artificial intelligence, machine intelligence, pattern recognition, statis-

tical learning, data mining, soft computing, data analytics (when applied in business contexts), also 

appear at various places.

 There have been important advances in the theory and algorithms that form the foundations of 

machine learning field. The goal of this text book is to present basic concepts of the theory, and a 
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wide range of techniques (algorithms) that can be applied to a variety of problems. There are many 

machine learning algorithms not included in this book, that can be quite effective in specific situa-

tions. However, almost all of them are some adaptation of the algorithms included in this book. 

Self-learning will easily help to acquire the required knowledge.

 Basically, there are two approaches for understanding machine learning field. In one approach, 

we treat machine learning techniques as a ‘black box’, and focus on understanding the problems 

(tasks) of interest: matching these tasks to machine learning tools and assessing the quality of the 

output. This gives us hands-on experience with machine learning from practical case studies. Subse-

quently, we delve into the components of this black box by examining machine learning algorithms 

(a theoretical principle-driven exposition is necessary to be effective in machine learning). The 

second approach starts with the theory; this is then followed by hands-on experience.

The approach into the field of machine learning taken in this book has been the second one. 

We have focussed on machine learning theory. For hands-on experience, we propose to provide a 

platform through self-study machine learning projects.

 In this book on “Applied Machine Learning”, the reader will get not only the theoretical under-

pinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply 

these techniques to challenging problems: learning how to conceptualize a problem, knowing how 

to represent the data, selecting and tuning algorithms, being able to interpret results properly, doing 

an effective analysis of results to make strategic decisions. Recognizing that most ideas behind 

machine learning are wonderfully simple and straightforward, the book presents machine learning 

concepts and techniques in a non-rigorous mathematical setting, with emphasis on effective method-

ology for using machine learning to solve practical problems. It is a comprehensive textbook on 

the subject, covering broad array of topics with more emphasis on the techniques (algorithms) that 

have been profitably employed, thus exploiting the available knowledge base. 

 Machine learning draws on concepts and techniques from many fields, including computational 

statistics (a discipline that aims at the design of algorithms for implementing statistical methods 

on computers), artificial intelligence, information theory, mathematical optimization, biology, 

cognitive science, and control theory. The primary goal of this book is to provide a broad-based 

single source introduction to the field. It introduces basic concepts from various fields as the need 

arises, focussing on just those concepts most relevant to machine learning. Though the required 

material has been given in the book, some experience with probability, statistics, and linear algebra 

will be useful.

 The first-generation machine learning algorithms covered in this book, have been demonstrated 

to be of significant value in a variety of real-world applications with numeric features. But these 

algorithms also have significant limitations, for example, although some learning algorithms are 

available to classify images, text or speech, we still lack effective algorithms for learning from data 

that is represented by a combination of these various media. Also most learning algorithms perform 

acceptably well on datasets with tens of thousands of training examples, but many important datasets 

are significantly larger. The volume and diversity (structured/unstructured) of data available on 

the Internet and corporate Intranets is extremely large and growing rapidly. Scaling to complex, 

extremely large datasets—the big data analytics—is probably the most debated current issue. 

Given these and other limitations, and the strong commercial interest despite them, we might well 
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expect the next decade to produce an order of magnitude advancement in the state of the art. Deep 

learning algorithms are emerging as very powerful next-generation tools. Like most other areas 

of technology, data mining exists on a shifting landscape; not only is the old part of the landscape 

being redefined, but new areas of interest always loom ahead.

 All learning algorithms are explained so that the student can easily move from the equations in 

the book to computer programs. Proliferation of free software that makes machine learning easier 

to implement, will also be helpful in the project work. The diversity of machine learning libraries 

means that there is likely to be an option available of what language or environment a student uses.

 There are many machine learning websites that give information on available machine learning 

software. Some of the popular software sources are R, SAS, Python, Weka, MATLAB, Excel, and 

Tableau.

 This book does not promote any specific software. We have included a large number of examples, 

but we use illustrative datasets that are small enough to allow the reader to follow what is going 

on without the help of software. Real datasets are far too large to show this. Datasets in the book 

are chosen not to illustrate actual large-scale practical problems, but to help the reader under-

stand what the different techniques do, how they work, and what their range of application is. This 

explains why a heavy focus on project work is a necessity. Each project must handle a large-scale 

practical problem. Use of domain knowledge to formulate the problem in machine learning setting, 

and interpretation of the results given by machine learning algorithms are important ingredients 

of training the students, in addition to the training on machine learning software. This book on 

‘Applied Machine Learning’ provides necessary ingredients for practice—the concepts and the 

techniques —but the actual practice will follow through project work on real-life problems.

In a university setting, this book provides an introductory course for undergraduate students in 

computer science and all engineering degree programs. Such an introductory course will require a 

properly selected subset of techniques covered in the book. The course design must have a heavy 

focus on project work, so that when a student has completed the course, he/she should be fully 

prepared to attack new problems using machine learning.

Postgraduate students and Ph.D. research scholars will find in this book a useful initial exposure 

to the subject, before they go for highly theoretical depth in the specific areas of their research.

The book is aimed at a large professional audience as well: engineers, scientists, and business 

managers; with machine learning and deep learning predicted to be the next ‘grand slam’ in 

technology, professionals in almost all fields will need to know at least the basics of machine 

learning.

I hope that the reader will share my excitement on the subject of machine learning, and will find 

the book useful.

   M. Gopal

mgopal.iitd@gmail.com
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INTRODUCTION

Chapter

1

1.1 TOWARDSINTELLIGENTMACHINES

Human beings have always dreamt of creating machines with human-like traits. In today’s world of 

technology, there are machines that have matched several human functions or even outdone them 

with extraordinary capacity and abilities. Robots in manufacturing, mining, agriculture, space, 

ocean exploration, and health sciences, are only a few examples.

These machines are, however, enslaved by commands. One of the tenets of recent research in 

robotics and systems science is that intelligence can be cast into a machine. This is, perhaps, an 

ultimate challenge to science—to create intelligent machines that emulate human intelligence. 

Human intelligence possesses robust attributes with complex sensory, control, affective 

(emotional processes), and cognitive (thought processes) aspects of information processing and 

decision making. Biological neurons, over one hundred billion in number, in our central nervous 

system (CNS), play a key role in these functions. Essentially, CNS acquires information from the 

external environment through various natural sensory mechanisms such as vision, hearing, touch, 

taste, and smell. It integrates the information and provides appropriate interpretation through 

cognitive computing. The cognitive process then advances further towards some attributes such 

as learning, recollection, and reasoning, which results in appropriate actions through muscular 

control.

Recent progress in information-based technology has significantly broadened the capabilities 

and application of computers. Traditionally, computers have been mainly used for the storage and 

processing of numerical data. If we wish to emulate in a machine (compute), some of the cognitive 

functions (learning, remembering, reasoning, perceiving, etc.) of humans, we have to generalize 

the definition of information and develop new mathematical tools and hardware that must deal with 

the simulation and processing of cognitive information. Mathematics, as we know it today, was 

developed for the understanding of physical processes, whereas the process of cognition does not 

necessarily follow these mathematical laws. Then what is cognitive mathematics? This is a difficult 

and challenging question to answer. However, scientists have realized that if we re-examine some 
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of the ‘mathematical aspects’ of our ‘thinking process’ and ‘hardware aspects’ of ‘the neurons’—

the principle element of the brain—we may succeed to some extent in the emulation process. 

Biological neuronal processes are enormously complex, and the progress made in the 

understanding of the field through experimental observations is limited and crude. Nevertheless, it 

is true that this limited understanding of the biological processes has provided a tremendous impetus 

to the emulation of certain human learning behaviors, through the fields of mathematics and systems 

science. In neuronal information processing, there are a variety of complex mathematical operations 

and mapping functions involved, that, in synergism, act as a parallel-cascade computing structure. 

As system scientists, our objective is that, based upon this limited understanding of the brain, we 

create an intelligent cognitive system that can aid humans in various decision-making tasks. New 

computing theories under the category of neural networks, have been evolving. Hopefully, these 

new computing methods with the neural network architecture as the basis, will be able to provide 

a thinking machine—a low-level cognitive machine for which the scientists have been striving for 

so long.

The cognitive functions of brain, unlike the computational functions of the computer, are based 

upon relative grades of information acquired by the neural sensory systems. The conventional 

mathematical tools, whether deterministic or probabilistic, are based upon some absolute measure 

of information. Our natural sensors acquire information in the form of relative grades rather than in 

absolute numbers. The ‘perceptions’ and ‘actions’ of the cognitive process also appear in the form 

of relative grades. The theory of fuzzy logic, which is based upon the notion of graded membership, 

provides mathematical power for the emulation of the higher-order cognitive functions—the 

thought and perception process. A union of these two developing disciplines—neural networks and 

fuzzy logic—may strongly push the theory of independent field of cognitive information.

The subject of machine intelligence is in an exciting state of research and we believe that we 

are slowly progressing towards the development of truly intelligent machines. The present day 

versions of intelligent machines are not truly intelligent; however, the loose usage of the term 

‘intelligent’ acts as a reminder that we have a long way to go.

Needs,Motivations,andRationale

The combination of computing and communication has given rise to a society that feeds on 

information. In this information age, everyone strongly believes that information is power, and 

a must for success. Therefore, it is natural that computers have been collecting large amounts of 

information. Information repositories are collecting a myriad of information capturing operational 

experience in diverse fields. The collected information may be categorized on the basis of nature 

of experience:

 • Experimental data (examples, samples, measurements, records, patterns or observations).

 • Structured human knowledge (experience, expertise, heuristics) expressed in linguistic form 

(IF-THEN rules).

Computers capture and store tetrabytes of data across the world, daily. For instance, banks are 

creating records of how people spend their cash; hospitals are documenting details of the treatment 

given to patients, in terms of the duration of treatment, the response of the patients to the medicines, 
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and so on. Similarly, engine monitoring systems in automobiles keep track of the working of the 

engine so that any malfunction can be detected; observatories around the world store high-resolution 

images of the night sky; medical science stores the results of medical tests from measurements 

as diverse as magnetic resonance imaging (MRI) scans and simple blood tests; bioinformatics 

stores huge amounts of data capable of measuring gene expression in DNA microarrays, along with 

protein transcription data and phylogenetic trees relating species to each other; and so on.

In man-machine control systems, an experienced process operator employs, consciously or 

subconsciously, a set of IF-THEN rules to control a process. The operator estimates the important 

process variables (not in numerical form, rather in linguistic graded form) at discrete time instants, 

and based on this information she/he manipulates the control signal. Intelligent machines based on 

the human experience in linguistic form have been very useful in process industry.

Lot of potential exists in business and finance. Decisions in these areas are often based on human 

induction, common sense and experience, rather than availability of data. The scene is, however, 

changing very fast. The significant role of intelligent machines based on experience data in decision 

making is being realized. These machines are proving to be very useful in business decision-making.

Machine intelligence, in this modern era, has actually become an industry. Performing something 

useful with the stored data is the challenge. If the computers installed in banks can find out details 

related to the spending patterns of customers, is it possible for them to also detect credit card fraud 

promptly? If the data available with hospitals is shared, will it be possible to identify quickly 

treatments that do not work, and those that are expected to work? Will it be possible for an intelligent 

automobile to provide an early warning in case of an impending malfunction so that timely action 

can be taken? Is it possible to replace the process operators with intelligent machines?

The needs of the industry are motivating research in machine intelligence with focus on 

rationality: a machine is rational if it does the ‘right thing’ given what it knows; it acts so as to 

achieve the best outcome in terms of needs of the industry (or, when there is uncertainty, the best 

expected outcome). We will be concerned with the aspects of machine intelligence that serve the 

immediate needs of industry.

SoftComputing/MachineLearning

In the conventional approach to solving decision problems, the variables related to the problem 

are identified (input or condition variables and output or action variables); the relationships 

among the variables are expressed in terms of mathematical (like algebraic, differential (ordinary/

partial), difference, integral or functional) equations, that fit our prior knowledge on the problem 

and cover the observed data. Actions (decisions) are given by analytical or numerical solutions of 

these equations. The statistical tools consider description of data in terms of probability measure 

rather than a deterministic function; the estimation methods yield the decisions. Whenever devising 

mathematical/statistical model is feasible using a reasonable number of equations that can solve 

the given problem in a reasonable time, at a reasonable cost, and with reasonable accuracy, there 

is no need to look for an alternative. 

A long-standing tradition in science gives more respect to those approaches that are quantitative, 

formal, and precise. The validity of this tradition has been challenged by the emergence of new 

desires (problems, needs). Many of these problems do not lend themselves to precise solutions 
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within the framework of conventional mathematical/statistical tools; for instance, problems of 

recognition of handwriting, speech, images; financial forecasting; weather forecasting; etc.

It is worth emphasizing that these and similar problems do not fit well within the framework of 

conventional mathematical tools—that does not lead to the conclusion that such problems cannot 

be solved. In fact, human intelligence has been routinely solving such problems and even more 

complex problems. The human intelligence can process millions of visual, acoustic, olfactory, 

tactile, and motor data, and it shows astonishing abilities to learn from experience, generalize from 

learned rules, recognize patterns, and make decisions. Human intelligence performs these tasks as 

well as it can, using ad hoc solutions (heuristics), approximations, low precision, or less generality, 

depending on the problem to be solved.

Compared to conventional mathematical tools, the solutions obtained using human intelligence 

are suboptimal and inexact. Though such solutions are imprecise, very often they yield results 

within the range of ‘acceptability’. In fact, for some problems, even when precise solutions can 

be obtained, we settle for imprecise solutions within the range of acceptability, to save the cost 

involved in obtaining precise solutions.

The present-day scene is much different from yesterday; we now have ocean of data to be 

processed. Humans are unable to extract useful information from them. Computers of today can 

store this data and analyze it. However, to lead to meaningful analysis, human-like abilities need to 

be incorporated into software solutions. This, in fact, is the essence of machine learning.

Machine learning solutions are also mathematical in nature; however, these tools are different 

from conventional mathematical tools. With machine learning, a new mathematical theory has 

emerged which is built on the foundation of human faculties of learning, memorizing, adapting, 

and generalizing (recognizing similarity between different situations, so that decisions that worked 

in one situation could be tried in another).

The basic premises of machine learning are as follows: • The real world is pervasively imprecise and uncertain. • The precision and certainty carry a cost.

The guiding principle of machine learning, which follows from these premises is as follows: • Exploit tolerance for imprecision, uncertainty, and partial truth, to achieve tractability, 

robustness, and low solution costs.

Both the premises and the guiding principle differ strongly from those in classical mathematical 

tools (hard computing) which require precision and certainty. The machine learning mathematical 

tools (soft computing) exploit tolerance for imprecision (inherent in human reasoning) when 

necessary. Efficient soft computing techniques that are qualitative, informal, and approximate 

are now routinely solving problems that do not lend themselves to precise solutions within the 

framework of classical hard computing techniques; and also soft computing is supplementing/

replacing ‘the best for sure’ hard computing solutions with ‘good enough with high probability’ 

low-cost solutions.

In this book, our primary focus is on learning from experimental data. Learning from structured 

human knowledge (IF-THEN rules) will be taken up in Chapter 6. Rule-based methods have found 

modest use in pattern recognition problems; nonetheless, they are gainfully being employed in 
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process industry and manufacturing for function approximation problems. Also, the potential of 

success is very high in some business and finance applications.

1.2 WELL-POSEDMACHINELEARNINGPROBLEMS

The field of machine learning is concerned with the question of how to construct computer programs 

that improve their performance at some task through experience. Machine learning is about making 

computers modify or adapt their actions (whether the task is making predictions, or controlling a 

robot) so that these actions get more accurate with experience, where accuracy is measured by how 

well the chosen actions reflect the correct ones. Put more precisely [1],

A computer program is said to learn from experience with respect to some class of tasks and 

performance measure, if the performance at the tasks, as measured by performance measure, 

improves with the experience.

In general, to have a well-defined learning problem, we must identify these three features: • The learning task  • The measure of performance • The task experience

The key concept that we will need to think about for our machines is learning from experience. 

Important aspects of ‘learning from experience’ behavior of humans and other animals embedded 

in machine learning are remembering, adapting, and generalizing. • Remembering and Adapting: Recognizing that last time in a similar situation, a certain 

action (that resulted in this output) was attempted and had worked; therefore, it should be 

tried again or this same action failed in the last attempt in a similar situation, and so something 

different should be tried.

 • Generalizing: This aspect is regarding recognizing similarity between different situations. 

This makes learning useful because we can use our knowledge in situations unseen earlier.

Given a situation not faced earlier, recognizing similarity with the situations faced earlier, we 

take a decision for the new situation—a generalizing capability of animal learning.

Machine learning concerns getting computers to alter or adapt their actions in a way that those 

actions improve in terms of accuracy, with experience. Machine learning, like animal learning, 

relies heavily on the notion of similarity in its search for valuable knowledge in data.

The computer program is the ‘machine’ in our context. The computer program is designed 

employing learning from the task experience. Equivalently, we say that the machine is trained 

using task experience, or machine learns from task experience. The terms: learning machine, 

learning algorithm, learned knowledge, all refer to a computer program design with respect to the 

assigned task.

In case of any software system, understanding the inputs and outputs is of greater importance 

than being aware of what takes place in between, and machine learning does just that. The input 

is defined by the learning task. Four different types of learning tasks appear in the real-world 

applications (details given later in Section 1.7). In classification learning, the expectation is that 

the machine will learn a technique of classifying examples of measurements/observations. In 
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association learning, any relation between observations is required, not merely association capable 

of predicting a specific class value. In clustering, groups of observations that belong together are 

sought. In regression, the output to be predicted is not a discrete class but a continuous numeric 

quantity.

The classification and regression tasks are carried out through the process of directed/supervised 

learning. For the examples of measurements/observations, the outcome is known ‘a priori’; for 

classification problems, the outcome is the class to which the example belongs; and for regression 

problems, the outcome is the numeric value on the approximating curve that fits the data. The other 

form of learning is undirected/unsupervised, wherein outcome is not known ‘a priori’; clustering 

and association learning belong to this category, as we shall see in later chapters.

The experience with which the machine will be trained (from which the machine will learn) may 

be available in the form of data collected in databases. Most of the information that surrounds us, 

manifests itself in the form of data that can be as basic as a set of measurements or observations, 

characterized by vectors with numerical values; or may be in forms which are more difficult to 

characterize in the form of numerical vectors—set of images, documents, audio clips, video clips, 

graphs, etc. For different forms of raw data (text, images, waveforms, and so forth), it is common 

to represent data in standard fixed length vector formats with numerical values. Such abstractions 

typically involve significant loss of information, yet they are essential for a well-defined learning 

problem.

Thus, though the raw data is an agglomerated mass that cannot be fragmented accurately into 

individual experience examples characterized by numerical vectors—yet it is very useful for 

learning many things. This book is about simple, practical methods of machine learning, and we 

focus on situations where input can be supplied in the form of individual experience examples in 

the form of numerical vectors. 

Numerical form of data representation allows us to deal with patterns geometrically, and thus 

we shall study learning algorithms using linear algebra and analytic geometry (refer to Section 

1.9). Characterizing the similarity of patterns in state space can be done through some form of 

metric (distance) measure: distance between two vectors is a measure of similarity between two 

corresponding patterns. Many measures of ‘distance’ have been proposed in the literature.

In another class of machine leaning problems, the input (experience) is available in the form 

of nominal (or categorical) data, described in linguistic form (not numerical). For nominal form 

of data, there is no natural notion of similarity. Each learning algorithm based on nominal data 

employs some nonmetric method of similarity.

In an alternative learning option, there is no training dataset, but human knowledge (experience, 

expertise, heuristics) is available in linguistic form. This form of human knowledge, when properly 

structured as a set of IF-THEN rules, can be embedded into a learning machine. In the subsequent 

chapters, we will discuss learning algorithms (machines) that accept explicit prior structured 

knowledge as an input. These algorithms accept a long list of IF-THEN rules as training experience 

instead of or in addition to the training dataset. 

One must typically pick up the learning algorithm that performs best according to some type of 

criterion. This criterion can be formulated in many different ways, but should ideally relate to the 
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intended use of the learning machine, i.e., the learning task in hand. We will discuss the various 

commonly used performance criteria for different learning tasks in the next chapter.

Having described the input to the software system, let us now look at the output description. 

The output of an algorithm represents the learned knowledge. This knowledge is in the form of a 

model of the structural patterns in the data. The model is deployed by the user for decision-making; 

it gives the prediction with respect to the assigned task for measurements/observations not in the 

task experience; a good model will generalize well to observations unseen by the machine during 

training.

A block diagrammatic representation of a learning machine is shown in Fig. 1.1.

Task experience

Learning Machine
(Computer Program)

Output :
Model

Model of
learned

knowledge
(after training)

Input
(not in task experience)

Prediction

Measure of
performance

Input : Decision/

Figure 1.1  A block diagrammatic representation of a learning machine

1.3 EXAMPLESOFAPPLICATIONSINDIVERSEFIELDS

Machine learning is a growing technology used to mine knowledge from data (popularly known 

as data mining field (Section 1.8)). Wherever data exists, things can be learned from it. Whenever, 

there is excess of data, the mechanics of learning must be automatic. Machine learning technology 

is meant for automatic learning from voluminous datasets.

The range of tasks handled by machine learning is fast expanding. Applications emerge not from 

machine learning experts, nor from the data itself, but from people who work with the data and the 

problems from which it arises.

In fact, data mining exists in multiple aspects of our daily lives, but we may or may not realize it. 

Instances of such ‘ubiquitous’ or ‘invisible’ data mining are web services that adapt to customers, 

search engines, e-mail managers, and so on.

Google is by far the most popular and extensively used of all search engines. It offers access 

to information from billions of web pages, which have been indexed on its server. We type some 

keywords pertaining to our topic of interest, and Google throws back a list of websites on that 

topic, mined, indexed and organized by a set of data mining algorithms including PageRank. The 

popularity of Google has even led to a new verb in the English language, ‘google’, which means ‘to 

search for (something) on the Internet using any comprehensive search engine’.
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While going through the results of our Google query, many different advertisements show up 

relating to our query. To tailor ads to match the interests of the users is a strategy by Google and is 

one of the typical services that every Internet search provider tries to offer. Mining information on 

the World Wide Web is an area that is fast growing, almost exploding.

Data mining is also actively applied in the area of marketing and sales. In these spheres, 

organizations have huge volumes of accurately recorded data, which is potentially very valuable. 

One instance is Wal-Mart, with innumerable customers visiting its innumerable stores on a weekly 

basis. These stores obtain the data pertaining to their products and analyze the same with the 

help of data mining software. This permits the identification of customers’ purchase patterns at 

various stores, control inventory of placement of goods, and identification of new merchandizing 

opportunities. 

The online shopping experience has been given shape by data mining. Amazon.com leads in the 

use of personalized data mining-based marketing strategy. It employs several data mining methods 

for identification of customers’ likes and makes dependable recommendations. Recommender 

systems are of help to consumers as they make product recommendations that are of possible interest 

to the user. Personalization can be of advantage to both consumers and the concerned company.

Many organizations use data mining for customer relationship management (CRM), which 

facilitates the provision of more customized and personal service, addressing individual requirements 

of customers. It is possible for organizations to tailor ads and promotions to the profiles of customers 

by closely studying the patterns of browsing and buying on web stores. 

Banks were fast enough to embrace data mining technology to examine the issue of fickle 

customers. That is, there is a likelihood of them defecting. As they successfully used machine 

learning to assess credit, it was possible to reduce customer attrition. Cellular phone companies 

handle churn by identifying behavioral patterns that gain from new services, and then promoting 

such services in order to retain their customer base. These days, it is common to get a phone 

call from one’s credit card company about unusual or questionable spending behavior. Credit card 

companies detect fraud and wrong usage with the help of data mining, and manage to save billions 

of dollars annually.

Data mining has greatly impacted the ways in which people use computers. On getting on to the 

Internet, for instance, let us say we feel like checking our email. Unknown to us, many irritating 

emails have already been noticed using spam filters that use machine learning to identify spam.

Computer network security is continually rising issue. While protectors keep hardening 

networks,  operating systems and applications, attackers keep discovering weak spots in all these 

areas. Systems for detecting intrusions are able to detect unusual patterns of activity. Data mining 

is being applied to this issue in an attempt to find out semantic connections among attacker traces 

in computer network data. Privacy-preserving data mining assists in protecting privacy-sensitive 

information, such as credit card transaction records, healthcare records, personal financial records, 

biological features, criminal/justice investigations, and ethnicity. 

Of late, huge data collection and storage technologies have altered the landscape of scientific 

data analysis. Major examples include applications which involve natural resources, the prediction 

of floods and droughts, meteorology, astronomy, geography, geology, biology, and other scientific 

and engineering data. Machine learning/data mining is present in all of these examples.
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To arouse the reader’s curiosity about machine learning, we examine some application domains, 

wherein machine learning is present and is yielding encouraging results.

MachineVision:It is a field where pattern recognition has been applied with major successes. A 

machine vision system captures images through a camera and analyzes these to be able to describe 

the image. A machine vision system is applicable in the manufacturing industry, for automating 

the assembly line or for automated visual inspection. For instance, in inspection, manufactured 

objects on a moving conveyor may pass the inspection station, where the camera stands, and it has 

to be established whether a flaw or fault exists. Therefore, images have to be analyzed online, and 

a pattern recognition system has to categorize the objects into the ‘defect’ or ‘non-defect’ category. 

A robot arm can then put the objects in the right place.

With digital cameras and optical scanner becoming commonplace accessories, medical 

imaging technology producing detailed physiological measurements, laser scanners capturing 3D 

environments, satellites and telescopes bringing pictures of earth and distant stars, there has been a 

flood of images. Researchers are actively working on the task of analyzing these images for various 

purposes.

BiometricRecognition: It has been made clear by decades of research in pattern recognition 

that the level of visual understanding and recognition that humans exhibit cannot be matched by 

computer algorithms. Certain problems, such as biometric recognition (fingerprints identification, 

face and gesture recognition, etc.) are being handled with success, but general purpose image-

representation systems are still not visible on the horizon. 

Handwriting Recognition: It is another area where pattern recognition can be applied, with 

major consequences in automation and information handling. Take first the simpler problem of 

printed character recognition. The commercially available Optical Character Recognition or OCR 

system has a light source, a document transport, as well as a detector. At the point where the light-

sensitive detector gives output, light intensity variation is translated into ‘numbers’. On this image 

array, image processing and pattern recognition methods are applied to identify the characters—

that is, to categorize each character into the correct ‘letter’, ‘number’ and ‘punctuation’ class. 

In addition to the printed character recognition systems, there is a lot of interest in handwriting 

recognition systems. A typical commercial application of such a system is in the machine reading 

of bank cheques. Another application is in automatic mail sorting machines for postal code 

identification in post offices.

Today, the tendency is to create and develop machines that possess human-like skills. Pen 

computers, for instance, is an area of huge potential interest: entry of data done not via the keyboard 

but through writing. Online handwriting-recognition systems have potential to offer a solution.

Medical Diagnosis: It also uses pattern recognition. Doctors make use of it while making 

diagnostic decisions. The ultimate diagnosis is, of course, made by the doctor. Computer-aided 

diagnosis has been applied to, and is of interest for, a range of medical data—X-rays, computed 

tomographic images, ultrasound images, electrocardiograms (ECGs), and electroencephalograms 

(EEGs).

AlignmentofBiologicalSequences:Alignment of sequences is done on the basis of the fact 

that all living organisms are related by evolution. This means, nucleotide (DNA, RNA) and amino 
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acid (proteins) sequences of species that have evolved close to each other, should display more 

similarities. An alignment is the procedure of lining up sequences to obtain a maximum identity 

level, which also expresses the level of similarity between sequences. Biological sequence analysis 

is significant in bioinformatics and modern biology.

DrugDesign:It is usually based on a long and expensive process involving complex chemical 

experiments to check whether or not a particular chemical compound could be a good candidate for 

a specific drug, which would be a positive result involving further clinical experiments. For several 

years, a new scheme based on computational simulations has been emerging. The general idea is to 

assess the feasibility of a chemical compound for the synthesis of the drug with a predictive model 

based on a database of previous experiments.

SpeechRecognition:It is an area that has been well researched. Speech is the most natural means 

by which humans share, convey and exchange information. Intelligent machines that recognize 

spoken information can be used in numerous applications, for example, to help control machines by 

talking to them—entering data into a computer via a microphone. Speech recognition can enhance 

our ability to communicate with deaf and dumb. 

TextMining:It concerns indentification of patterns in text. The procedure involves analysis of text 

for extraction of useful information for specific purposes.

The way information available on the Web and on corporate intranets, digital libraries and news 

wires is spread or propagated, is overwhelming. Integration of this information into the decision-

making process, at a fast pace, is essential in order to help businesses stay competitive in today’s 

market. Text mining has reached the industrial world and is helping to exploit knowledge that, due 

to its shear size, is often beyond human consumption. Typical jobs for mining text databases are—

classification of documents into predefined classes, grouping together of similar documents, and 

identifying documents that fulfil the criteria/specifications of a query. 

NaturalLanguageProcessing:Ever since the computer age dawned, computer science research 

has been attempting to understand human language. In 1950, immediately following the first 

invention of the computer, Alan Turing, one of the greatest computer scientists of the twentieth 

century, suggested a test for computer intelligence. In a paper titled “Computing Machinery 

and Intelligence”, he introduced this machine. Over sixty years later, computers could perform 

extraordinary actions that Alan Turing probably never imagined could be possible. 

Language is obviously a critical component of how people communicate and how information 

is stored in the business world and beyond. The goal of Natural Language Processing (NLP) is 

to analyze, understand, and generate languages that humans use naturally, so that eventually a 

computer will ‘naturally’ be able to interpret what the other person is saying. Voice automation is 

just starting with robot vacuum cleaners that respond to cleaning orders; telephones and household 

appliances that obey voice commands. Other NLP applications include spell checking and grammar 

checking, translation from one human language to another, searching the documents, summarizing 

the documents, and human-computer interfaces. However, natural language processing is still 

mostly a future application area. 
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Fault Diagnostics: Preventive upkeep of motors and generators and other electromechanical 

devices, can delay malfunctions that may otherwise interrupt industrial procedures. Typical defects 

or flaws include misalignment of shaft, mechanical slackening, defective bearings, and unbalanced 

pumps. Over a thousand different types of devices may be used in a chemical plant—from small 

pumps to huge turbo-alternators. Machine learning is extremely helpful in such applications.

Machine learning technologies are increasingly facilitating the real-time monitoring of bridges 

and highways. The state (health) of a bridge is continually assessed on the basis of inputs from a 

series of sensor networks and the processing of the received data. 

LoadForecasting:It is quite essential to establish future power demand in the electricity supply 

industry. In fact, the earlier the demand is known, the better. Precise estimates can be made with the 

help of machine learning methods for the maximum and minimum load for each hour, day, month, 

season, and year. Utility companies create important economics in setting the operating reserve, 

maintenance scheduling, fuel inventory management, and so on. 

ControlandAutomation:A quiet revolution is ongoing in the manufacturing world which is 

changing the look of factories. Computers are controlling and monitoring manufacturing processes 

with high degree of automation, facliliated by machine learning techniques. The computer control 

includes control of all types of processes such as Computerized Numerical Control (CNC), welding, 

electro-chemical machining, etc., and control of industrial robots. High degree of automation is 

applied in today’s Flexible Manufacturing Systems (FMS) that can be readily rearranged to handle 

new market requirements. Flexible manufacturing systems, combined with automatic assembly and 

product inspection on one hand, and CAD/CAM system on the other, are the basic components of 

the modern Computer Integrated Manufacturing System. 

Sophisticated processes of process/chemical industry involve tasks like acquisition of process 

data (i.e., collection of instantaneous values of individual process variables, and status messages of 

plant control facilities (valves, pumps, motors, etc.)); processing of collected data; plant hardware 

monitoring, system check and diagnosis, closed-loop control and logic functions. Processing of 

data helps provide optimal plant work conditions—this often requires tweaking control parameters. 

For example, separating crude oil from natural gas is an essential prerequisite to oil refinement, and 

controlling the separation process is a tricky job. Machine learning is being used to create rules for 

setting the parameters. Machine learning plays a significant rule in modern Computer Integrated 

Process Systems.

It is essential to remind the readers here that whenever reasonably accurate mathematical model 

of a manufacturing/chemical process can be derived, controllers are designed using these models, 

and not by machine learning techniques which are based on empirical models. Machine learning 

aids in achieving automation of the overall manufacturing system/processing system. Hybridization 

of model-based control with machine learning techniques achieves strong robustness in presence 

of parameter variations. This is true for many other scientific and engineering applications as well. 

Business Intelligence: It is essential for businesses to be able to comprehend the commercial 

control of their organization well, in terms of customer base, market, supply and resources, 

and competition. Business Intelligence (BI) technologies offer not only historical and current 
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information but also predictive views of business operations. Data mining is the fundamental 

core of business intelligence. In the absence of data mining, many businesses may be unable to 

effectively perform market analyses, compare customer feedback on similar products, find the 

strengths and weaknesses of their competitors, retain extremely valuable customers, and arrive at 

intelligent business decisions. Several customized data mining tools have been created to cater to 

domain-specific applications in many areas—finance, retail industry, telecommunications, health 

care, insurance, and so on. Section 9.6 will give an overview of these applications.

Machine learning/data mining is omnipresent, as can be seen from these examples. We could 

go on and on with such scenarios. We may now conclude that machine learning/data mining is an 

empirical technology that has applications in all knowledge domains: economics, social science, 

physics, chemistry, biology, computer engineering, electrical engineering, mechanical engineering, 

chemical engineering, civil engineering, business management, and others. Initial exploration of 

applications in a specific domain may be done by exploiting information available through search 

engines. Hopefully, this will provide enough fodder to the reader for moving on.

The reader may go a little deeper in these applications to ascertain that conventional mathematical 

approach is not feasible. We re-emphasize the fact that wherever an accurate mathematical model 

can be built, machine learning approach need not be used.

1.4 DATAREPRESENTATION

Experience in the form of raw data is a source of learning in many applications (human knowledge 

in linguistic form is an additional learning source). Raw data require some preprocessing (discussed 

in detail in later chapters) with respect to the class of tasks. This leads to an information system, that 

represents the knowledge in the raw data (input to the learning machine shown in Fig. 1.1) used for 

decision making.

The information-system data (representation-space data) may be stored in data warehouse (refer 

to Section 9.3). Data warehousing provides integrated, consistent and cleaned data to machine 

learning algorithms. However, machine learning is not confined to analysis of data accessed online 

from data warehouses. For many applications, we can assume availability of data in a flat file, which 

is a simple data table. In fact, all through the book, we have worked on data tables, postponing 

warehousing discussion to Chapter 9.

Information system is a form of data table D ; each row of the table represents a measurement/

observation, and each column gives the values of an attribute of the information system for 

all measurements/observations. Different terms have been used to name the rows depending 

on the context of application. Some commonly used terms are: instances, examples, samples, 

measurements, observations, records, patterns, objects, cases, events. Similarly, different terms 

have been used to name the columns; attributes and features being the most common. 

An example information system dataset, given in Table 1.1, is simply a set of patients specified by 

three attributes/features: Headache, Muscle-pain, and Temperature. These attributes are described 

in linguistic form. Nominal representation (linguistic form) of knowledge is common for problems 

with small datasets. For problems with large datasets, each attribute has a numerical value (real) for 

the observation. In Table 1.1, patient index gives observations.
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Table1.1 An example dataset

Patient index Headache Muscle-pain Temperature Flu 

1

2

3

4

5

6

no

yes

yes

no 

yes

no

yes

no

yes

yes

no

yes

high 

high

very high

normal

high

very high

yes 

yes

yes

no 

no

yes

For directed/supervised learning problems, an outcome for each observation is known a 

priori. This knowledge is expressed by one distinguished attribute, called the decision attribute. 

Information systems of this kind are called decision systems. 

The last column in Table 1.1 represents a decision attribute with respect to the task to categorize 

patients into two classes: {Flu: yes}, {Flu: no}; Flu is the decision attribute with respect to the 

condition attributes: Headache, Muscle-pain, and Temperature. 

In a decision system data file, we represent input as N instances s(1), s(2), …, s(N); each is an 

example of the concept to be learned. Each individual instance s(i); i = 1, 2, …, N, that provides 

the input to the machine learning tool, is characterized by its values for a fixed predefined set of n 

features/attributes x1, x2, …, xn (xj; j = 1, 2, …, n). The instances are rows of data table, and features 

are the columns. A template for such a data table is shown in Table 1.2.

Table1.2 A template for data table

Features xj

Instances s(i)

x1 x2 … xn

Decision

y

s(1) …

s(2) …

� … �

s(N) …

 

The value of the attribute for a specific instance is a measurement/representation of the quantity 

to which the attribute refers. There is a wide distinction between numeric and nominal quantities. 

Numeric attributes, often referred to as continuous attributes, adopt values that are either real 

numbers or integer values. The word ‘continuous’ is often wrongly used in this context; integer-

valued attributes are not continuous mathematically speaking. Nominal attributes take on values in 

a prespecified finite set of possibilities, and are at times referred to as categorical or discrete.

In Table 1.2, the training experience is available in the form of N examples: s(i) Œ S; i = 1, 2, …, 

N; where S is a set of possible instances.
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We specify an instance by a fixed number n of attributes/features xj ; j = 1, 2, …, n. We can 

visualize each instance with n numerical features as a point in n-dimensional state space ¬n: 

                                                          x = [x1  x2 … xn]
T Œ ¬n  (1.1)

The set X is a finite set of feature vectors x(i) for all the possible instances. We can visualize 

X as a region in the state space ¬n to which the instances belong, i.e., X Ã ¬n. Note that x(i) is a 

representation of s(i), and X is the representation space.

The pair (S, X) constitutes the information system where S is a non-empty set of instances, and 

X is a non-empty set of features; we have represented instances by the index ‘i’, and features by 

the index ‘j’:

 {s(i); i = 1, 2, …, N} Œ S

 {x(i); i = 1, 2, …, N} Œ X  (1.2)

 {xj
(i); j = 1, 2, …, n} = x(i) 

 Features xj ; j = 1, 2, …, n, may be viewed as state variables, and feature vector x as state vector 

in n-dimensional state space.

With every feature xj, we associate a set Vxj
Œ¬  of its values, called the domain of xj ; j = 1, 2, 

…, n.

Therefore, V V
x

i
xj j

( )
;Œ  i = 1, 2, …, N.

Attribute xj may take a finite value from a finite set of dj discrete values v vx xj j1 2, , …, vd xj j
. In 

such a case,

                                           V v v v v l dx x x d x lx jj j j j j j
= º = = º{ , , , } { ; , , , }1 2 1 2  (1.3)

                                               and v Vlx
i

xj j

( )
;Œ  i = 1, 2, …, N.

The tuple (S, X, Y) constitutes a decision system where finite set of condition attributes xj Œ X, 

and the decision attribute (output) y Œ Y. 

We can visualize Y as a one-dimensional region in state space, i.e., Y Ã ¬.

In a data table for decision systems, rows correspond to instances belonging to S, and columns 

correspond to attributes/features belonging to X » Y.

With decision attribute y, we associate a set Vy of its values. For multi-class (M classes) 

classification problems, the domain of y is given by the set: 

     Vy = {1, 2, …, M}  (1.4a)

The output y(i) for a pattern s(i) will take a value from the set Vy, which represents the class to 

which the pattern belongs. 

We may express attribute y as, 

 y Œ {y1, y2, …, yM} = {yq ; q = 1, …, M} (1.4b)

 {y1, y2, …, yM} = {1, 2, …, M}
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For regression (numeric prediction) problems, 

 Vy Œ ¬ (1.5)

1.4.1 TimeSeriesForecasting

In this section, we describe the data structure of forecasting (predicting the future) problems. Some 

examples of such problems are predicting the closing price of IBM stock, the daily value of the 

Euro to U.S. dollar exchange rate, the future demand for power as far in advance as possible in the 

electricity supply industry, etc. For such problems, the data naturally falls into a time series, and 

therefore these are time series prediction problems.

For financial time series, if we are able to predict the next value, or even whether the series is 

heading up or down, it has a tremendous advantage over other competitors. Sound predictions of 

foreign exchange rates are increasingly important to financial managers of multinational companies. 

With accurate estimates of load demand, electricity supply industry can make significant economics 

in areas such as setting the operating reserves, maintenance scheduling, and fuel inventory 

management.

Time series data is sequential—a sequence of observations is measured over time; each 

observation is indexed by a time variable t. The measurements are often made at fixed time intervals, 

so that without loss of generality, t can be taken as an integer. 

Some powerful statistical methods to develop models for time-series data are well known, for 

example, ARIMA (Auto-Regressive, Integrated, Moving Average) model. Our concern here is with 

NARMA (Nonlinear, Auto-Regressive, Moving Average) model [199]. In the extensive literature 

on modeling dynamic systems, it has been proved, after making some moderate assumptions, that 

any nonlinear, discrete, time-invariant system can always be represented by a NARMA model:

 y(t + 1) = f(y(t), y(t – 1), …, y(t – n)) (1.6a)

where y(t) is the output signal at time t, and y(t – 1), y(t – 2), …, represent past values of this signal. 

Equation (1.6a) is a simple deterministic version of NARMA model (there are no noise terms in 

it). These models assume that the system is dependent on itself (autoregressive part). In realistic 

cases, the nonlinear function f (◊) is very complex and generally unknown. Our concern here is with 

inferences from the past and current observations, leading to learning based inductive techniques.

In the next chapter, we will see that the basic assumption regarding data for machine learning 

applications is that the instances that constitute a sample (dataset) are iid (independently and identi-

cally drawn). This assumption is, however, not valid for applications where successive instances 

are dependent. Processes where there are sequence of observations cannot be modeled as simple 

probability distributions. We have used NARMA model for time-series forecasting applications. 

MDP (Markovian Decision Process) model will be used in Appendix B for reinforcement learning 

applications.  

Typically, successive events or inputs that affect the time series, are serially correlated; this 

causes a time series pattern that can give some hint of the future. We will model time series by 

assuming that there is a relationship between the value at a given time t, and the values at the earlier 

times t  – 1, t – 2, t – 3, and so on, for as many lags as required.
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The input-output structure for univariate time series is shown in Fig. 1.2(a). The model gives 

predictions of response variable y in terms of current and past values of y. It captures the following 

functional relation:

 ŷ (t + k) = f (y(t), y(t – 1), …, y(t – n)) (1.6b)

y(t + k) is unknown. We want the model to predict its value. ŷ (t + k) is the prediction of y(t + k); 

this is k-step ahead prediction.

The number of lags, n, define the attributes/features for prediction. It is expected that more the 

past information (lags) used to predict the future, more accurate the prediction. It is, however, not 

true in general. Computational complexity, redundant information (noise), etc., introduced by large 

number of features are to be avoided, as we shall see in later chapters. For k-step ahead prediction 

problem, n ≥ k.

Time series prediction is typically a regression problem. Machine learning techniques provide 

a data-driven approach that can capture linear/nonlinear data structures without prior assumption 

about the underlying relationship in a particular problem. To build a machine learning model, we 

require n (a design variable) features, and past and current experience in terms of N (a design 

variable) feature vectors. For the response variable y, the time series data is given by,

 {y(t), y(t – 1), y(t – 2), …} (1.7a)

The n features x1, x2, …, xn:

 x1 = y(t – 1), x2 = y(t – 2), x3 = y(t – 3), …, xn = y(t – n)

The past N measurements/observations:

 x = [x1 x2 … xn]
T : Feature vector 

 x(1)  = { , , , }
( ) ( ) ( )
x x x

n1
1

2
1 1
º  = {y(t – 1), y(t – 2), …, y(t – n)}  (1.7b)

 x(2) = { , , , }
( ) ( ) ( )
x x x

n1
2

2
2 2
º  = {y(t – 2), y(t – 3), …, y(t – n – 1)}

                  �

 x(N) = { , , , }
( ) ( ) ( )
x x x

N N

n

N

1 2 º  = {y(t – N), y(t – N – 1), …, y(t – n – N + 1)}

Experience data:

                                 {x(i), y(i)}; i = 1, 2, …, N,  

 y(1) = y(t), y(2) = y(t – 1), …, y(N) = y(t – N + 1) (1.7c)

Using experience data, we construct a machine learning model.

Note that the time series data is not limited to data from just a single time series. It can include 

inputs from multiple time series. For instance, to predict the value of the Euro to U.S. dollar 

exchange rate, other time-series information might be included, such as volume of the previous 

day’s transactions, the U.S. dollar to Japanese yen exchange rate, the closing value of the stock 

exchange, and the day of the week.

The input-output structure for multivariate time series model is shown in Fig. 1.2(b). The model 

explains the variation in response variable y in terms of the variations in inputs from time series. z1, 

z2, …, zm; where each time series zl ; l = 1, …, m, is given by,
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                                                 {zl(t), zl(t – 1), zl(t – 2), …} (1.8a)

The lagged data z1 (t – 1), …, z1  (t – L1), …, zm (t – 1), …, zm(t – Lm) are used to predict output

y(t + k); where k is some prediction time-step into the future, and L1, L2, …, Lm represent the 

number of lags in time series zl; l = 1, …, m, used for constructing the model.

For the l time series, we define l variables zl ; l = 1, …, m. For each variable zl, we define the 

lagged data zl(t – 1), …, zl(t – Ll). The feature vector x for the dataset is then given by,

{x1, x2, …, xn} = {z1(t – 1), …, z1(t – L1), z2(t – 1), …, z2(t – L2), …,

                                                zm(t – 1), …, zm(t – Lm)} (1.8b)

Predictor

x1 = ( – 1)y t
º

ˆ( )y t k+x2 = ( – 2)y t

xn = ( – )y t n

(a)  Input-Output structure for a univariate time series data

Predictor

x z1 1= ( – 1)t

ˆ( )y t k+
z L1 1( – )t

zm( – 1)t

º
º

º

x z Ln m m= ( – )t

(b)  Input-Output structure for multivariate time series data

Figure 1.2

1.4.2 DatasetsforToy(UnreasticallySimple)andRealisticProblems

Various datasets have the tendency to reveal new issues and challenges, and it is interesting and 

instructive to consider a range of problems while considering learning techniques. The set of 

problems stated in this book is unrealistically simple. To apply machine learning seriously would 

mean involving innumerable individual cases. However, when explaining what algorithms do 

and the manner in which they work, we require examples capable of capturing the essence of the 

problems, but at the same time, basic enough to be comprehensible in terms of detail.

The datasets employed in this book, for instance, are proposed to be ‘academic’ in nature—they 

will facilitate understanding of  what is going on. 

Some realistic fielded applications of learning techniques have been given in Section 1.3, and 

many more will be covered later in Chapter 9. It is obvious that the knowledge base required for 

handling such applications is not just how learning algorithms work, but much more than that; 

for example, domain knowledge for the application, open source/commercial software usage or 

writing code in any appropriate language from the equations given in the book, etc. In a university 

setting, students must be trained for realistic applications through the project work. 

Description of datasets for some realistic problems is given at the end of the book. This will help 

the reader appreciate better the real-world environment for machine learning.
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1.5 DOMAINKNOWLEDGEFORPRODUCTIVEUSEOFMACHINELEARNING

The productive use of machine learning is not just a matter of finding some data and then blindly 

applying machine learning algorithms to it. Available commercial work-benches make that easy 

to do, even with little apparent understanding of what these algorithms do. The usefulness of such 

results is questionable.

The datasets used in this book are toy problems. They are not applications of machine learning 

which have actually been put to use. They have a limited objective of providing an understanding 

of what machine learning algorithms do.

The productive use of machine learning is in designing a learning system that is put to work. The 

design of such learning systems requires, in addition to the knowledge of what various machine 

learning algorithms do, a deep knowledge of the application domain. The fielded applications listed 

in Section 1.3 give an idea of various problem domains. Many of them are speculative research 

domains, but some of the applications in these domains have been put to productive use employing 

machine learning techniques.

Knowledge of the domain is absolutely essential for success. Domain knowledge without 

knowledge of machine learning techniques is still useful (for studies based on non-machine 

learning methods), but knowledge of machine learning techniques without domain knowledge is 

of no productive use; it can lead to some trash results accepted as valid conclusions, and strategic 

decisions based on such results can be disastrous. 

We have seen earlier that raw data when mapped to a vector space is N ¥ n matrix (data matrix); 

the N rows represent the N objects/instances/patterns, and the n columns represent features/

attributes. For many practical applications, the features/attributes are numeric in nature. Mapping 

of raw data to vector spaces requires appropriate processing of the data. 

Today, raw data are no longer restricted to numerical measurements/observations only. Machine 

intelligence is capable of dealing with multimedia data: image, audio, text. Conversion of multimedia 

raw data to vector space is a tedius task requiring in-depth knowledge in the application area (refer 

to Section 9.5).

The problems of feature generation and feature selection must be addressed at the outset of any 

machine learning system design. The key is to choose features that 

 • are computationally feasible;

 • lead to ‘good’ machine-learning success; and 

 • reduce the problem data into a manageable amount of information without discarding 

valuable (or vital) information. 

Generation of features for patterns/objects in a machine learning problem is very much application 

dependent. Although similarities among various applications do exist, there are also big differences. 

Domain knowledge plays a crucial role in generating the features that will subsequently be fed to 

a machine learning algorithm. Each feature must carry valuable information with respect to the 

machine learning task. Also, two features carrying ‘good’ information when treated separately, 
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may be highly mutually correlated; in that case, there is little gain in including both of them in the 

feature vector. 

In general, compactness of feature vector in a data matrix is a desirable characteristic. There are 

many reasons for the necessity of compact feature vector. Computational complexity is the obvious 

one. The major reason is imposed by the required generalization properties of the resulting learning 

machine. As we shall see in the next chapter, for a finite and usually limited number, N, of learning 

patterns (statisticians give us procedures to learn with some precision how many patterns, N, we 

should need to achieve a given degree of reliability with a given dataset and a selected machine 

learning technique (discussed in next chapter)), keeping the number of features as small as possible 

is in line with our desire to design learning machines with good generalization capabilities (a large 

number of features is directly translated into a large number of machine parameters). 

The requirement of compact set of features is thus crucial in machine learning task. If we select 

features with little information with respect to the machine learning task, the subsequent design of 

the machine would lead to poor generalization, and hence poor performance. On the other hand, if 

information-rich features are not selected, the resulting data matrix will not represent the raw data 

(and hence, available knowledge) for the application in hand. Naturally, such a machine does not 

possess practical value for the application.

The usual procedure is to initially select a large number of features which are expected to carry 

rich information. Domain knowledge plays a significant role in this step of feature generation. 

The next step is to select a compact set of features by systematically reducing the features of the 

initial large set. Although automated methods for feature reduction are available (Chapter 7), it is 

important to ensure that the reduced set given by these methods does not weed out information-rich 

features, and also does not retain too much of irrelevant and redundant features. As we shall see in 

Chapter 7, domain knowledge integrated with the automated methods leads to better results. 

The more data we tackle, the greater the chances of encountering erroneous values, emerging 

from measurement error, data-entry error, and so on. If the erroneous value lies in the same range 

as the remaining data, it may bear no harm. But, if it lies beyond the range of data (e.g., a misplaced 

decimal), it may substantially impact some of the machine learning processes we intend to employ. 

The values lying far away from the bulk of the data are known as outliers. As we shall see in 

Chapter 7, certain rules help identify outliers, but there are no statistical rules to help us find out 

whether such outliers are caused by an  error. The answer may lie in domain knowledge. 

Some datasets consist of variables with a very large number of missing values. In that case, 

dropping data patterns with missing values will only result in massive data loss. Imputing the 

missing values (Chapter 7) may also be of no use as the imputations are done on the basis of a 

small number of existing data patterns. Another option is to study how important the attribute is. 

If it is not important, it can be removed. If the attribute is crucial, the ideal solution is to invest in 

procuring the missing data. Domain knowledge is rather important in such scenarios. 

We can go on citing examples of importance of domain knowledge for productive use of machine 

learning. As we will learn when we progress with the book, probably at every stage of design cycle 

for various machine learning techniques, domain knowledge plays a significant role. 
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1.6 DIVERSITYOFDATA:STRUCTURED/UNSTRUCTURED

Generally, digital information can be categorized into two classes—structured and unstructured. 

Studies have recently revealed that 70–80 per cent of all the data available to corporations today is 

unstructured, and this figure is only increasing at a rapid rate.

Let us look at the types of data from a layman’s point of view.

Usually, traditional data sources exist in the structured realm, which means, traditional data 

follows a predefined format, which is unambiguous and is available in a predefined order. For 

instance, for the stock trade, the first field received should be the date in a MM/DD/YYYY format. 

Next could be an account number in a 12-digit data format, followed by stock symbol—three to 

five digit character field, and so on. Structured data fits into a fixed file format (data table of the 

form shown in Table 1.2).

We rarely have any control on unstructured data sources, for instance, text streams from a social 

media site. It is not possible to ask users to follow specific standards of grammar or sentence 

ordering or vocabulary. We will only get what we get when people post something. This amounts 

to capturing everything possible, and worrying later about what matters. This makes such data 

different from traditional data. The ‘big data’ problems (to be introduced in Chapter 9) are faced 

with this type of data that we get largely from unstructured data sources.

For the structured data, first-generation data mining algorithms (we have used the term ‘first-

generation’, although ‘next generation’ is still envolving and is yet to stabilize) are in effective use 

in various kinds of applications wherein it becomes possible to derive numeric and categorical 

features. For many applications listed in Section 1.3, numeric/categorical features can be extracted. 

As we shall see in Section 9.5, limited analysis objectives can be realized for applications involving 

text, image, and audio raw data by extracting numeric features from text/image/audio data, that 

is, some structured patterns found in unstructured datasets lead to some useful analysis using 

first-generation machine learning algorithms. However, the need to go beyond this state of the 

art (dealing with unstructured text/image/audio/mixed multimedia data) is still mostly a research 

challenge. 

Diversity of data, leading us to unstructured domain in a big way, poses a big research challenge: 

mining sequence data, mining graphs and networks, mining spatiotemporal data, mining cyber-

physical data, mining multimedia data, mining web data, mining data streams, and other issues. In 

addition to complexity in data, the volume of data is too massive. Scaling to complex, extremely 

large datasets—the big data—is probably the most debated current research issue. In Section 9.7, 

we provide an overview of the evolving database technologies for higher levels of scalability, 

and the evolving machine learning techniques as a result of new scalability. The next-generation 

machine learning is on an evolving platform today.

Though big data is difficult to handle, it has come into prominence because of the long-term 

strategic value as well as immediate and tactical value associated with it. Perhaps the most exciting 

thing about big data is not what it will do for a business by itself, but what it will do for a business 

when combined with an organization’s other data. It is critically important that organizations do 

not develop a big data strategy that is distinct from their traditional data strategy. To succeed, 

organizations need to develop a cohesive strategy that is not a distinct ‘stand alone’ concept. Rather 

big data must be simply another facet of an enterprise data strategy.
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This book is mostly concerned with traditional (structured) data, and the first generation machine 

learning algorithms.

1.7 FORMSOFLEARNING

In the broadest sense, any method that incorporates information from experience in the design of 

a machine, employs learning. A learning method depends on the type of experience from which 

the machine will learn (with which the machine will be trained). The type of available learning 

experience can have significant impact on success or failure of the learning machine.

The field of machine learning usually distinguishes four forms of learning: supervised learning, 

unsupervised learning, reinforcement learning, and learning based on natural processes—evolution, 

swarming, and immune systems.

1.7.1 Supervised/DirectedLearning

The machine is designed by exploiting the a priori known information in the form of ‘direct’ 

training examples consisting of observed values of system states (input vectors): x(1), …, x(N), and 

the response (output) to each state: y(1), …, y(N).

The ‘supervisor’ has, thus, provided the following data:

 D = {s(i), y(i)}; i = 1, …, N  
(1.9)

 s(i) = x(i) : { , , , }
( ) ( ) ( )
x x x

i i

n

i

1 2 º  

The dataset D is used for inferring a model of the system. 

If the data D lies in the region X of the state space ¬n (X Ã ¬n), then X must be fully representative 

of situations over which our machine will later be used. Choice of features/attributes xj; j = 1, …, 

n, significantly affects the output. 

There are two types of tasks for which supervised/directed learning is used: classification (pattern 

recognition) and regression (numeric prediction). 

Classification:Training data {x, y} are the input-output data; x is an input vector with n features 

xj ; j = 1, …, n, as its components and output y is a discrete class yq ; q = 1, …, M. In classification 

tasks, the goal is to predict the output values for new inputs (i.e., deciding which of the M classes 

each new vector x belongs to) based on training from examples of each class.  

Regression:Training data {x, y} are the input-output data; x are the regressors, and y is a continuous 

numeric quantity. Regression task consists of fitting a function to the input-output data with the goal 

of predicting output values (numeric) for new inputs. 

Classification and regression tasks arise in many applications, such as, signal processing, 

optimization, modeling and identification, control, and many business applications. In fact, most of 

the applications listed in Section 1.3 employ supervised learning. Our major focus in the book will 

be on this form of learning.
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1.7.2 Unsupervised/UndirectedLearning

Another form of machine learning tasks is when output y(i) is not available in training data. In this 

type of problem, we are given a set of feature vectors x(i), and the goal is to unravel the underlying 

similarities. 

Two different types of learning tasks frequently appear in the real-world applications of 

unsupervised learning. 

ClusterAnalysis:Cluster analysis is employed to create groups or clusters of similar records on 

the basis of many measurements made for these records. A primary issue in clustering is that of 

defining ‘similarity’ between feature vectors x(i); i = 1, 2, …, N, representing the records. Another 

important issue is the selection of an algorithmic scheme that will cluster (group) the vectors based 

on the accepted similarity measure (we will take up these issues in Chapter 7).

Clustering jobs emerge in several applications. Biologists, for instance, make use of classes 

and subclasses to organize species. A popular use of cluster analysis in marketing is for market 

segmentation: customers are segmented on the basis of demographic and transaction history 

information, and a marketing strategy is tailored for each segment. In finance, cluster analysis 

is used to create balanced portfolios: choosing securities from various clusters on the basis of 

financial performance variables, such as return, volatility, and so on. Internet search engines make 

use of clustering methods to group together queries that users submit, which can then be employed 

to improve search algorithms.

Other application domains for cluster analysis are remote sensing, image segmentation, image 

and speech coding, and many more.

After cluster patterns have been detected, it is the responsibility of the investigator to interpret 

them and decide whether they are useful.

AssociationAnalysis:Association analysis uses unsupervised learning to discover patterns in 

the data where no target is specified earlier. It is up to human interpretation to make sense of the 

patterns.

Association analysis emerged with the study of customer transaction databases to establish an 

association between purchases of different items/services on offer. This common area of application 

is known as market basket analysis, which studies customers’ purchase patterns for products that 

are bought together. This application is widely encountered in online recommender systems, where 

customers considering buying a product(s) are shown other products that are often bought along 

with the desired product(s), for example, display from Amazon.com.

Other application domains for association analysis are medical diagnosis, scientific data analysis, 

web mining, and many more.

We will discuss association analysis procedure in Chapter 9. 

1.7.3 ReinforcementLearning

Reinforcement learning is founded on the concept that if an action is followed by a satisfactory 

state of affairs, or by an improved state of affairs (according to some properly defined way), then 

the inclination to produce that action becomes stronger, i.e., reinforced. This idea can be extended 
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to permit action choices to be dependent on state information, which then brings in the aspect 

of feedback. A reinforcement learning system, therefore, is a system that via interaction with its 

environment enhances its performance by obtaining feedback in the form of a scalar reward (or 

penalty)—a reinforcement signal, that is indicative of the suitability of the response. The learning 

system is not instructed with regard to what action has to be taken. Instead, it is expected to find out 

which actions produce the maximum reward by trying them. The actions may influence not only the 

immediate reward but also the next situation, and through that all subsequent rewards. 

The two aspects—trial-and-error search, and cumulative reward—are the two significant 

distinguishing attributes of reinforcement learning. Even though the early performance may fail 

to be up to the mark, with adequate interaction with the environment, it will ultimately learn an 

effective strategy for maximizing cumulative reward.  

The problem of reinforcement learning is the most general of the three categories. A purely 

unsupervised learning agent cannot learn what to do, because it has no information as to what 

constitutes a desirable state or a correct action. In supervised learning, the agent can predict the 

result of action and can tune the action that leads to the desirable state. In reinforcement learning, 

the state-action model is not available. The agent has to take the actual action and learn from the 

results of the action taken—the state to which the action has driven the system. This method of 

learning is thus concerned with optimizing decisions, rather than predictions.

The reinforcement learning problem covers tasks such as learning to control a mobile robot, 

learning to optimize operations in factories, and learning to play board games. Reinforcement 

learning algorithms are related to dynamic programming algorithms frequently used to solve 

optimization problems.

The subject of reinforcement learning is introduced in Appendix B. The interested reader may 

also find reference [33] useful, where the focus is on reinforcement learning solutions to control 

problems: the controller (agent) has a set of sensors to observe the state of the controlled process 

(environment); the learning task is to learn a control strategy (policy) for choosing control signals 

(actions) that achieve minimization of a performance measure (maximization of cumulative 

reward). Reinforcement learning systems do not depend upon models of the environment because 

they learn through trial-and-error experience with the environment.

1.7.4 LearningBasedonNaturalProcesses:Evolution,

 Swarming,andImmuneSystems

Some learning approaches take inspiration from nature for the development of novel problem-

solving techniques. The thread that ties together learning based on evolution process, swarm 

intelligence, and immune systems is that all have been applied successfully to a variety of 

optimization problems.

Optimization may not appear to be like a machine learning task, but optimization techniques are 

commonly used as part of machine learning algorithms.

EvolutionaryComputation

It derives ideas from evolutionary biology to develop search and optimization methods that help 

solve complicated problems. Evolutionary biology essentially states that a population of individuals 



24  Applied Machine Learning

possessing the ability to reproduce and exposed to genetic variation followed by selection, gives 

rise to new populations, which are fitter to their environment. Computational abstraction of these 

processes gave rise to the so called evolutionary algorithms. The primary streams of evolutionary 

computation are genetic algorithms, evolution strategies, evolutionary programming and genetic 

programming. Even though differences exist among these models, they all present the fundamental 

traits of an evolution process.

SwarmIntelligence

Swarm intelligence is a feature of systems of unintelligent agents with inadequate individual 

abilities, displaying collectively intelligent behavior. It includes algorithms derived from the 

collective behavior of social insects and other animal societies.

The primary lines of research that can be recognized within swarm intelligence are:

 (i) Based on social insects (Ant Colony Optimization)

 (ii) Based on the ability of human societies to process knowledge (Particle Swarm Optimization)

Although the resulting models are rather different in sequence of steps and sources of inspiration, 

they share some common properties. They are both dependent on a population (Colony or Swarm) 

of individuals (social insects or particles) possessing the ability of direct or indirect interaction not 

only with each other but also with the environment.

Ant Colony Optimization (ACO): Ants, seemingly small simple creatures, cooperate to solve 

complex problems, such as the most effective route to a source of food, that seem well beyond the 

ability of individual members of the hive or colony. 

Particle Swarm Optimization (PSO): The particle swarm algorithm is motivated, among other 

things, by the creation of a simulation of human social behavior—the quality of human societies 

to process knowledge. Particle swarm considers a population of individuals possessing the ability 

to interact with the environment and one another. Therefore, population-level behaviors will arise 

from individual interactions. Although the approach was initially inspired by particle systems and 

the collective behavior of some animal societies, the algorithm primarily emphasizes on its social 

adaptation of knowledge.

ArtificialImmuneSystems

All living beings possess the ability to resist disease-causing agents or pathogens in the form of 

bacteria, viruses, parasites and fungi. The main role of the immune system is to act as a shield for 

the body, protecting it from infections caused by pathogens.

An Artificial Immune System (AIS) replicates certain aspects of the natural immune system, 

which is primarily applied to solve pattern-recognition problems and cluster data. The natural 

immune system has an extraordinary ability to match patterns, employed to differentiate between 

foreign cells making an entry into the body (referred to as antigen) and the cells that are part of 

the body. As the natural immune system faces and handles antigens, it exhibits its adaptive nature: 

the immune system memorizes the structure of these antigens to ensure a speedier response to the 

antigens in the future. 
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In this book, we have mostly used calculus-based optimization methods. Genetic Algorithms 

have been introduced in Appendix A, but learning based on swarm intelligence, and immune 

systems have not been included. The interested readers may find references [26–29] useful. 

1.8 MACHINELEARNINGANDDATAMINING

Various organizations, as a matter of routine, capture massive amounts of historical data, which  

describe their operations, products and customers. At the same time, scientists and engineers in 

various fields capture datasets that are growing in terms of complexity. The field of data mining 

resolves the issue of the best way of using this historical data to find out the general patterns and 

improve the decision-making process [34]. 

The swelling interest in data mining is due to the convergence of many latest trends: 

 (i) The reducing prices of large data storage devices

 (ii) The increasing convenience of data collection over networks

 (iii) The reducing cost of computational power, which enables the use of computationally-

intensive techniques to analyze data, and develop robust and efficient techniques of extraction 

of (predictive) models from data. 

With the growth of data and the machines capable of searching, the opportunities for data mining 

will only grow manifold. With the growing complexity of the world, and the alarming rate at which 

data is being generated, only data mining will be able to explain the patterns that underline it. Data 

that has been intelligently analyzed is a valuable resource, which can lead to new insights and, in 

commercial settings, to competitive benefits.

The set of techniques for extracting (predictive) models from data constitutes the field of machine 

learning. Historically, data mining was born from machine learning as a research field concentrated 

on issues emerging by the examination of real-world applications. Research concentrated on 

commercial applications, and business issues of data analysis tend to use more of data mining 

techniques. However, the two fields happen to be related—they are both concerned with the data 

analysis which aims to discover informative patterns. The two also share methods and algorithms. 

Looking forward, the main challenge ahead is applications. Applications will come not from 

machine learning experts, but from the people who work with the data and problems from which the 

data arises. Machine learning research will respond to the challenges thrown by new applications 

and will create new opportunities in decision making.

Data mining is thus a practical field and involves learning in a practical and not in a theoretical 

sense. Machine learning provides a technical base for data mining. 

Even though machine learning forms the core of the data mining process, there are other steps 

involved data mining, including construction and maintenance of the database, data formatting and 

cleansing, data visualization and summarization, the use of human expert knowledge to formulate 

the inputs to the machine learning algorithm and evaluate the empirical regularities it discovers, 

and determining how to deploy the results. Machine learning is thus an essential component in the 

data mining process, but is not data mining by itself.
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The field of data mining has already produced practical applications in such areas as analysis 

of medical outcomes, detection of credit card frauds, prediction of customer buying behavior, 

prediction of the personal interest of web users, and optimization of manufacturing processes. 

We now have machine learning algorithms that have been demonstrated to be of significant value 

in a variety of real-world data-mining applications. Many companies across the globe are now 

offering commercial implementations of these algorithms (see www.kdnuggets.com), along with 

other efficient interfaces to commercial databases and well-designed user interfaces.

1.9 BASICLINEARALGEBRAINMACHINELEARNINGTECHNIQUES

The field of machine learning is a well-founded discipline, composed of several classical mathematics 

areas. One could say that machine learning is nothing but value-added applied mathematics and 

statistics, although this statement may be valid for many other fields as well. Here, ‘value-added’ 

primarily means modern computer-based applications of standard and novel mathematical and 

statistical techniques.

This book assumes the working knowledge of applied mathematics and statistics. Whenever 

the concepts and techniques presented in this book require more than the knowledge the reader 

possesses, he/she is advised to acquire from other sources the required level of mathematical/

statistical preparedness.

To help the reader refresh his/her memory, some help is provided in this book. The present section 

gives the basics of linear algebra. In Section 3.2, we present basic statistics. The basics of other 

required mathematical tools will be presented throughout the book as and when the requirement 

arises. 

This section is intended to be a concise summary of facts from linear algebra. It also serves to 

define the notation and terminology which are, regrettably, not entirely standard [33, 35]. 

An n-dimensional column vector x and its transpose xT (an n-dimensional row vector) can be 

written as, 

    x = 
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;  xT = [x1 x2 … xn] (1.10)

xj; j = 1, …, n, are the elements of the vector. 

We denote the N ¥ n (rectangular) matrix A and its n ¥ N transpose AT as, 
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A has N rows and n columns; aij denotes (i, j)th element, i.e., the element located in ith row and 

jth column.

Vectors may also be viewed as rectangular matrices. x is thus an n ¥ 1 matrix, and xT is 1 ¥ n 

matrix.

Note that we have used lower case italic letters for scalars, lower case bold non-italic letters for 

vectors, and upper case bold non-italic letters for matrices.

When n = N, i.e., when the number of columns is equal to the number of rows, the matrix is said 

to be a square matrix of order n. A square matrix is called symmetric when its entries obey aij = aji.

We will be mostly be concerned with vectors/matrices that have real elements, i.e., vector 

x Œ ¬n; xj Œ¬, where ¬n is an n-dimensional real vector space.

Matrix A can be expressed in terms of its columns/rows. For example, a square matrix 

                                  A = [a1 a2 … an]; aj = 
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A diagonal matrix is a square matrix whose elements off the principal diagonal are all zeros. 
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A particularly important matrix is the identity matrix I—an n ¥ n (square) diagonal matrix whose 

principal diagonal entries are all 1’s, and all other entries zeros.

                                                    I = 
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A null matrix 0 is a matrix whose elements are all equal to zero.
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Some Properties of Transpose 

 (i) (AT)T = A 

 (ii) (kA)T = kAT; k is a scalar 
(1.17)

 (iii) (A + B)T = AT + BT

 (iv) (AB)T = BTAT 

 (v) For any matrix A, ATA and AAT are both symmetric 

 (vi) When a square matrix A is symmetric, A = AT

Addition of vectors and of matrices is component by component. 

The product AB of an N ¥ n matrix A by an n ¥ p matrix B (number of columns of A must be 

equal to number of rows of B; compatibility requirement for multiplication) is an N ¥ p matrix C:

                              C = AB or cij = 
r

n

=

Â
1

air brj ; i =1, …, N; j = 1, …, p.  

(1.18)

                              AB π BA; (AB)C = A(BC); (A + B)C = AC + BC

DeterminantofaMatrix

Determinants are defined for square matrices only. The determinant of an n ¥ n matrix A, written as 

|A |, is a scalar-valued function of A. The calculation of the determinant is simple in low dimensions, 

but a bit more involved in high dimensions. If A is itself a scalar (i.e., 1 ¥ 1 matrix), then |A | = A. 

If A is 2 ¥ 2 matrix, then |A | = a11 a22 – a21 a12. The determinant of a general square matrix can be 

computed by expansion by minors. For an n ¥ n matrix A, we define minor mij to be the (n – 1) ¥ 

(n – 1) matrix obtained by deleting i th row and jth column of A. The cofactor cij of the element aij 

is defined by the equation, 

                                                                 cij = (– 1)i + j mij  (1.19a)

Selecting an arbitrary row k, |A| is given by, 

                                                                |A| = a ckj kj

j

n

=

Â
1

 (1.19b)

Similarly, expansion can be carried out with respect to any arbitrary column l, to obtain 

                                                               |A| = 
i

n

=

Â
1

ail cil (1.19c)
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Expansion by minors reduces the evaluation of n ¥ n determinant down to evaluation of a string 

of (n – 1) ¥ (n – 1) determinants. 

Some properties of determinants are:

 (i) |AB| = |A| |B|

 (ii) |AT | = |A|

 (iii) |kA| = kn |A|; A is an n ¥ n matrix and k is a scalar 
(1.20)

 (iv) The determinant of any diagonal matrix is the product of its diagonal elements

A square matrix is called singular if the associated determinant is zero; it is called nonsingular 

if associated determinant is nonzero.

The rank r(A) of a matrix A is the dimension of the largest array in A with a nonzero determinant. 

InverseandPseudoinverseMatrices

So long as its determinant does not vanish (nonsingular matrix), the inverse of an n ¥ n matrix A, 

denoted A–1, is the n ¥ n matrix such that, 

                                                          AA–1 = A–1A = I (1.21)

The adjoint of A, written A+, is the matrix whose (i, j)th entery is the ( j, i)th cofactor of A. 

Given these definitions, we can write the inverse of A as, 

                                                                A–1 = 
A

A

+

| |
  (1.22)

Some properties of matrix inverse are:

 (i) (A–1)–1 = A

 (ii) (AT)–1 = (A–1)T

 (iii) (AB)–1 = B–1A–1 

 (iv) |A–1| = 
1

| |A
 

(1.23)

 (v) |P–1A P| = |A| 

If A is not square (or if A–1 does not exist because A is singular), we typically use instead the 

pseudoinverse of A. If ATA is nonsingular square matrix, the pseudoinverse of A is defined as 

(ATA)–1 AT. 

InnerandOuterProduct

The inner (scalar) product of two n-dimensional vectors x and w is a scalar a:

                                                             a = xT w = wT x  (1.24)
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The outer product of x and w is a matrix:
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If the dimensions of x and w are not the same, then A is not a square matrix.

Any two vectors which have a zero scalar product are said to be orthogonal vectors. A set of 

vectors is said to be orthogonal, if and only if, every two vectors from the set are orthogonal.

VectorNorms

Norms are (positive) scalars and are used as measures of length, size, distance, and so on, depending 

on the context. For the vector 
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 (1.26a)

the Euclidean vector norm, ||x ||, is defined by, 

                                        ||x|| = ( ) ( )/ /
x x x

n

T
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+ + + =� x x   (1.26b)

The p-norm of vector x: 

                                      ||x||p = | |
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 (1.26c)

Mostly p = 1, 2 or •. 

                                      ||x||1 = | |xj
j
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       (absolute value)
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      (Euclidean norm)  (1.27)

                                     ||x||• = max|xj|

                                     ||x|| ≥ 0 if x π 0; ||kx|| = |k| ||x|| for any scalar k. 

A unit vector is, by definition, a vector whose norm is unity. Any nonzero vector x can be 

normalized to form a unit vector:
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                                                         unit vector = 
x

x|| ||
  (1.28)

A set of vectors is said to be orthonormal if, and only if, the set is orthogonal and each vector in 

the orthogonal set is a unit vector.

OrthonormalMatrix

Let A be an n ¥ n matrix 

                                                             A = [a1 a2 … an]  (1.29)

where aj is the jth column vector. The set of vectors {aj} is said to be orthonormal, if and only if, 

every two vectors from the set are orthonormal. When the set of vectors {aj} is orthonormal, the 

matrix A is said to be an orthonormal matrix.

An important property of an orthonormal matrix A is that its inverse is equal to its transpose, 

that is, 

                                                                  A–1 = AT  (1.30)

Let us examine (i, j)th element of the matrix ATA: a ai
T

j. Since the vectors ai and aj are orthonormal, 

their inner product is zero; the only exception is an inner product of one particular column with 

itself.

                                                             a ai
T

j

i j

i j
=

=

π

Ï
Ì
Ó

1

0

;

;

Therefore,

                                                             ATA = I (1.31)

Since A–1 A = I, it follows that 

                                                             A–1 = AT

LinearlyIndependentVectors

Consider a set of n vectors {x1, x2, …, xn}, each of which has n components. If there exists a set of 

n scalars a i, at least one of which is not zero, which satisfies

                                                a1x1 + a2x2 + … + anxn = 0 (1.32)

then the set of vectors {xi} is said to be linearly dependent.

If, 

                                                a1x1 + a2x2 + … + anxn = 0 (1.33)

implies that each a i = 0, then {xi} are linearly independent vectors. 
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EigenvaluesandEigenvectors

Given an n ¥ n matrix A, a very important class of linear equations is of the form 

Av = lv

for scalar l, which can be rewritten as, 

                                                          (A – l I)v = 0  (1.34)

where I is the identity matrix, and 0 is the zero vector. 

For a given l, this is a set of n homogeneous equations in n unknowns—the components in 

vector v. 

There are two questions of interest with regard to Eqn (1.34):

 (i) whether a solution to Eqn (1.34) exists; and 

 (ii) if the answer to the first question is yes, how many linearly independent solutions occur? 

We have the following answers to the two questions [33].

 (i) For Eqn (1.34) to have a nontrivial solution, rank of the matrix (A – l I), denoted r (A – l I), 

must be less than n, or equivalently

                                                                    |A – l I | = 0  (1.35a)

  On expanding the determinant, we get, 

                                                ln + a1 l
n–1 + … + an–1 l + an = 0  (1.35b)

  This equation is called the charateistic equation of matrix A, and its roots are characteristic 

roots, or eigenvalues of matrix A.

 (ii) The number of linearly independent solutions to Eqn (1.35b), is equal to (n – r(A – l I)), 

called the nullity of matrix A. 

We restrict our discussion to distinct eigenvalues l = l i ; i = 1, …, n. That is, we assume that 

there are n distinct (and not repeated) roots of the characteristic equation of a given matrix A. For 

distinct eigenvalue l i, there is one, and only one, linearly independent solution to Eqn (1.35b).

This solution is called the eigenvector v = ei of matrix A associated with the eigenvalue l = l i. 

When the eigenvalues are not distinct, the concept of generalized eignvectors becomes applicable 

[33]. 

How does one go about finding eigenvalues and eigenvectors of a given n ¥ n matrix. 

Unfortunately, it is only easy for n = 2 or atmost 3 [33]. The usual way to find eigenvectors is by 

some complex iterative method, which is beyond the scope of our presentation. We will rather rely 

on a useful package that does it all for us. 

We assume that for a given n ¥ n matrix A, we have found the eigenvalues 

                                                               l = l1, l2, …, ln  (1.36a)

and corresponding eigenvectors 

                                                               v = e1, e2, …, en (1.36b) 
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The vectors e1, e2, …, en are linearly independent and the nonsingular matrix 

                                                              E = [e1  e2 … en]  (1.36c)

transforms A into diagonal form:

A ei = l i ei

Therefore,

                                A[e1 e2 … en] = [e1 e2 … en] 
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 (1.37a)

This can be equivalently expressed as, 

                                                                     AE = EL  (1.37b)

where L is the diagonal matrix having eigenvalues of matrix A as its diagonal elements. 

Premultiplying both sides by E–1, we get, 

                                                                   E–1 AE = L  (1.37c)

So far we have considered a square matrix A. Let us now extend our results to symmetric matrix 

A. 

A symmetric matrix always has orthonormal set of eigenvectors. This can be shown as follows. 

Let l1 and l2 be distinct eigenvalues associated with eigenvectors e1 and e2, respectively. 

The inner product of vectors e1 and e2 is given by, 

                                                  e e e e
1 2 2 1

T T
=

Since, 

                                           ( ) ( )l1 1 2 1 2e e Ae e
T T

=

  = e A e
1 2

T T

  = e Ae1 2
T

;  since A is symmetric 

  = e e1 2 2
T ( )l

we have, 

 ( )l l1 2 1 2- e e
T  = 0 

Since l1 π l2, we have, 

 e e
1 2

T  = 0 

Thus, the eigenvectors of a symmetric matrix are orthogonal/orthonormal. This means that E is 

an orthonormal matrix; so by the result ET = E–1, we get (refer to Eqn (1.37c)),

                                                    ET AE = L  (1.38)
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1.10 RELEVANTRESOURCESFORMACHINELEARNING

The machine learning algorithms we discuss in the coming chapters have their origins in different 

domains: statistics, cognitive science, computer vision, signal processing, control, artificial 

intelligence, natural evolution. The research in these different domains followed different paths in 

the past with different emphases. In this book, the aim is to incorporate these emphases together to 

give a unified treatment of the problems and the proposed solutions.

The reader may like to start with the classic books on the subject [1–5]. These titles give a deeper 

view of the origins of machine learning and its relationship with different domains of original 

research. Coming to the ‘applied’ aspect of the subject, there are many books currently available. 

Some representative titles are [6–16]; the focus in these books varying over different domains. 

The popular titles [17–20] primarily deal with data mining for the business world—application 

of machine learning algorithms to the business optimization problems. Some other titles on data 

mining which the reader may find useful to refer to are [21–25]. Other subgroup of books is on 

computational intelligence [26–29] focusing more on neural networks, fuzzy logic systems, and 

evolutionary algorithms.

Reinforcement learning methods are applied to applications where the output of the system is a 

sequence of actions. In such cases, a single action (decision) is not important; what is important is 

the policy that is the sequence of correct actions to reach the goal. The learning algorithm should be 

able to assess the goodness of policies and learn from past action sequences to be able to generate 

a good policy. The field of reinforcement learning is developing rapidly, and we may expect to see 

some impressive results in the near future.

Sutton and Barto [30] discuss all the aspects of reinforcement learning, learning algorithms and 

several applications. A comprehensive presentation is given in [31]. Recent work on reinforcement 

learning applied to robotics is given in [32]. Author’s presentation of the subject is given in [33].

Many useful tutorial presentations on machine learning (including video tutorial lectures) are 

available over the Internet. On-line courses on different modules of machine learning are also being 

offered.

Research in machine learning is distributed over journals and conferences from different fields. 

Popular journals which contain machine learning papers are: Machine Learning; Journal of 

Machine Learning Research; Neural Computation; Neural Networks; Knowledge Discovery and 

Data Mining; IEEE Transactions on (Neural Networks and Learning Systems; Pattern Analysis 

and Machine Intelligence; Knowledge and Data Engineering; Systems, Man, and Cybernetics).

Journals of artificial intelligence, pattern recognition, signal processing, image processing, and 

those with a focus on statistics, also publish machine learning research papers.

Major conferences on machine learning are: Neural Information Processing systems (NIPS), 

Uncertainty in Artificial Intelligence (UAI), International Conference on Machine Learning 

(ICML), European Conference on Machine Learning (ECML), and Computational Learning 

Theory (COLT). Conferences on pattern recognition, artificial intelligence, neural networks, fuzzy 

logic, robotics and data mining, include machine learning in their spectrum of research areas.

Most recent papers by machine learning researchers are accessible over the Internet.

UCI Repository, at http://archive.ics.uci.edu/ml, contains a large number of datasets frequently 

used by machine learning researchers for bench-marking purposes. Another resource is the Kaggle 
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Repository, at https://www.kaggle.com. In addition to these, there are also repositories for particular 

applications, for example, computational biology, speech recognition, image classification, text 

classification, and so forth. New and larger datasets are constantly being added to these repositories. 

These datasets in public domain are used repeatedly by researchers while tailoring a new algorithm. 

Many authors/organizations also make their data available over the web.

Datasets available in public domain are mostly speculative research projects and not production 

systems.

Students who are studying a course on machine learning, must attempt a set of machine-learning 

experiments. Public-domain datasets for the experiments and the relevant research papers using 

these datasets, are the important resource of gaining confidence in the available tools and techniques 

of machine learning.

Another resource for machine learning experiments is the codes for machine learning algorithms. 

Before developing their own codes for the algorithms, it may be helpful using available codes first. 

Many of the authors of machine learning research make their codes available over the web. There 

are also free software toolboxes and packages implementing various machine learning algorithms. 

Among these, Weka, R, Rapid Miner, Python are especially noteworthy. Popular commercial 

software vendors are MATLAB, SAS.

Many books on machine learning/data mining/predictive analytics are written with the dual 

objective of (i) explaining the concepts and techniques of machine learning, and (ii) training the 

readers in the usage of one of the software packages.



2.1 LEARNINGFROMOBSERVATIONS

We consider the following setting in this chapter to present the basics of learning theory.

There is some set S of possible patterns/observations/samples over which various output 

functions may be defined. The training experience is available in the form of N patterns s(i) Œ S; i = 

1, 2, …, N. We specify a pattern by a fixed number n of attributes/features xj; j = 1, 2, …, n; where 

each feature has real numerical value for the pattern. The domain of xj is given by a set Vxj
Œ¬  

of its values. A data pattern s(i) has the feature-value set { , , }
( ) ( )
x x

i

n

i

1 º , where x Vj
i

xj

( )
Œ . We can 

visualize each pattern with n numerical features as a point in n-dimensional state space ¬n:

x = [x1 x2 … xn]
T Œ ¬n

The set X is the finite set of feature vectors x(i) for all the N patterns. We can visualize X as 

a region of the state space ¬n to which the patterns belong, i.e., X Ã ¬n. Note that x(i) is the 

representation of s(i); and X is the representation space.

For supervised learning problems, the decision attribute (output) y is known a priori for each 

pattern in the set S. For multiclass classification (pattern recognition) problems, the domain of y is 

given by the set Vy = {1, 2, …, M}. The output y(i) for a pattern s(i) will take the value from the set 

Vy, which represents the class to which the pattern belongs. Thus, in classification problems, each 

pattern s(i) is associated with an output y(i) Œ Vy. For regression (numeric prediction) problems, Vy Œ 

¬, and each pattern s(i) is associated with an output y(i) Œ ¬. We can visualize the output belonging 

to one-dimensional region Y of the state space.

We assume that different patterns x(i) in X may be encountered with different frequencies. A 

convenient way to model this is to assume that there is some unknown probability distribution 

that defines the probability of encountering each pattern x(i) in X. The training examples are 

provided to the learning machine by a trainer who draws each pattern independently according to 
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the distribution, and who then forwards the pattern x along with its true (observed) output y to the 

learning machine. The training experience is in the form of data D that describes how the system 

behaves over its entire range of operation.

 D : {x(i), y(i)}; i = 1, 2, …, N (2.1)

In general, learning is most reliable when the training examples follow a distribution similar 

to that of future patterns (unseen by the machine during training) which the machine will receive; 

the machine will be required to give estimated output values ŷ  for these patterns. If the training 

experience consists of data that lies in a region of the state space, then that region must be fully 

representative of situations over which the trained machine will later be used. The most current 

theory of machine learning rests on the crucial assumption that the distribution of training examples 

is identical to the distribution of unseen examples.

Assume that the data D are independently drawn and identically distributed (commonly referred 

to as iid data) samples from some unknown probability distribution represented by the probability 

density function p(x, y) (refer to Section 3.2). Assume a machine defined by a function

f : X Æ Y

that maps from x Œ X to y Œ Y, where X is the input space and Y is the output space of the function. 

When f (◊) is selected, the machine is called a trained machine that gives estimated output value

ŷ  = f (x)

for a given pattern x. To assess the success of learning, we need an evaluation criterion. The 

evaluation criteria are generally based on the consequences of the decision made by the machine, 

namely—the errors, profits or losses, penalties or rewards involved. In supervised learning, quite 

often used criterion is a minimization criterion involving potential loss into a classification/

regression decision made.

From the set of possible learning machines (functions), we want to select the optimal one that 

minimizes the loss. We can define the set of learning machines by a function f (x, w), where w 

contains adjustable parameters. Thus, the set of parameters w becomes the subject of learning. A 

loss function L(y, f (x, w)) is a measure of the error between the actual output y and estimated output

 ŷ  = f(x, w) (2.2)

Suppose we observe a particular x and we contemplate taking decision f(x, w) which yields the 

output ŷ  (the estimated output). If the true value of the output is y, by definition, we will incur 

the loss L(y, f(x, w)). If p(x, y) represents the joint probability density function of the data, then 

expected loss associated with decision f(x, w) is merely (refer to Section 3.2)

 E[L(y, f (x, w))] = L y f p y d dy R

Y

( , ( , )) ( , ) ( )x w x x w

X

=
¥
Ú  (2.3) 

dx dy is our notation for the (n + 1)-space volume element, and the integral extends over the 

entire joint space created by feature space (input space) X and output space Y.

A risk refers to a predictable loss in decision-theoretic terminology, and R(w) is known as the 

risk function. On coming across a specific observation x, the expected loss can be minimized by 



38  Applied Machine Learning

choosing a decision function that minimizes the risk function. If tractable, this process actually 

provides optimum performance.

Stated formally, our problem is to find a decision function f (x, w) against p(x, y) that minimizes 

the risk function R(w).

Thus, we could design optimal classifiers/numeric predictors if we know the joint probability 

density function p(x, y). In machine learning applications, this type of information pertaining to 

the probabilistic structure of the problem is hardly found. Typically, we simply have some vague 

general knowledge regarding the situation together with several design samples or training data—

specific representatives of the patterns we wish to categorize/regress. The issue, therefore, is to seek 

a way to employ this information to design or train the learning machine. Different processes that 

have been established to tackle such problems, will be considered throughout the book.

Empirical-Risk-Minimization

The learning problem defined before is, in fact, intractable, since we do not know p(x, y) explicitly. 

The risk function representing true risk, given by Eqn (2.3), cannot be calculated. All that is available 

is a training dataset of examples drawn by independent sampling a (X ¥ Y) space according to some 

unknown probability distribution. Therefore, a learning machine can at best guarantee that the 

estimated output values ŷ  fit the true values y over the training data. 

With dataset (2.1) being the only source of information, the risk function given by Eqn (2.3) 

must be approximated by the empirical risk, Remp(w):

 Remp (w) �
1

1
N

L y f
i i

i

N

( , ( , ))
( ) ( )

x w

=

Â  (2.4)

The empirical risk given by Eqn (2.4), replaces average over p(x, y) by an average over the 

training sample.

In classification problems, probably the simplest and quite often used criterion involves counting 

the misclassification error (Section 2.8); if a pattern x is classified wrongly, we incur loss 1, 

otherwise there is no penalty. The loss function for classification problems

 L(y, f(x, w)) = 
0

1

if

otherwise

y f y= =Ï
Ì
Ô

ÓÔ

( , )x w �
 (2.5)

where x denotes the pattern, y denotes observation (true output) and f (x, w) = ŷ  is the estimation. 

The minimum of the loss function is 0.

When estimating the real-valued quantities (regression problems), it is usually the size of 

the difference (y – f (x, w)), i.e., the amount of misestimation (misprediction), which is used to 

determine the quality of the estimate. The popular choice (Section 2.7) is to minimize the sum of 

squares of the residuals (y – f(x, w)). In most cases, the loss function for the regression problems 

will be of the type

 L(y, f(x, w)) = 
1
2

2( ( , ))y f- x w  (2.6)
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It appears as if (2.4) is the answer to our problems and all that remains to be done is to find a 

suitable function f (◊) out of the set of all possible functions (it is an infinite set, theoretically) that 

minimizes Remp. Unfortunately, this problem of finding the minimum of the empirical risk is an 

ill-posed problem. Here, the ‘ill-posed’ characteristic of the problem is due to the infinite number 

of possible solutions to the problem. We will show this with the help of some simple examples.

Before we take up the examples, a relook at the learning task in hand will be helpful. Given a 

set of training examples {x(i), y(i)}; i = 1, 2, …, N, the learning task requires estimating/predicting 

outputs ŷ  = f (x, w) for the data beyond the training data, i.e., for the data the machine has not seen 

during its training phase. The only information available about f (◊) is its true value over the training 

examples. Our aim is to use the machine for prediction of the output (required for decision making) 

for the data for which the true output is not known.

The key assumption for reliable learning is that the training examples and future examples (unseen 

by the machine during training) are drawn randomly and independently from some population of 

examples with the same (though unknown) probability distribution (the data is iid—independently 

and identically distributed). If this assumption is met, we can claim that a learning machine giving 

100% accuracy on training data will give high accuracy on unseen data (data beyond the training 

sample). However, this assumption is not guaranteed. In fact, machine learning tasks based on 

real-world data are unlikely to find the iid data assumption tenable. The real-world data tend to 

be incomplete, noisy, and inconsistent (we will consider these aspects of real-world data in later 

chapters).

Let us now return to the examples.

Consider a regression problem. Suppose we are given empirical observations:

((x(1), y(1)), …, (x(N), y(N))) Œ X ¥ Y

where for simplicity, we take X Œ ¬, and Y Œ¬. Figure 2.1 shows a plot of such a dataset (data points 

indicated by ). Note that all functions that interpolate these data points will result in zero value for 

Remp. Figure 2.1 shows two out of infinite many different interpolating functions of training data 

pairs that are possible. Each of the two interpolants results in Remp = 0, but at the same time, none 

is a good model of the true underlying dependency between X and Y, because both the functions 

perform very poorly outside the training inputs (indicated as ). Thus, interpolating functions that 

result in zero empirical risk, can mislead. There are many other approximating functions (learning 

machines) that will minimize the empirical risk (training error) but not necessarily the true 

(expected) risk.

Consider now a classification problem. In two-class pattern recognition, we seek to infer a 

function

f(◊) : X Æ {±1}, i.e., Y = {±1}

Figure 2.2 shows a simple 2-dimensional example of a pattern recognition problem. The task 

is to separate solid dots from circles by finding a function that takes +1 on the dots and –1 on the 

circles. The classification function shown by dashed line in Fig. 2.2 separates all training points 

correctly.
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Figure 2.1  A simple regression example
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Figure 2.2  A simple classification example

From this figure, it is, however, unclear whether the same would hold true for other points. For 

instance, we take some test points for which the output is known but these points have not been 

used for training. The test points indicated by  are known to have +1 output and those indicated 

by □ have –1 output. We see from Fig. 2.2 that a classifier with even zero training error may not 

be able to get all test points right. We need some compromise (e.g., the decision boundary shown 

by solid line in Fig. 2.2) which gets most of the test points right; such a classifier may not possess 

zero training error.

Minimization of training error given by the empirical risk function in (2.4) is, thus, not a solution 

to our learning task. Minimization of true error (errors of prediction for total data, that includes 

both training and unseen patterns) given by the risk function in (2.3) is our learning task, but this 

problem is intractable with p(x, y) unknown explicitly.

A generic question about machine learning is: 

What is it that we need for empirical risk minimization to lead to a successful solution to the 

learning task?
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Lacking any further information except the training samples (which is the situation for most of 

the complex decision-making problems we face today), the solution lies in inductive inference.

InductiveLearning

The task of inductive learning is this:

Given a collection of examples (x(i) f(x(i))); i = 1, 2, …, N, of a function f (x), return a function 

h(x) that approximates f (x). 

In the statistical literature, the approximating function h(x) is called hypothesis function.

The true function f (x) correctly maps the input space X (of the entire data) to the output space Y.

This function is not known in a real-world decision-making problem. Our satisfaction on an 

hypothesis function (machine learning algorithm) h(x) with high accuracy on the given collection 

of examples (learning examples for the machine/examples for training the machine) of f (x) could 

be premature because central aim of designing a machine is to suggest decisions when presented 

with novel patterns (unseen by the machine during training).

From a conceptual point of view, it is not easy to tell whether any particular h(◊) is a good 

approximation of f (◊). A good approximation will generalize well—that is, will predict novel 

patterns correctly. Generalization performance is, thus, the fundamental problem in inductive 

learning. 

How do we judge the generalization performance of an algorithm? We can estimate such 

performance by means of a test dataset, sampled independently as is the training set. The off-training 

set error—the error on points not in the training set, will be used as a measure of generalization 

performance. Details will appear later in this chapter.

The assumption in inductive learning is that the ideal hypothesis related to unseen patterns 

is the one induced by the observed training data. Inductive learning techniques obtain a general 

hypothesis by seeking empirical regularities over the training examples. These regularities induce 

the approximation of the mapping function well over the observed examples. It generalizes from 

the specific training examples, hypothesizing a general function covering these examples.

When we confront various hypotheses (hypothesis space) we also encounter certain generic 

questions:

If we are only interested in the generalizing performance, is there a reason for the preference of 

one hypothesis over another? If a specific hypothesis outperforms another over some data sample, 

will the hypothesis necessarily be more accurate? Is it possible for a hypothesis to be better on the 

whole?

No Free Lunch Theorem [4] highlights the unpleasant fact that if the aim is to achieve perfect 

generalization performance, there are no reasons—independent of context or usage—to prefer 

one learning algorithm over another. If one algorithm appears to outperform another in a specific 

situation, it is as a result of its fit to the specific learning problem, not the general supremacy of the 

algorithm. Even if the algorithms are widely used and grounded in terms of theory, they will not 

perform well on certain problems.

It is clear from the No Free Lunch Theorem that in absence of knowledge pertaining to the 

relevant learning domains, we should not favor any learning algorithm over another.  According to 

the Ugly Duckling Theorem [4], in absence of assumptions about the learning domains there is no 

privileged or ‘best’ feature representation even the idea of similarity between patterns is dependent 
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on assumptions we make related to the learning domains. These assumptions may be correct or 

incorrect.

In certain fields, rigid conservation laws exist—such as conservation of energy, charge, and 

momentum; and constraint laws—such as the second law of thermodynamics. These apply 

irrespective of  how many forces are at play or their configuration. Do analogous results exist in 

machine learning? Certainly not.  Unfortunately, no rigid results in machine learning exist that 

can apply to all situations, irrespective of the learning algorithm selected, the number of patterns 

and their distribution, and the nature of the learning task. Awareness of the learning domains, and 

experience with a wide range of algorithms is the greatest insurance to solve new learning problems.

Many results that look for ways to quantify the ‘match’ between a learning algorithm and the 

problem addressed by it, will appear in the forthcoming discussions. In classical statistics, this 

problem has been examined in terms of bias and variance. The two terms are not independent, as 

is clear from  Section 2.2.

Fragments of statistical learning theory have begun to emerge, providing answers to generic 

questions about machine learning within particular problem settings. VC (Vapnik-Chervonenkis) 

model is mainly concerned with hypothesis space complexity. PAC (Probably-Accurately-Correct) 

model answers questions on sample complexity (training-data size), and computational complexity. 

We will present these results in Section 2.3.

As we shall see in this chapter, such results are of theoretical interest. Practitioners, by and 

large, are depending on heuristic (trial-and-error) search process. Trial-and-error effort can, of 

course, be reduced using knowledge of the learning domains, and experience with broad range of 

learning algorithms. Frequent empirical ‘successes’ of philosophical principle of Occam’s razor, 

and minimum description length principle, have given some tools in the hands of practitioners.

Section 2.4 uses intuitive platform of discussion on Occam’s razor principle and overfitting 

avoidance. The discussion on minimum description length principle will be taken up in Chapter 3. 

The discussion given in this book is without much mathematical rigor or statistical justification. 

Our aim is to give main insights of learning theory in a fairly simple manner.

2.2 BIASANDVARIANCE

Consider performing the following experiment. We first collect a random sample D of N indepen-

dently drawn patterns from the distribution p(x, y), and then measure the sample error/training 

error/approximation error from Eqn (2.4), using loss function (2.5) for classification problem or 

(2.6) for regression problem. Let us denote the approximation error based on data sample D and 

hypothesis h as ‘errorD [h]’. If we repeat the experiment several times, each time drawing a different 

sample (x(i), y(i)) of size N, we would expect to see different values of errorD [h], on the basis of the 

random differences in the way the different samples of size N are made up. We say in such cases 

that errorDj
[h], the result of the jth experiment, is a random variable.

Imagine that we were to run K such experiments, measuring the random variables errorDj
[h]; j = 

1, 2, …, K. The average over the K experiments:

 errorD[h] = ED{errorDj
[h]} (2.7)

where ED{◊} denotes the expectation or ensemble average.
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Bias and variance are most easily understood in the context of regression (numeric prediction). It 

is convenient to consider the particular case of a hypothesis function trained using the risk function 

(2.4), although our conclusions will be much more general.

Let us suppose that there is a true (yet unknown) function f (x) possessing continuous-valued 

output y with noise, and we try to estimate this function on the basis of N samples in set Dj generated 

from f(x). 

The regression function estimated is denoted h(x; Dj), and we are interested in the dependence 

of this approximation on the training set Dj. Due to random variations in the selection of datasets 

Dj; j = 1, …, K, for some datasets, the approximation will be excellent, while for other datasets of 

the same size, approximation will be poor. The natural measure of the effectiveness of the estimator 

can be expressed as its mean-square deviation (refer to Eqn (2.6)) from the desired optimal: 

[h(x; Dj) – f (x)]2. 

A measure of how close the mapping function h(x; Dj) is to the desired one is, therefore, given 

by the error function,

 errorDj
[h] = [h(x; Dj) – f (x)]2  (2.8) 

The value of this quantity will depend on the particular dataset Dj on which it is trained. We write 

the average over the complete ensemble of datasets as, 

 errorD[h] = ED{[h(x; Dj) – f(x)]2}  (2.9)

A non-zero error can arise for essentially two reasons:

 1. It may be that the hypothesis function h(◊) is on average, different from the regression function 

f(x). This is called bias. 

 2. It may be that the hypothesis function is very sensitive to the particular dataset Dj, so that for 

a given x, it is larger than the required value for some datasets, and smaller for other datasets. 

This is called variance. 

We can make the decomposition into bias and variance explicit by writing (2.8) in somewhat 

different, but mathematically equivalent form. 

 errorDj
[h] = [h(x; Dj) – f(x)]2

 = [h(x; Dj) – ED{h(x; Dj)} + ED{h(x; Dj} – f(x)]2

 = [h(x; Dj) – ED{h(x; Dj)}]2 + [ED{h(x; Dj)} – f(x)]2 + 

  2[h(x; Dj) – ED{h(x; Dj)}] [ED{h(x; Dj)} – f (x)]  (2.10) 

In order to compute the expression in (2.10), we take the expectation of both sides over the 

ensemble of datasets D.

 errorD[h] = ED{[h(x; Dj) – f(x)]2}

 = ED{[h(x; Dj) – ED{h(x; Dj)}]2} + ED{[ED{h(x; Dj)} – f(x)]2} +

  2ED{[h(x; Dj) – ED{h(x; Dj)}] [ED{h(x; Dj)} – f(x)]}  (2.11)

Note that the third term on the right hand side of (2.11) vanishes (Help: ED{f(x)} = f (x); ED{ED 

{h(x; Dj)}} = ED{h(x; Dj)}) and we are left with, 
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        errorD[h] = ED{[h(x; Dj) – f(x)]2}

                       =  [ { ( ; )} ( )] {[ ( ; ) { ( ;

( )

E E E
D D D

D D Dh f h hj jx x x x- + -
2

2bias

� ����� �����
jj)] }2

variance

� ������ ������

 (2.12)

The bias measures the level to which the average (over all datasets) of the hypothesis function 

is different from the desired function f (x). The variance is a measure of the level to which the 

hypothesis function h(x; Dj) is sensitive to the specific selection of the dataset.

The true (but unknown) function we wish to approximate is f (x). We have dataset D of N samples 

having continuous-valued output y with noise: y = f(x) + e where e represents noise. We seek to 

find an approximate function. ŷ  = h (x; w) such that mean-square-error is minimized (w represents 

adjustable parameters of hypothesis function h(◊)). To assess the effectiveness of the learned model 

h(◊), we consider Dj ; j = 1, …, K, training sets.  

From Eqn (2.12), we observe that the bias term reflects the approximation error that the 

hypothesis h(◊) is expected to have on average when trained on datasets of same finite size. In 

practice, it is often necessary to iterate in order to adjust the parameters of the hypothesis function 

to the problem specifics, so as to reduce the approximation error. In general, higher the complexity 

of the hypothesis function (more flexible function with large number of adjustable parameters), the 

lower is the approximation error.

From Eqn (2.12), we also observe that the variance term reflects the capability of the trained 

model on a data sample to generalize to other data samples. Low variance means that the estimate 

of f(x) based on a data sample does not change much on the average as the data sample varies. 

Unfortunately, the higher the complexity of the hypothesis function (which results in low bias/low 

approximation error), the higher is the variance.

We see that there is a natural trade-off between bias and variance. Procedures with increased 

flexibility to adopt to the training data tend to have lower bias but higher variance. Simpler 

(inflexible; less number of free parameters) models tend to have higher bias but lower variance. 

To minimize the overall mean-square-error, we need a hypothesis that results in low bias and low 

variance. This is known as bias-variance dilemma or bias-variance trade-off [35]. 

The design of a good hypothesis through the study of trade-off between bias and variance in 

the context of a finite data-sample size, is one of the main themes of modern automatic learning 

theory. In general, finding an optimal bias-variance trade-off is hard, but acceptable solutions can 

be found. New statistical learning techniques are being developed with promising results. The next 

section introduces this approach. This is then followed by procedures for avoiding overfitting, and 

heuristic search methods.

  Example2.1

Suppose that the true target function is of quadratic form in one variable with noise: y = x2 + e ; e 

is noise term; x takes on values on the interval (0, 5) [3]. Assume that a data sample is generated 

from this model.

Consider a linear hypothesis function; slope and intercept are the two adjustable parameters of 

the linear curve that we fit to the training data. If the experiment is repeated many times, it can be 
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seen that estimates are scattered around ŷ = 10.81, given x = 3. According to the original model, 

the value of y, given x = 3, is scattered around y = 9. This difference is the bias (a sort of persistent 

error because of our choice of a simpler model), i.e., a linear model instead of a more complex 

polynomial model. The bias is depicted in Fig. 2.3(a).

Now, let us fit a complex model, say a 5th order polynomial, having many adjustable parameters. 

The distribution of the estimate ŷ at x = 3 from different random samples will look like the one 

shown in Fig. 2.3(b). We note that the bias is now zero but variability in prediction is very high. 

We see from Fig. 2.3(a) that when we fit a model which is simpler (compared to the model which 

generated the data) bias is high but variability is less, whereas when we fitted a model of higher 

order, bias is negligible but variance is very high. This is bias-variance dielemma.

Figure 2.4 shows how bias and variance vary with the complexity of the model. For increasing 

complexity of the model, the bias component of the error decreases, but the variance component 

increases. For a certain model complexity, the total error is minimal. Different models result in 

different bias-variance trade-off curves. 
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Figure 2.3  Illustration of bias and variance in the domain of regression
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Figure 2.4  Bias-variance trade-off

2.3 WHYLEARNINGWORKS:COMPUTATIONALLEARNINGTHEORY

The main question posed in Section 2.1 has not yet been answered:

Is it possible to say with certainty that the learning algorithm has given rise to a theory, which 

can predict the future with accuracy? Formally, how is it possible to know that the hypothesis h(◊) 

is close to the true function f (◊) if we do not know what f is? 

Till we know the answers to these questions, machine learning’s own success will be baffling. 

The approach taken in this section is based on the statistical learning theory (also known as 

computational learning theory). Instead of  a complete treatment, we attempt to provide the main 

insights in a non-technical way, to offer the reader with certain intuition as to how various pieces 

of the puzzle fit together [3]. 

What is required for empirical risk minimization over a given dataset (x(i), y(i)); i = 1, …, N, to 

work (bias and variance low at the same time)? Let us examine the possibility of success as N Æ • 

[53]. The classical Law of Large Numbers ensures that empirical risk (refer to Eqn (2.4)) 

Remp[f ] = 
1

1N
i

N

=

Â L(y(i), f (x(i)))

converges probabilistically to the true expected risk (refer to Eqn (2.3))

 R[f ] = 

X¥
Ú

Y

L(y, f (x)) p(x, y)dx dy

as N Æ •:

                                            |Remp[f] – R[ f] | 
P
æ Ææ 0 as N Æ •, for each fixed f.  (2.13)

This means that " d > 0, we have (P denotes the probability)

 lim
NÆ•

P{|Remp[f ] – R[f ] | > d} = 0 (2.14)
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This statement applies as well for the parameters w which define function f ( f : f (x, w)).

                                                lim
NÆ•

P{|Remp[w] – R[w]| > d} = 0 " d  > 0 (2.15)

At first sight, it seems that empirical risk minimization should work (as N Æ •) in contradiction 

to our fears expressed in bias-variance dilemma. Unfortunately, it does not work. The convergence 

in probability does not guarantee that the function f emp that minimizes Remp[ f ] converges to the true 

function f opt that minimizes R[ f ].

Simplified depiction of the convergence of empirical risk to true risk is given in Fig. 2.5. x-axis 

gives one-dimensional representation of function class, and y-axis gives risk (error). Downward 

arrow indicates that Remp[ f] converges to R[ f ] for fixed f as N Æ •. f opt is the function that gives 

best attainable true risk, R[f opt]. There is no guarantee that as N Æ •, f Æ f opt.

R
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R femp[ ]

Risk

R[ ]f

Function classf f opt f emp
 

Figure 2.5  Convergence of empirical risk to true risk

We have to do more than just solving empirical risk minimization problem. What is the catch?

What is needed is asymptotic consistency or uniform convergence. This property of consistency is 

defined in the key learning theorem for bounded loss functions [37, 38], which states that empirical 

risk minimization principle is consistent if and only if empirical risk converges uniformly to the 

true risk in the following probabilistic sense:

                                    lim
NÆ•

P{ sup
f ŒF

|R[f ] – Remp[ f ] | > d} = 0 " d  > 0 (2.16)

F is the set of functions that the learning machine can implement. 

Equivalently, in terms of parameters of function f, we can express asymptotic consistency 

condition as, 

                                 lim
NÆ•

P{ sup
w

|R[w] – Remp[w] | > d} = 0 " d  > 0 (2.17)

sup denotes the supremum (least upper bound) of the set S = |R(w) – Remp(w) |; it is defined by 

the smallest element b such that b ≥ s for all s ŒS. 

Equation (2.17) asserts that the consistency is determined by the function from the set of 

approximating functions F that gives a worst-case measure (maximum value of (R – Remp)), i.e., 

that provides the largest error between the empirical risk and the true risk. Consistency, and thus 

learning, crucially depends on the set of functions F. If we consider the set of all possible functions, 

learning is not possible.
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It turns out that without restricting the set of admissible functions, empirical risk minimization 

is not consistent. 

We now address whether there are properties of learning machines, i.e., of sets of functions, 

which ensure uniform convergence of risks. 

VC (Vapnik and Chervonenkis) Theory [38] shows that it is imperative to restrict the set of 

functions F from which f is chosen to one that has a capacity suitable for the amount of available 

training data. The best-known capacity concept of VC theory is VC Dimension; it restricts the 

function class F to a finite one for the purpose of bounding (2.16).

Despite the fact that the VC dimension is very important, the unfortunate reality is that its 

analytic estimations can be used only for the simplest sets of functions. The calculation of VC 

dimension for nonlinear function classes is very difficult task, if possible at all. Also, the nature of 

learning problem (classification/regression) affects estimation complexity. But even when the VC 

dimension cannot be calculated directly, the results of VC theory are relevant for an introduction of 

structure on the class of approximating functions. 

The VC theory offers bounds on the generalization error. Minimization of these bounds is 

dependent on the empirical risk and the capacity of the function class. A result from VC theory for 

binary classification states that with a probability at least (1 – d ), 

                                 R[f ] £ Remp[f ] + 
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In case of binary classification, the VC dimension (capacity) hc of a set F of functions is defined 

as the number of points that can be separated (shattered) in all possible ways.

Bounds like (2.18) can be used to justify induction principle different from the empirical 

risk minimization principle. Vapnik and Chervonenkis proposed minimizing the right hand side 

of the bound (2.18), rather than the empirical risk. The confidence term in the present case, 
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, then ensures that the chosen function not only leads to small risk, 

but also comes from a function class with small capacity. The capacity term is a property of the 

function class F, and not of any individual function f. Thus, the bound cannot simply be minimized 

over choices of f. Instead, we introduce a so-called structure on F, and minimize over elements of 

the structure. This leads to an induction principle called structural risk minimization. We leave out 

the technicalities involved; the main idea is as follows:

The function class F is decomposed into a nested sequence of subsets of increasing capacity. The 

structural risk minimization principle picks a function f * which has small training error (Remp), and 

comes from an element of the structure that has low capacity hc; thus minimizing a risk bound of 

the type (2.18). This is graphically depicted in Fig. 2.6.

Structural risk minimization is a novel inductive principle for learning from finite training data 

sets. It is very useful for dealing with small samples. The basic idea is to choose from a large number 

of candidate learning machines, a machine of the right complexity to describe training data pairs. 

This is done by restricting the hypothesis space of approximating functions and simultaneously 

controlling their complexity. 
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Figure 2.6  Structural risk minimization

Another popular formalism of computational learning theory is the Probably-Approximately-

Correct (PAC) learning. Let us examine sample complexity in PAC framework. 

The sample complexity of a learning algorithm is defined as the smallest number of samples 

required for learning by F, that achieves a given approximation accuracy e with a probability

(1 – d ). Accuracy e is defined as follows: 

                                       errorP[f emp] £ e + errorD[f emp]  (2.19)

where D is the set of examples available to the machine, and P represents the probability distribution 

over the entire set of patterns. 

In terms of cardinality of F, denoted |F |, the sample complexity of a learning algorithm NPAC 

(smallest number of training examples required for learning), is at most
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For most hypothesis spaces for binary classification, N ≥ NPAC gives a good result. Bounds for 

other problems have also been found. 

Note that the bound (2.20) can be a substantial overestimate. The weakness of this bound is 

mainly due to |F | term. In fact, much tighter bound is possible using VC dimension:
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How about the overall computational complexity? That will depend, of course, on specific 

learning algorithm. 

2.4 OCCAM’SRAZORPRINCIPLEANDOVERFITTINGAVOIDANCE

Occam’sRazorPrinciple

The Franciscan monk, Willam of Occam, was born in 1280, much before the invention of 

modern statistics. His name is linked with machine learning through the basic idea ‘The simpler 
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explanations are more reasonable, and any unnecessary complexity should be shaved off ’. This 

line of reasoning—Occam’s razor principle—is his contribution to the domain of machine learning.

If there are two algorithms and both of them perform equally well on the training set, then 

according to Occam’s razor principle, the simpler algorithm can be expected to do better on a test 

set; ‘simpler’ may imply needing lesser parameters, lesser training time, fewer attributes for data 

representation, and lesser computational complexity. Our design methodology itself imposes a bias 

toward ‘simple’ solutions in applied machine learning. We usually stop looking for a design when 

the solution is ‘good enough’, not necessarily the optimal one.

Occam’s razor principle suggests hypothesis functions that avoid overfitting of the training data.

Overfitting

In machine learning jargon, a learning machine is said to overfit the training examples if certain 

other learning machine that fits the training examples less well, actually performs better over the 

total distribution of patterns (i.e., including patterns beyond the training set).

Figure 2.7 depicts the effect of overfitting in a typical application of machine learning. The 

horizontal axis of the plot shows how complex the classifier is (more number of weights in the 

neural network, large number of nodes in the decision free, more number of rules in a fuzzy logic 

model, etc.). The vertical axis is an indicator of how accurate the forecasts made by the classifier 

are. The solid line depicts how accurate the classifier is over the training examples, while the 

broken line shows the accuracy measured over an independent set of test examples (not included 

in the training set, but class labels known). Predictably, the accuracy of the classifier over training 

examples increases monotonically as the classifier becomes more complex. But, the accuracy over 

the independent test examples first grows, then reduces.
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Figure 2.7

Learning is most reliable when the training examples follow a distribution similar to that of 

future instances unseen during training. If training experience consists of data that lies in a region 

of state space, then that region must be fully representative of situations over which our learning 
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machine will later be used. Machine learning tasks based on real-world data are unlikely to find this 

assumption tenable. The real-world data tend to be incomplete, noisy, and inconsistent. Classifier 

design for such a data results in more complex classifier, if a near-perfect fit on the training data is 

the goal. To illustrate, consider the effect of a training example with incorrect class label. A classifier 

that fits the data perfectly will be more complex; complexity in design is simply a consequence of 

fitting the noisy training example. We expect another classifier that is simpler but does not fit 

training data perfectly, to outperform this classifier over subsequent data drawn from the same 

pattern distribution. 

Even in noise-free training data, overfitting can occur due to insufficient number of training 

examples. Coincidental regularities in this dataset lead to a risk of inducing an approximation 

function with poor generalization performance. 

Section 2.1  clearly states that there exist no problem-independent reasons to favor one algorithm 

over another. Then why is it required to  avoid overfitting? Why do we usually promote simpler 

algorithms which have lesser features and parameters?

In fact, methods that help avoid overfitting are not intrinsically advantageous. They can provide 

benefit only if they are able to resolve the problems for which they are used. Empirical success 

depends on the  match of the learning algorithm with the problem—not only the imposition of 

avoiding overfitting. The frequent empirical successes of overfitting avoidance indicate that the 

classes of real-world problems that have been addressed till now have particular properties that 

offer a match. 

2.5 HEURISTICSEARCHININDUCTIVELEARNING

Before we move forward, a review of our discussion so far in this chapter, will be helpful. 

Review

Machine learning is aimed at building a statistical model of the process which generates the data, 

and not to learn an accurate representation of the training data itself. This aim is important for the 

machine to make good predictions for new inputs, i.e., to demonstrate good generalization.

The success of learning very much depends on hypothesis space complexity and sample 

complexity. The two are interdependent. The goal is to find a hypothesis (model) simplest in terms 

of complexity and best in terms of empirical error on the data. Such a choice is expected to give 

good generalization performance. Basically, finding a hypothesis function of complexity consistent 

with the given training data, is the search problem in hand. 

Substantial insight into this phenomenon was given in Section 2.2, which introduced the idea 

of the bias-variance trade-off, wherein the mean-square error is decomposed into the sum of 

the bias-squared plus variance. A function, which is too simple or too inflexible (number of free 

parameters too less) will have a huge bias, whereas one which is highly complex or too flexible (too 

many parameters will help fit too much of noise present in the training data) will possess a huge 

variance. Best generalization is achieved through the best compromise between the contradictory 

requirements of small bias and small variance. 
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In order to find the optimum balance between bias and variance, we need to have a way of 

controlling the effective complexity of the hypothesis functions. Section 2.3 highlighted the 

structural-risk minimization principle to achieve this objective. VC dimension was introduced as 

an important measure of function complexity. Structural-risk minimization uses a set of hypothesis 

functions ordered in terms of their complexities; hypothesis selection then corresponds to finding 

the function simplest in terms of complexity and best in terms of empirical error on the data. 

Relationship between the hypothesis function complexity and sample complexity given by PAC 

(Probably-Accurately-Correct) model of learning was also highlighted in this section. 

What has been the conclusion?

The mathematical models of learning (VC model, PAC model) provide a platform for theoretical 

characterization of machine learning but lack (at least today) practical tools for real-life problems of 

varying complexities. Bias-variance trade-off is also a theoretical result because we lack practical 

tools to obtain optimum values of bias and variance. Machine learning community is, by and large, 

not using these models to build a learning machine for classification/regression problems; they 

depend on certain tools which appear to be heuristic, trial-and-error tools. In fact, the motivation 

for these tools comes from classical statistics and the computational learning theory. Practitioners 

today, more or less rely on the knowledge of learning domains and their experience with broad range 

of hypothesis functions. Occam’s razor principle and overfitting avoidance, described earlier in 

Section 2.4, are extensively exploited. Heuristic strategies for overfitting avoidance: regularization, 

early stopping, pruning (appearing later in this section); and minimum description length principle 

(detailed in Section 3.9), are some of the heuristic tools explored by practitioners today.

An optimistic view point: the mathematical models give an upper bound on generalization error. 

We might hope that by our practical heuristic approach (or even mere luck), we would achieve good 

generalization with fewer training patterns than the number predicted using mathematical learning 

models developed in classical statistics and computational learning theory. 

2.5.1 SearchthroughHypothesisSpace

In this sub-section, we discuss heuristic search strategies. The word ‘heuristic’ indicates that 

strategies for the search problem cannot be precisely pre-defined. Trial-and-error is the approach of 

searching for a ‘good enough’ solution. This approach, however, gets more organized if we exploit 

the prior knowledge about the learning domains and experience with a broad range of algorithms. 

Machine learning entails looking through a space of probable hypotheses to decide on one 

that fits the data observed. and any previous knowledge held by the learner. Space of probable 

hypotheses is infinite in theoretical terms. The learning task, therefore, is to explore a widespread 

space to find the hypothesis that is most consistent with the existing training examples. Luckily, 

there are merely a few possible candidate hypotheses in use today based on empirical experience 

(refer to Section 3.5.3).

Applied machine learning organizes the search as per the following two-step procedure (refer to 

Section 3.5). 

 (1) The search is first focused on a class of the possible hypotheses, chosen for the learning task 

in hand. Prior knowledge and experience are helpful in this selection. Different classes are 

appropriate for different kinds of learning tasks. 
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 (2) For each of the classes, the corresponding learning algorithm organizes the search through all 

possible structures of the learning machine.

In the following paragraphs, we describe principal techniques used in heuristic search to optimize 

hypothesis complexity for a given training dataset.

Regularization: The regularization model promotes smoother functions by creating a new criterion 

function that relies not only on the training error, but also on algorithmic intricacy. Particularly, the 

new criterion function punishes extremely complex hypotheses; looking for the minimum in this 

criterion is to balance error on the training set with complexity. Formally, it is possible to write 

the new criterion as a sum of the error on the training set plus a regularization term, which depicts 

constraints or sought after properties of solutions:

 E  = E + l W    (2.22)

      = error on data + l ¥ hypothesis complexity where l gives the weight of penalty 

The second term penalizes complex hypotheses with large variance. When we minimize 

augmented error function instead of the error on data only, we penalize complex hypotheses and 

thus decrease variance. When l is taken too large, only very simple functions are allowed and we 

risk introducing bias. l is optimized using cross-validation (discussed later in this chapter). 

We consider here the example of neural network hypotheses class (discussion coming up in 

Chapter 5). The hypothesis complexity may be expressed as, 

                                                   W = 1

2

2wlj

l j,

Â   (2.23)

The regularizer encourages smaller weights wlj. For small values of weights, the network 

mapping is approximately linear. Relatively large values of weights lead to overfitted mapping 

with regions of large curvature.

EarlyStopping:The training of a learning machine corresponds to iterative decrease in the error 

function defined as per the training data. During a specific training session, this error generally 

reduces as a function of the number of iterations in the algorithm. Stopping the training before 

attaining a minimum training error, represents a technique of restricting the effective hypothesis 

complexity.  

Pruning:An alternative solution that sometimes is more successful than early stopping the growth 

(complexity) of the hypothesis is pruning the full-grown hypothesis that is likely to be overfitting 

the training data. Pruning is the basis of search in many decision-tree algorithms (discussion coming 

up in Chapter 8); weakest branches of large tree overfitting the training data, which hardly reduce 

the error rate, are removed. 

2.5.2 EnsembleLearning

For the given amount and quality of training data, the output of one hypothesis function may be 

inappropriate for the problem at hand. The ideal model to make more reliable decisions is to create 
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a combination of outputs of many different hypotheses. Many machine learning algorithms do this 

by learning an ensemble of hypothesis and employing them in a combined form [39–41]. Bagging 

and boosting are the most frequently used among these schemes. These general methods may be 

applied to classification (categorization) and regression (numeric prediction) problems; and, they 

frequently increase predictive performance over a single hypothesis.

By combining the decisions of various hypotheses, we amalgamate the different outputs into a 

single prediction. For classification problems, it is done through voting (may be a weighted vote), 

whereas in case of regression problems, the average is computed (may be a weighted average). 

Conventionally, various hypotheses in the ensemble possess the same general form—for instance, 

all neural networks, or all decision trees—simply the final parameter values are different. The 

difference in parameter values is because of the fact that their training patterns differ—each one 

handles a certain percentage of data accurately. If the hypotheses complement each other, it would 

be ideal, as each is a specialist for a part of the domain wherein the other hypotheses fail to do well.

In the bagging technique, individual approaches are constructed separately, whereas in boosting, 

each new model is impacted by the performance of those built earlier. In boosting, we first make 

a model with accuracy on the training set greater than average, and then add new component 

classifiers to make an ensemble whose joint decision rule possesses a high level of accuracy on 

the training set. In a scenario such as this, we claim that performance of the learning algorithm 

has been ‘boosted’. The method is capable of training successive classifiers with a subset of ‘very 

informative’ training data, considering the present set of component classifiers. Ada Boost (an 

abbreviation for Adaptive Boosting) is a widely used algorithm for boosting.

Bagging is the most straightforward and basic technique of pooling or integrating the outputs of 

component classifiers. 

Yet another ensemble technique is known as random forests. Suppose each classifier in the 

ensemble is a decision tree classifier. Therefore, the set of such classifiers gives rise to a ‘forest’. 

The individual decision trees are created with the help of a random choice of attributes at each node 

to identify the split (Chapter 8). More formally, each tree is dependent on the values of a random 

vector independently sampled and with the same distribution for all trees in the forest. During 

classification, each tree votes and the class that is highly popular is returned. You can build random 

forests with the help of bagging in tandem with the random attribute selection. 

Class-Imbalanced Problems: Ensemble methods have been used to solve class-imbalanced 

problems. What are class-imbalanced problems?

Two-class data are class-imbalanced if the primary class of interest is represented by just a few 

samples in the dataset, whereas the majority of the samples represent the other class. 

For multiclass-imbalanced data, the data distribution of each class is substantially different, 

where again, the primary class or classes of interest are represented by merely a few samples. The 

class-imbalanced problem is very similar to cost-sensitive learning, wherein the costs of errors 

per class, are unequal. Metrics for assessment of accuracy of learning machines on the basis of 

cost-sensitive datasets will be presented in Section 2.8.
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The general approaches for improvement of the classification performance of class-imbalanced 

data are:

 (i) Oversampling

 (ii) Undersampling

 (iii) Threshold moving

 (iv) Ensemble methods

Oversampling and undersampling alter sample distribution in the training set; threshold-moving 

impacts the manner in which the model makes decisions while classifying new data, and ensemble 

techniques follow the methods discussed earlier.

2.5.3 EvaluationofaLearningSystem

Before being used, a machine learning system should be evaluated in many aspects, intrinsically 

linked to what the system is meant for. Some important aspects of evaluation are:

Accuracy:Inductive learning is based on empirical data. The learning system extracts knowledge 

from the training data. The learned knowledge should be general enough to deal with unknown 

data. The generalization capability of a learning system is an index of accuracy of the learning 

machine. 

A machine learning system will not be accepted by its intended users unless it has demonstrated 

its accuracy in problem solving. This is the single most important objective of learning. We 

will shortly describe the accuracy and error measures and the methods of error estimation to 

quantitatively measure the generalization capability of a learning machine.

Robustness:‘Robustness’ means that the machine can perform adequately under all circumstances, 

including the cases when information is corrupted by noise, is incomplete, and is interfered with 

irrelevant data. All these conditions seem to be part of the real world (discussed in Chapter 7), and 

must be considered while evaluating a learning system. Robustness is typically assessed with a 

series of synthetic datasets representing increasing degrees of inconsistencies in data. 

ComputationalComplexityandSpeed:Computational complexity of a learning algorithm and 

learning speed determine the efficiency of a learning system: how fast the systems can arrive at a 

correct answer, and how much computer memory is required. We know how important speed is in 

real-time situations. 

OnlineLearning: An online learning system can continue to assimilate new data. This feature 

is essential for a learning system which continues to receive inputs from a real-time environment. 

Interpretability:This is the level of understanding and insight offered by a learning algorithm. 

Interpretability is subjective and hence, tougher to evaluate. Interpretation is easy in fuzzy logic 

systems and decision trees, but still their interpretability may decrease with an increase in their 

complexity.

Scalability:This is the capability to build the learning machine considering the huge amounts of 

data. Typically, the assessment of scalability is done with a series of datasets of ascending size.
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2.6 ESTIMATINGGENERALIZATIONERRORS

The success of learning depends on the hypothesis space complexity and sample complexity. The 

two are interdependent. The goal is to find a function simplest in terms of complexity and best in 

terms of empirical error on the data. Such a choice is expected to give good generalization perfor-

mance. Basically, finding a hypothesis function of complexity consistent with the given training 

data is the problem in hand.

So how is the learning scheme likely to perform in the future on new (unseen) data? We are not 

interested in the past performance on old (training) data. We are already aware of the output of each 

instance in the training set, which is the reason why it can be used for training. The actual question 

is: Is the performance on training data likely to be a proper indicator of the performance on unseen 

data, which is not employed in training? The answer is in the negative. To predict the performance 

of a learning scheme on new data, the assessment of the success rate (error rate) on a dataset— that 

had no role in forming the leaning model for classification or numeric prediction (metrics for error 

rate are given in the next two sections)—is required. This independent dataset is known as the test 

set. The assumption is that both the training set and the test set comprise representative samples of 

the underlying distribution.

Importantly, the test data is in no way employed to build the learning model. Some learning 

schemes include two stages for constructing a model—one to come up with the elementary structure, 

and the second to optimize parameters involved in that structure. Separate sets of data may be 

required in the two stages. In such scenarios, we frequently consider three datasets: the training 

data, the validation data, and the test data. The training data is employed to create the structure 

of the learning model. The validation data is employed to optimize parameters of that model, or to 

choose a specific model if the training data has been made use of to make several learning models. 

Then the test data is employed to compute the error rate of the final optimized selected model. Each 

of the three sets has to be selected independently: the validation set should be different from the 

training set to get perfect performance in the optimization or selection stage, and the test data has 

to be different from both to get a reliable estimate of the true error rate.

If a lot of data is available, a reasonable large sample is taken up for training, then another 

independent reasonable large sample is taken up for testing. What to do when vast supply of data 

is not available. The question of predicting performance on the basis of limited data is interesting, 

yet controversial. 

We will take a look at various methods—the probable techniques for success in most practical 

limited-data situations. 

2.6.1 HoldoutMethodandRandomSubsampling

In the holdout technique, some amount of data is earmarked for the purpose of testing, while the 

remainder is employed for training (and a portion of it is kept aside for validation, if needed). 

Practically speaking, it is common to hold out one-third of the data for testing and use the remainder 

for training. 

In order to divide dataset D into training and test sets, we can arbitrarily sample a set of training 

examples from D, and keep aside the remaining for testing. If the data is collected over time 

(time-series data), then we can make use of the earlier part to train and the latter part of the data 
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for the purpose of testing. In various applications, this process of dividing time-series data is more 

suited as the learning machine is made use of in the real world; the unseen data belongs to the 

future. 

The samples used to train and test have to represent the underlying distribution for the problem 

area. Generally speaking, it is not possible to tell whether a sample is representative or not because 

we do not know the distribution. However, there is a simple check that may be worth while. In 

case of classification problems, each class in the full dataset needs to be represented in about the 

right proportion in the training and test sets. The proportion of class-data in training, testing, and 

full datasets should more or less be same. To make sure this happens, random sampling should be 

performed in a manner that will  guarantee that each class is properly represented in training as well 

as test sets. This process is known as stratification.

Even though stratified holdout is generally well worth doing, it offers merely a basic safeguard 

against irregular representation in training and test sets. 

A more general way to alleviate any bias resulting from the specific sample selected for holdout 

is random subsampling, wherein the holdout technique is iterated K times with various arbitrary 

samples. The accuracy estimate on the whole is considered as the average of the accuracies got 

from each repetition. 

In a single holdout process, we may look at considering swapping the roles of training and test 

data—that is, train the machine on the test data, and estimate the success rate making use of the 

training data—and average the two results, thereby decreasing the effect of uneven distribution in 

training and test sets. This is, however, useful with a 50:50 split of the full data between training 

and test sets, which is usually not ideal—it is ideal to employ more than 50 per cent of the data for 

training even at the cost of test data. But, a simple variant becomes the basis of a powerful statistical 

method, known as cross-validation. 

2.6.2 Cross-validation

A commonly used technique for forecasting the success rate of a learning method, taking into 

account a fixed data sample, is the K-fold cross-validation. Another estimate prevalent is the leave-

one-out cross-validation. The description of these two cross-validation techniques follows.  

K-FoldCross-validation

In K-fold cross-validation, the given data D is randomly divided into K mutually exclusive subsets 

or ‘folds’, Dk ; k = 1, …, K, each of about equal size. Training and testing is done K times. In 

iteration k, partition Dk is set aside for testing, and the remainder of the divisions are collectively 

employed to train the model. That is, in the first iteration, the set D2 » D3 » … »DK serves as the 

training set to attain the first model, which is tested on D1; the second iteration is trained on D1 » 

D3 » … » DK and tested on D2; and so on.

If stratification is also used, it is known as stratified K-fold cross-validation for classification.

Ultimately, the K error estimates received from K iterations are averaged to give rise to an 

overall error estimate. Out of the 10 machines, the one with lowest error may be deployed.

K = 10 folds is the standard number employed to predict the error rate of a learning method. 

Why 10? Extensive tests on numerous datasets with various learning methods have revealed that 
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10 is about the right number of folds to achieve the best estimate of error. There is some theoretical 

proof also that backs up 10-fold cross-validation. These arguments, although, cannot be said to be 

conclusive, 10-fold cross-validation is now the standard technique in practical terms.  

When you look for a precise estimate, the normal process is to repeat the 10-fold cross-validation 

procedure 10 times and average the outcomes. This requires applying the learning algorithm 100 

times on datasets that are all nine-tenths the size of the original. 

Leave-One-OutCross-Validation

This is an exceptional case of K-fold cross-validation wherein K is set to the number N of initial 

tuples. In other words, only a single sample is ‘left out’ for the test set in each iteration. The learning 

machine is trained on the remainder of the samples. It is judged by its accuracy on the left-out 

sample. The average of  all outcomes of all N judgements in N iterations is taken, and this is the 

average which is representative of the error estimate. 

The computational expense of this process is quite high as the whole learning process has to 

be iterated N times, and this is generally not feasible for big datasets. Nevertheless, leave-one-

out seems to present an opportunity to squeeze the maximum out of a small dataset and obtain an 

estimate that is as precise as  possible. This process disallows stratification. 

2.6.3 Bootstrapping

The bootstrap technique is based on the process of sampling with replacement. In the earlier 

techniques, whenever a sample was used from the dataset to form a training or test set, it was never 

replaced. In other words, the same instance, which was once chosen could not be chosen again. 

However, most learning techniques can employ an instance several times, and it affects the learning 

outcome if it is available in the training set more than once. The concept of bootstrapping aims to 

sample the dataset by replacement, so as to form a training set and a test set. 

There are many bootstrap techniques. The most popular one is the 0.632 bootstrap, which works 

as follows: 

A dataset of N instances is sampled N times, with replacements, to give rise to another new dataset 

of N instances, which is a bootstrap sample—a training set of N samples. As certain elements in the 

bootstrap sample will (almost certainly) be repeated, there will be certain instances in the original 

dataset D that have not been selected—these will be used as test instances. If we attempt this many 

times, on an average, 63.2% of the original data instances will result in the bootstrap sample and the 

remaining 36.8% will give rise to the test set (therefore, the name, 0.632 bootstrap).

Where does the figure, 63.2%, come from? The probability that a particular instance will be 

picked is 1/N; so the probability of not being picked is 1
1

-Ê
ËÁ

ˆ
¯̃N

. Number of picking opportunities 

is N, so the probability that an instance will not be picked during the whole sampling cycle is 

1
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N

. If N is large, the probability approaches e–1 = 0.368 (e is the base of natural algorithms 

that is, e = 2.718; and not the error rate). Thus, for a reasonably large dataset, the test set will 
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contain about 36.8% of the instances, and training set will contain about 63.2% of them. Some 

instances will be repeated in the training set, bringing it up to a total size of N. 

Training a learning system on the training set and calculating the error over the test set will give 

a pessimistic estimate of the true error because the training set, although its size is N, nevertheless 

contains only 63.2% of the instances (In 10-fold cross-validation, 90% of the instances are used for 

training). To compensate for this, the bootstrap procedure combines the training error with the test 

error to give a final error estimate as follows:

Error estimate = 0.632 ¥ Error given by test instances

                                     + 0.368 ¥ Error given by training instances (2.24)

Then, the whole bootstrap procedure is repeated several times, with different replacement 

samples for the training set, and the results are averaged. 

Bootstrapping tends to be overly optimistic. It works best with small datasets.

2.7 METRICSFORASSESSINGREGRESSION(NUMERICPREDICTION)ACCURACY

A function, 

f = X Æ Y; f (x) = y 

maps from x Œ X to y Œ Y, where X is the input space and Y is the output space of the function. We 

assume here that X Ã ¬n, and Y Ã ¬. The data is available as samples (x, y) where the distribution 

of inputs x and the function f are both unknown.

The task is to find the model h(x) that explains the underlying data, i.e., h(x)  y for all samples 

(x, y). Equivalently, the task is to approximate function f (x) with unknown properties by h(x). 

The term used in statistics for function description of data is regression. Also, since h(x) predicts 

y Œ¬ for a given x, the term numeric prediction is also in use. Throughout this book, the three 

terms: function approximation, numeric prediction, and regression, are used interchangeably 

without any discrimination. 

The classic problem of approximation of multivariate function f (x) is the determination of an 

approximating function h(x, w), having a fixed finite number of parameters wj that are entries of 

the weight vector w. 

This section presents measures (metrics) for assessing how good or how accurate our regressor 

(i.e., approximating function h(x, w)) is at predicting the continuous (numeric) response variable. 

Classical measures of performance are aimed at finding a model h(x, w) that fits the data well. 

However, those measures do not tell us much about the ability of the model to predict new cases. 

Using training data to derive a regressor and then to estimate the accuracy of the resulting learned 

model, can result in misleading overoptimistic estimates due to overspecialization of the learning 

algorithm to the data. Instead, it is better to measure the regressor’s accuracy on a test set/validation 

set (refer to previous section) consisting of data not used to train the model.

Estimating the error in prediction using holdout and random subsampling, cross-validation 

and bootstrap methods (discussed in the previous section) are common techniques for assessing 

accuracy of the predictor. Several alternative metrics can be used to assess the accuracy of numeric 

prediction.
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2.7.1 MeanSquareError

Mean square error (MSE) is the principal and most commonly used metric. For calculating MSE, 

we assume that no statistical information on data is available; the mean is obtained from the training 

data as arithmative average (refer to Section 3.2): 

 MSE = 
1

1N
i

N

=

Â (y(i) – h(w, x(i)))2  (2.25)

which measures the average square-deviation of the predicted values from true values. Here, the 

input data is represented by x(i) ; i = 1, …, N ; with the corresponding output y(i).

RootMeanSquareError(RMSE)

Taking the square root yields, 

 RMSE = 
1

1

2

N
y h

i

N
i i

=

Â -( ( , ))( ) ( )
w x   (2.26)

RMSE more clearly relates to individual errors; it has same dimensions as the predicted value 

itself (MSE is not as easily interpretable because units are squared). 

Sum-of-ErrorSquares

Sometimes total error, and not the average, is taken for mathematical manipulation by some 

statistical/machine learning techniques: 

 Sum-of-Error-Squares = 
i

N

=

Â
1

(y(i) – h(w, x(i)))2 (2.27)

(Expected)MeanSquareError

All the metrics given so far pertain to deterministic cases (given only training data, and no statistical 

information about the data). In a general probabilistic setting, when input and output variables are 

random variables, the following metric is used: 

(Expected) Mean Square Error = E
i

N
i iy h

=
Â -

È

Î
Í
Í

˘

˚
˙
˙1

2( ( , ))( ) ( )
w x  (2.28)

where E is the statistical expectation operator.

2.7.2 MeanAbsoluteError

Given the N samples (x(i), y(i)), an intuitive measure to assess the quality of a model h(x, w) is the 

Mean Absolute Error (MAE), computed as, 

 MAE = 
1

1N
i

N

=

Â | y(i) – h(w, x(i)) | (2.29)

which measures the average deviation of the predicted value from the true value. 
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In MAE, variance of the model error is not accounted for. Suppose model h1(w, x) correctly 

models 95% of the data but totally differs on the remainder 5%, while model h2(w, x) depicts 

small errors over the full range of the data. They may as well have the same MAE. When each data 

point possesses the same significance, model h2(w, x) may be preferred as its errors possess lower 

variability. The amount of variability is considered by MSE criterion. 

On the contrary, MSE has the tendency to exaggerate the effect of outliers—samples when the 

prediction error is much larger than the others—but MAE does not have this effect; all sizes of 

errors are treated evenly according to their magnitude. 

2.8 METRICSFORASSESSINGCLASSIFICATION(PATTERNRECOGNITION)

ACCURACY

In machine learning systems for pattern recognition, the focus is on recognizing patterns and 

regularities in data. The term ‘pattern recognition’ is popular in the context of computer vision 

wherein there could be more interest in formalizing, explaining, and visualizing the pattern. In 

machine learning, the focus is traditionally on assigning a label to a given input pattern. In statistics, 

the introduction of discriminant analysis was done for this purpose: referred to as classification; 

it aims to allocate each input pattern to one of the given classes. Substantial evolution in all these 

areas has become progressively similar due to integration of development of ideas with each other. 

In this book, the terms patterns recognition and classification carry the same meaning. 

The evaluation measures described in the previous section are related to numeric prediction situa-

tions rather than classification situations. The basic principles—use of an independent test dataset 

instead of the training set to evaluate performance, the holdout technique and cross-validation—are 

equally applicable to classification. However, the basic quality measures in terms of error estimates 

in numeric prediction are not appropriate any more. The errors in numeric prediction arise in various 

sizes whereas in classification, errors simply exist or are absent. 

Several different measures (metrics) can be used to assess the accuracy of a classifier. 

2.8.1 MisclassificationError

Traditional classification algorithms aim to minimize the number of errors made during classification. 

They treat misclassification of all errors equally seriously. 

The metric for assessing the accuracy of classification algorithms is: number of samples 

misclassified by the model h(w, x). For example, for binary classification problems, 

y(i) Œ [0, 1], and h(w, x(i)) = ˆ( )
y

i
Œ [0, 1]; i = 1, …, N. 

For 0% error, (y(i) – ˆ( )
y

i ) = 0 for all data points. 

   Misclassification error = 
Number of data points for which ( )y y

N

i i( ) ( )
- π� 0

  (2.30)

This accuracy measure works well for the situations where class tuples are more or less evenly 

distributed. However, when the classes are unbalanced (e.g., when an important class of interest is 
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rare), decisions made on classifications based on misclassification error lead to poor performance. 

Misclassification error measure treats misclassification of all classes equally seriously; however, 

this is often unrealistic. Often certain kinds of misclassification (wrong decisions based on these 

results) are more serious than other kinds. Let us look at an alternative measure for such situations. 

2.8.2 ConfusionMatrix

Decisions made on the basis of  classifications that are based on misclassification error rate result 

in poor performance when data is unbalanced or highly skewed. For instance, in a dataset where 

financial fraud is detected, the amount of fraud cases is very small (< 1%) in comparison to the 

normal cases. The data is therefore skewed. In such classification problems, the user is more 

interested in the minority class. The class which is of interest to us, is referred to as the positive 

class while the other classes, are the negative classes (which may be put together into one negative 

class). 

Misclassification error is not a suitable measure in such cases because we may achieve a very 

high accuracy, but may not identify a single positive class. For example, 99% of the cases are 

normal in financial fraud dataset. A classifier can achieve 99% accuracy without doing anything by 

simply classifying every test as ‘nonfraud’ category: the costs of two kinds of error are different—

classifying a fraud as nonfraud is for more serious than the reverse. The decisions of doing business 

with fraud are far more serious than the lost-business because of misclassifying a normal as fraud. 

We want rules that predict ‘fraud’ category more accurately than ‘nonfraud’ category. 

Let us look at a clinical example. Considering the parameters of tissue biopsy: there is a possibility 

of the developed model commiting two kinds of error. It can predict the cancerous quality of the 

tissue sample when it is actually not so. It can even predict that the tissue sample is not cancerous 

when actually it may be so. When it comes to an actual clinical setting, the second type of error 

proves more serious than the first as a cancer patient will end up without receiving any treatment, 

while the first error will lead to more tests being done on the patient. In such scenarios, we may 

wish to attach costs to the various types of misclassification. Instead of sample error rate, we look 

for a model that will minimize overall loss.

In practice, the costs are rarely known with any degree of accuracy. An alternative strategy is to 

consider the ratio of one cost to another. Consider two-class problems with classes yes or no. The 

rarely occurring class (abnormal situation) is marked as positive (P) class, and the absence of this 

class (a normal situation) is marked as negative (N) class. 

One prediction on the test set has four possible results, depicted in Table 2.1. The true positive 

(TP) and the true negative (TN) are accurate classifications. A false positive (FP) takes place when 

the result is inaccurately predicted as positive when it is negative in reality. A false negative (FN) 

is said to occur when the result is inaccurately predicted as negative when in reality it is positive. 

Table 2.1 shows the truth in the rows and the decisions of the algorithm in the columns. An ideal 

algorithm should create a diagonal matrix with FP = FN = 0. Confusion matrix in the term commonly 

used for this form of reporting classification results. 
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Table2.1 Confusion matrix 

                                                                                        Hypothesized class (prediction)

Actual class (observation)

Classified +ve Classified –ve

Actual +ve TP FN

Actual –ve FP TN

Consider a binary classification model h(x, w) based on the data D = {x, y}. The actual class for 

a data tuple x is y, and the hypothesized class is ŷ = h(x, w). The pair of labels (y, ŷ) specifies the 

coordinates of each observation within the confusion matrix—the first label specifies the row of the 

matrix and the second label specifies the column. Therefore, an observation with the label pair (y, 

ŷ) will be mapped onto a confusion matrix as follows: 

(+ve, +ve) Æ TP

(–ve, +ve) Æ FP

(+ve, –ve) Æ FN

(–ve, –ve) Æ TN 

  Example2.2

A confusion matrix of a model applied to a set of 200 observations is given in Table 2.2. 

Table2.2 A confusion matrix of a model

Predicted +1 Predicted –1

Actual +1 95 7

Actual –1 4 94

The model not only makes 7 false negative errors and 4 false positive errors, but also 95 true 

positive and 94 true negative predictions. If this were a model for clinical example, the fact that the 

model makes almost twice as many false negative errors than false positive errors would definitely 

be worrisome; requiring deeper analysis and, if required, building a new model. Only  the confusion 

matrix is capable of providing insight of this kind.

MetricsforEvaluatingClassifierPerformance

Now let us look at the evaluation measures, starting with the misclassification rate of the classifier. 

Misclassification Error:The overall success rate on a given test set is the number of correct 

classifications divided by the total number of classifications.

 Success rate = 
TP + TN

TP + TN + FP + FN
  (2.31)
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In the pattern recognition literature, this is also referred to as the overall recognition rate of the 

classifier, that is, it reflects how well the classifier recognizes tuples of various classes. 

The misclassification rate of a classifier is simply (1 – recognition rate). 

 Misclassificate rate = 
FP + FN

TP + TN + FP + FN
  (2.32)

But is it a fair measure of overall success? 

  Example2.3

Suppose that we have trained a classifier to classify medical data tuples, where the class label 

attribute is ‘cancer’ and the possible class values are ‘true’ and ‘false’. The confusion matrix of 

model is as given in Table 2.2.

 Misclassificate rate = 
4 7

95 94 4 7

+

+ + +

 = 0.055

A model that makes 5.5% misclassification errors seems like a reasonable model. But what if 

only 5.5% of the training samples are actual cancer? Consider, for example, the confusion matrix 

given in Table 2.3 of a classifier trained on samples with 5.5% of the samples actually cancer 

(in balanced/skewed data). This model also has misclassification rate of 5.5%, but 7 out of 11 

actual ‘cancer’ patients have been classified as ‘noncancer’. Clearly a success rate of 94.5% is not 

acceptable. Instead, we need other measures which assess how well the classifier can recognize 

the positive tuples (cancer = true) and how well it can recognize the negative tuples (cancer = 

false). The sensitivity (also referred to as true positive rate) and specificity (also referred to as true 

negative rate) measures can be used, respectively, for this purpose.

Table2.3 Confusion matrix for clinical example

Predicted +ve Predicted –ve

Actual +ve 4 7

Actual –ve 4 185

TruePositiveRate:The true positive rate (tp rate) of a classifier is estimated as, 

 tp rate  
Positives correctly classified

Total positives
  

  = 
TP

TP FN+

 

(2.33)

The tp rate tells us how sensitive our decision method is in the detection of the abnormal event. 

A classification method with high sensitivity will rarely miss the abnormal event when it occurs.
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TrueNegativeRate:The true negative rate (tn rate) of a classifier is estimated as, 

 tn rate  
Negatives correctly classified

Total negatives
 

  = 
TN

FP TN+

 

(2.34)

This parameter reveals how specific our decision technique is in detecting the abnormal event. 

A classification technique which is extremely specific will possess an extremly low rate of false 

alarms resulting from the classification of a normal event as abnormal. 

 1 – specificity = 1 – 
TN

FP TN

FP

FP TN+

=

+

 

  = 
Negatives incorrectly classified

Total negatives
 (2.35)

  = fp rate (False Positive Rate)

A decision technique is said to be good if it concurrently happens to be highly sensitive (rarely 

missing the abnormal event as it takes place) and a high specificity (possessing a low rate of false 

alarm, i.e., low fp rate).  

  Example2.4

For the confusion matrix given in Table 2.2, 

 Sensitivity = 
TP

TP FN

95

95 7+

=

+

 = 0.93

 Specificity = 
TN

TN FP

94

94 4+

=

+

 = 0.96

A sensitivity (true positive rate) of 1.0 implies that the model predicts all positive observations in 

a correct manner; simply put, the approach fails to make any false negative errors. A specificity of 

1.0 or false positive rate of 0 indicates that the model predicts all negative observations accurately; 

that is, the model does not make any false positive predictions. A model is considered good if it has 

a high tp rate and a low fp rate at the same time. The model in question, more or less, meets this 

requirement.

Consider now the confusion matrix of Table 2.3. 

 Sensitivity = tp rate = 
TP

TP FN

4

4 7+

=

+

 = 0.364

 1 – specificity = fp rate = 
FP

FP TN

4

4 185+

=

+

 = 0.021



66  Applied Machine Learning

Note that although the classifier has high accuracy (94.5%; Example 2.3), it has low sensitivity, 

and therefore its ability to accurately recognize positive tuples is poor. Because of low fp rate, it can 

accurately predict negative class.

The model may, therefore, be not an acceptable model for this skewed data case. Techniques for 

handling class-imbalanced data are given in Section 2.5.

2.8.3 ComparingClassifiersBasedonROCCurves

The true positives, true negatives, false positives and false negatives have different costs and 

benefits (or risks and gains) with respect to a classification model. 

The costs pertaining to a false negative (for instance, wrongly predicting a patient suffering from 

cancer as not cancerous) are way higher than those related to a false positive (wrongly labeling a 

noncancerous patient as cancerous). Similarly, the benefits associated with a true positive (such as 

correctly predicting that a cancerous patient is cancerous) and true negative (correctly predicting 

that a noncancerous patient is noncancerous) may be different. To evaluate correctness on the basis 

of misclassification error, we make an assumption of equal costs, and divide the sum of false 

positives and false negatives by the total number of test tuples.

The ROC Graph (a two-dimensional graph) plots tp rate (sensitivity) on the y-axis and fp rate 

(complement of the specificity) on the x-axis [42]. An ROC graph,  hence, shows relative trade-offs 

between advantages (true positives) and costs (false positives). The origin of the ROC name is in 

Receiver Operating Characteristic curve, which made an appearance in the 1950s as a method of 

selection of the  best voltage threshold discerning pure noise from signal plus noise, in Radar and 

other similar applications used to detect signals.

Figure 2.8 shows an ROC graph with five classifiers labeled C1, C2, C3, C4, and C5. Each classifier 

produces a single point in ROC space.
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Figure 2.8  A sample ROC graph

Note that the lower left point (0, 0) in ROC space represents a classifier that commits no false 

positive errors, but it also gains no true positives. The upper right point (1, 1) represents a classifier 

that unconditionally issues positive classifications. The point (0, 1) represents perfect classifications. 

Performance of classifier C1 is thus, perfect.
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Points in the ROC space adjacent to the upper left corner (tp rate is higher, fp rate is lower) 

are preferred. Classifiers that appear on the left-hand side in the ROC space near the x-axis, may 

be considered as ‘conservative’: they create positive classifications only on strong evidence. 

Therefore, they create very few false positive errors, but often have low true positive rates as well 

(classifier C2 for example). Classifiers existing on the upper right-hand side of the left-hand triangle 

in ROC space may be considered ‘liberal’; they create positive classifications with feeble evidence; 

therefore, they classify almost all positives accurately. However, they have high false positive rates 

(for instance, classifier C3). 

The diagonal y = x represents the strategy of randomly guessing a class. For example, if a 

classifier randomly guesses the positive class half the time, it can be expected to get half of the 

positives and half of the negatives correct; this yields the point (0.5, 0.5) in ROC space. If it guesses 

the positive class 90% of the time, it may be expected to get 90% of the positives correct, but its 

false positive rate will increase to 90% as well, yielding (0.9, 0.9) in ROC space. Thus, a random 

classifier (C4, for example) will produce an ROC point that ‘slides’ back and forth on the diagonal 

based on the frequency with which it guesses the positive class. 

Any classifier that appears in the lower-right triangle performs worse than random guessing 

(classifier C5, for example).

ROCCurves:When a classifier algorithm is applied to a test set, it yields a single confusion 

matrix, which in turn corresponds to one ROC point. We can create an ROC curve by thresholding 

the classifier with respect to its complexity (for example, different parameter settings for the same 

learning scheme). Each level of complexity in the space of a hypothesis class produces a different 

point in ROC space. A sample ROC curve is shown in Fig. 2.9.
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Figure 2.9  A sample ROC curve 

Comparison of two different learning schemes on the same domain may be done by analyzing 

ROC curves in the same ROC space for the learning schemes.

For measuring accuracy of Information Retrieval (IR) systems, the IR community has 

traditionally been using Precision-Recall Performance Curves, which are essentially equivalent 

(except for relabeling of the axes) to the ROC curves. Section 9.5 will provide the details. 
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2.9 ANOVERVIEWOFTHEDESIGNCYCLEANDISSUESINMACHINELEARNING

Machine learning addresses the question of how to build computer programs (learning systems) 

that improve their performance with experience. The process of building a learning system involves 

a number of design choices. In the following, we present an overview of the design cycle and 

consider some of the issues that frequently occur [43].

The procedure of building a learning system starts with comprehending the problem domain. We 

have to first evaluate the problem and establish what data is available and what is required to solve 

the problem. Once we understand the problem, we can select a suitable technique (support vector 

machines, neural networks, decision trees, and so on; discussed later in the book) and build the 

system with this technique. The process, illustrated in Fig. 2.10, is best considered a set of nested 

loops, instead of a set of sequential steps. While there is a natural order to the steps, it is not really 

required of them to totally finish with one before going on to the other. Things learned in the later 

steps will result in earlier ones to be revisited. Various steps in the design cycle usually overlap 

considerably. The process itself is highly iterative. Let us examine each step in more detail. 
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Figure 2.10  An overview of the design cycle
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Step 1: Translate the Problem into a Machine Learning Problem 

During this initial phase of design, we determine the problem’s characteristics, specify the objectives 

and determine what resources are needed for building the learning system. 

Typical problems often addressed by machine learning include pattern recognition 

(classification), numeric prediction (regression), clustering, optimization, and control. The problem 

type influences our choice of the tool for building a learning system. Of course, choice of building 

tool also depends on the form and content of the solution. 

Often, machine learning is seen as a technical problem of looking for a model that explains 

the relationship of a target variable with a group of input variables. This requires clear definition 

of the target variable and identification of appropriate input variables. This task, in turn, relies on 

a fair understanding of the problem that needs to be looked into. ‘How will the outcome be put 

to use’? and ‘In what manner or form will it be delivered’?, are some of the crucial questions for 

which answers need to be sought. Involving domain experts in finding out how machine learning 

results will be used; and involving analysts, IT engineers and database administrators in finding 

out the manner of delivering the outcomes, are helpful. The machine learning expert plays an 

important role in the team in ensuring that the ultimate statement of the problem is translatable into 

a well-posed machine learning problem.  

Step 2: Select Appropriate Data

Once the problem is formulated, we need to create a wish list of data that is needed for machine 

learning solution. The first source to search for data is the data warehouse. The data existing in the 

warehouse has already undergone cleaning, verification, and assembled from multiple sources. If 

this type of data warehouse is not available, or more than one data warehouses are available that 

do not live up to the needs, the data miners will have to search for data from many other sources. 

The misfortune is, however, that there is no easy way of knowing how much data will suffice. 

The answer is dependent on the specific algorithms used, how complex the data is, and relative 

frequency of possible outputs.

How do we know when we have collected an adequately large and representative set of data 

for the learning machine? Very large amount (large N) adds to noise and redundancies, and very 

small amount (small N) leads to loss of information. Not throwing out large number of variables 

that seem unlikely to be interesting for the problem, but carefully choosing a few variables that we 

expect to be important, helps in selection of appropriate set of data. Machine learning approach 

calls for letting the data reveal what is and what is not important. Domain experts play an important 

role in the process.

Data collection, and selecting appropriate data can account for, surprisingly, large part of the cost 

of developing a machine learning system.

Step 3: Get to Know the Data

Exploring the unfamiliar dataset before rushing into building models is an important step in 

developing a learning system. Along the way, we are likely to discover many data quality problems, 

which could be sorted out early in the design process.



70  Applied Machine Learning

A good first step is to examine a histogram of each variable in the dataset; making note of 

anything that seems surprising. Do the highest and lowest values seem reasonable for that variable? 

How many missing values are there?, and so on.

Data visualization tools can be very helpful during the initial exploration of data: scatter plots, 

bar charts, geographic maps, and other visualization tools are extremely powerful for seeing what 

is in the data. We can see through correlation analysis, the interdependencies of the variables and 

dependency of output on input variables. 

Data clustering yields information on outliers, and other knowledge elements that are useful in 

the design process.

In fact, data miners collect lot of important information for the next step of creating a dataset 

for the machine learning problem, by immersing themselves in the data. For instance, what are the 

good derived variables to try, what data transformations to try for getting a new reduced dataset 

which exhibits high ‘information packing’ properties, etc.

Step 4: Create a Dataset for Machine Learning Problem 

The choice of the distinguishing features is a critical design requirement, and depends on the 

characteristics of the problem domain. The goal is to find features that are simple to extract, 

insensitive to noise, and information-rich. If number of features, n, is small with respect to the 

learning task, the subsequent design of the machine would lead to poor performance. If n is too 

large, information carried by one feature may be mutually correlated with that of other. Large n 

leads to large number of parameters in an algorithm, that leads to loss of generality. Each feature 

must carry valuable independent information with respect to machine learning task [44, 45]. 

How do we combine prior knowledge of the problem domain and empirical data to find relevant 

and effective features? Though the role of domain experts is very significant for this step in design 

cycle, tools for attribute reduction are very helpful in creating features for the machine learning 

problem in hand.

For design of learning systems, we collect data from various sources, which is why the data can 

be of various types. But, a specific technique that builds a learning system needs a specific kind of 

data. Some techniques deal with continuous variables, whereas others require to have all variables 

binned into many ranges, or to be normalized to one range, for instance, from 0 to 1. The outcome is 

that data has to undergo transformation into a form that can be used by a specific technique. Certain 

issues require to be resolved before data is transformed for a specific tool—issues of incompatible, 

inconsistent and missing data. The procedure for cleaning data offers a solution to these problems.

If the problem at hand needs a supervised learning solution, the dataset created needs to be 

divided into three portions. The first portion is the training set, with which the initial model is built. 

The second part is the validation set, with the help of which the initial model is adjusted to make 

it more general. The test set is the third part, with which the probable effectiveness of the model is 

assessed on its application to unseen data.

Step 5: Build Learning Models

The details of building learning models vary from technique to technique and are described later in 

chapters devoted to each machine learning method. In general terms, this is the step where most of 

the work of creating a model occurs. In supervised learning, the training set is used to generate a 



Supervised Learning: Rationale and Basics  71

hypothesis function (explanation of the dependent or target variable in terms of independent or input 

variables). Machine learning involves searching through space of possible hypotheses to determine 

one that fits the observed data and any prior knowledge held by the designer. The hypotheses space 

is theoretically infinite; the learning task is, thus, to search through this vast space. Applied machine 

learning organizes the search as per the following two-step procedure; 

 • First focus on hypothesis class: neural networks, support vector machines, decision trees, 

fuzzy logic models, Bayesian classification, k-Nearest Neighbor (k-NN) classifier, …. Initial 

choice of a class is made on the basis of learning task in hand and prior knowledge held by 

the designer, based on experience.

 • For each of these hypothesis classes, the corresponding learning algorithm organizes the 

search through all possible underlying functions. The hypothesis class is parameterized and 

a parametric search is carried out. 

How is a class of functions rejected and another one tried? How is a function in a class of 

functions identified as considerably different from the true model that forms the basis of our patterns, 

giving rise to the need for a new function? Should designers resort to random and cumbersome trial 

and error while choosing a hypothesis, without actually ever getting to know whether improved 

performance can be expected? Or could there be principled techniques to know when to discard a 

class of functions and summon another?

In general, the process of using data to determine parameters of a learning algorithm is referred 

to as training the machine. Much of this book is concerned with different procedures for training the 

machines. How much training data is sufficient? How to establish a relation between the confidence 

in learned hypothesis and the volume of training experience, and the character of the hypothesis 

class? When and how can earlier knowledge of a learner, besides data, be of help? These are some 

of the problems that require to be handled in the model-building step.

Building learning models is the one step of machine learning process that has been truly 

automated by modern machine learning software. However, the software should not be used as 

a ‘black box’ by the designer. Various issues raised here and many other related issues need to be 

addressed before machine learning software is profitably used. 

Step 6: Assess Learning Models

Unlike traditional computer programs, learning systems are so designed that they resolve issues 

that frequently lack adequately defined ‘right’ and ‘wrong’ solutions. Assessment of a learning 

system is done to make sure that it fulfills its purpose to the user’s satisfaction. 

Assessment of directed models is done for how accurate they are on test data chosen by the 

designer. The assessment of a model is done on the basis of the context; a model which looks good 

as per one measure can also appear bad as per another measure. Usually, a measure of assessment 

is agreed upon for the model-building step, related to the question: How confident can one be about 

the predictions made by the model?

In addition to accuracy, computational resources necessary and computational complexity of 

different algorithms (machines) are of considerable practical importance in assessing a model. 

How are the performance and computational complexity evaluated ? What is the trade-off between 

computational ease and performance? These are some of the important issues that need to be 

addressed in the model-assessment step.
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Step 7: Deploy the Optimum Model 

Deployment of a model depends on the purpose of the data mining project. Selecting an optimum 

model for deployment is application-dependent. Deployment of a model involves integrating 

the learning system into the environment where it will operate, and establishing an effective 

maintenance system. 

Step 8: Assess the Results

Measuring the actual results—both financially and technically—is very important; we can learn 

and do better next time.

The foregoing steps encompass the methodologies available in most of the available software. 

A similar methodology, termed CRISP-DM (CRoss-Industry Standard Process for Data Mining) is 

given in Section 9.2.

We have already seen many issues that arise in the design of learning system. No universal 

methods have been found for addressing all of these issues. Throughout this book, we will see again 

and again how methods of learning relate to these central issues.
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Chapter

3

3.1  MACHINE LEARNING AND INFERENTIAL STATISTICAL ANALYSIS

Statistical analysis saw the development of two branches in the 18th century—Bayesian and classical 

statistics. In case of the approach that originated from the mathematical works of Thomas Bayes, 

analysis is based on the concept of conditional probability: the probability of an event taking place 

considering that another event has already taken place. The quantification of the investigator’s 

present state of beliefs, knowledge and assumptions marks the beginning of the Bayesian analysis. 

These subjective priors, in combination with observed data, are quantified probabilistically using 

an appropriate objective function.

Regression and correlation were concepts that were developed in the later part of the 

19th century, for generic data analysis. A system developed for inference testing in medical sciences, 

by RA Fisher in the 1920s was based on the concept of standard deviation. Bayesian model for 

inference testing could result in extremely different conclusions by different medical investigators 

as they used various sets of subjective priors. Fisher developed his system with the objective of 

providing medical investigators with a common set of tools based on data alone (no subjective 

priors). To make his system work even for big samples, Fisher had to assume a number of things, 

including linear regression, to define his ‘Parametric Model’. 

Mathematical research dominated the 1980s on lines similar to Fisher’s statistical inference 

through the development of nonlinear versions of parametric techniques. Bayesians kept on 

researching to promote their approach. The line of thinking called machine learning emerged from 

Artificial Intelligence community (1990s) in search of intelligent machines. Machine learning 

methods allowed the analysis of extremely nonlinear relationships in big datasets which have no 

known distribution. 

Conventional statistical analysis adopts the deductive technique to look for relationships in 

datasets. It employs past knowledge (domain theory) along with training examples to create a 

model. Machine learning methods, on the other hand, adopt the inductive technique to discover 

feeble patterns of relationships in datasets. In the absence of any more information, it is assumed that 

the best hypothesis pertaining to unseen patterns is the one induced by the training data observed.
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However, now, there has been a convergence of the two perspectives. Machine learning 

methods integrate a lot of statistical thinking. Statistical tests are used by most learning algorithms 

to construct models, and to prune ‘overfitting’ in these models. Stastical learning theory (PAC 

framework, VC dimension framework; Section 2.3) tries to provide answers to questions such as 

what are the conditions necessary for successful learning? What are the conditions under which 

a specific learning algorithm can be certain of successful learning? This theory provided new 

directions for complex problems with nonlinear relationships in datasets by ‘mapping’ data points 

to high-dimensional spaces with ‘kernels’. 

Data mining developed much recently, in the 1990s, and grew to become a significant field 

in the initial years of the 21st century. It is representative of a union of many well-established 

areas of interest—classical Bayesian statistics, classical parametric statistics, machine learning and 

database technology. Many off-the-shelf data mining system products and domain-specific data 

mining application software are on offer in the market, even though several data mining problems 

still require to be examined in detail. 

We do not intend to describe in detail any specific commercial data mining system. Instead, we 

briefly outline popular data mining techniques for predictive modeling, that form part of most of 

the commercial data mining systems.

We begin this chapter by presenting a handful of key concepts from descriptive statistics. 

Descriptive statistics is only solely concerned with properties of the observed data. It has proven 

to be useful for data exploration (Section 7.2). It also provides useful tools for inferential statistical 

analysis/machine learning/data mining. Section 3.2 describes key concepts of descriptive statistics, 

used later in this book.

Inferential statistics is concerned with making predictions from data. Mathematical methods 

of inferential statistics employ probability theory for inferring the properties of an underlying 

distribution from the analysis of properties of a data sample drawn from it. It is concerned also with 

the testing of the inferences made for precision and reliability (hypotheses testing). A handful of 

widely used results from inferential statistical analysis are covered in this chapter.

The widely used technique based on classical Bayesian statistics is naive Bayes classifier. The 

Bayesian learning methods (statistical inference methods) have been found to be competitive 

with other machine learning algorithms in many cases, and in some cases they outperform. In this 

chapter, we introduce Bayesian learning, giving detailed coverage of naive Bayes classifier, and 

k-Nearest Neighbor (k-NN) classifier.

The inference techniques based on classical parametric statistics: linear regression, logistic 

regression, discriminant analysis; are also covered in this chapter. The other topic based on 

statistical techniques included in this chapter is Minimum Description Length (MDL) principle.

3.2  DESCRIPTIVE STATISTICS IN LEARNING TECHNIQUES

The standard ‘hard-computing’ paradigm is based on analytical closed-form models using a 

reasonable number of equations that can solve the given problem in a reasonable time, at reasonable 

cost, and with reasonable accuracy. It is a mathematically well-established discipline.
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The field of machine learning is also mathematically well-founded; it uses ‘soft-models’—

modern computer-based applications of standard and novel mathematical and statistical techniques. 

Each of these techniques is a broad subject by itself with inputs from linear algebra and analytical 

geometry, vector calculus, unconstrained optimization, constrained optimization, probability theory 

and information theory. Our focus in this book is on ‘applied’ nature of machine learning; in-depth 

knowledge of these and related topics to understand the content of this book is not essential. However, 

in-depth knowledge will be essential for advanced study and research in machine learning.

We have assumed that the reader has some knowledge of these techniques. The summary of the 

properties of the techniques and the notation we use are described as and when a technique appears 

in our presentation.

Statistics developed as a discipline markedly different from mathematics over the past century 

and a half, to help scientists derive knowledge from observations, and come up with experiments 

that give rise to the reproducible and correct outcomes pertaining to the scientific technique. The 

methods established in the past on small amounts of data in a world of hand calculations, have 

managed to survive and continue to prove how useful they are. These methods have proved how 

worthwhile they are, not merely in the original spheres but also virtually in all areas wherein data 

is collected.

This section is aimed at presenting a few primary ideas from descriptive statistics that have 

confirmed their utility as tools for inferential statistical analysis/machine learning/data mining 

[46, 47].

3.2.1  Representing Uncertainties in Data: Probability Distributions

One of the common features of existing information for machine learning is the uncertainty 

associated with it. Real-world data tend to remain incomplete, noisy, and inconsistent. Noise, 

missing values, and inconsistencies add to the inaccuracy of data. Although data cleansing (Chapter 

7) procedures try to approximately fill-in the missing values, smooth out noise while identifying 

outliers, and rectify inconsistencies in the data, inaccuracies do crop up and bring in the factor of 

uncertainty. Information, in other words, is not always suitable for solving problems. However, 

machine intelligence can tackle these defects and can usually make the right judgments and 

decisions. Intelligent systems should possess the capability to deal with uncertainties and derive 

conclusions. 

Most popular uncertainty management paradigms are based on probability theory. Probability 

can be viewed as a numerical measure of the liklihood of occurrence of an outcome relative to 

the set of other alternatives. The set of all possible outcomes is the sample space and each of 

the individual outcomes is a sample point. Since the outcomes are uncertain, they are termed the 

random variables.

For problems of interest to us, the data matrix D is the sample space; the features/attributes xj; j 

= 1,…, n, are scalar random variables, and each of N  n-dimesional vector random variable x Œ¬
n 

is a sample point. Initially, let us focus on features xj in the data matrix defining random variables; 

we will add the output column y in our data space later and consider the total sample space.
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Probability Mass Function

Assume n = 1, and the feature x is a random variable representing a sample point. Random variable 

x can be discrete or continuous. When x is discrete, it can possess finite number of discrete values 

vlx; l = 1, 2,…, d. The occurrence of discrete value vlx of the random variable x is expressed by the 

probability P(x = vlx).

From the frequency point of view, P(x = vlx) �  P(vlx) can be interpreted as, 

                                                             P v
N

N
lx

N

( ) lim=
Æ•

D
                                                                             (3.1)

where  

                                                          N = number of sample points, and

                                                       DN = number of times x = vlx

The probabilities of all possible values of x are expressed as a probability mass function:

                                                    P x P v P v
x dx
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Figure 3.1 graphically displays a probability mass function.
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Figure 3.1  A probability mass function

Probability Density Function

A continuous random variable can take infinite values within its domain. In this case, the probability 

of a particular value within the domain is zero. Thus, we describe a continuous random variable not 

by the probability of taking on a certain value but by probability of being within a range of values. 
For a continuous random variable x, probabilities are associated with the ranges of values of the 

variable, and consequently, at the specific value of x, only the density of probability is defined. If 

p(x) is the probability density function1 of x, the probability of x being in the interval (v1x, v2x) is:        

                                                  P(v1x £ x < v2x) = p x dx

v

v

x

x

( )

1

2

Ú                                                     

(3.3)

                                                   p(x) ≥ 0, and p x dx( )

-•

•

Ú =1 

1 We generally use an uppercase P(◊) to denote a probability mass function, and a lowercase p(◊) to denote 

a probability density function.
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Figure 3.2 graphically displays a probability density function.
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Figure 3.2  A probability density function

Probability that x has a value between x0 and x0 + Dx is: 
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If Dx is incrementally small, 

                                                    P(x0 £ x < x0 + Dx) = p(x = x0) Dx                              (3.4b)
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where  N = number of sample points, and 

     DN = number of times the random variable x lies in the range x0 £ x < x0 + Dx

Vector Random Variables

The results for a scalar random variable x can easily be extended to a vector random variable 

x, with components xj: j = 1,…, n. The random variable x can take on values in discrete sample 

space ¬ = º = ºd
n

lx lx lx jV v v v l d
n

: { , , , }; , , ,x 1 2
1 2 . For each possible value of x in ¬d

n
, we have a joint 

probability,

                                                   P P x v x v x v
lx lx n lxn

( ) ( , , , )x = = = º =1 21 2
                                        

(3.6)
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Note that P(x) is a function of n variables and can be very complicated multidimensional 

function. However, if the random components xj ; j = 1, …, n, are statistically independent, then

                                                              P P x P x P x
n

( ) ( ) ( ) ( )x = º
1 2                                  

(3.7)

                                                                      =
=

’ P x j

j

n

( )
1

The multivariate situation is similarly handled with continuous random vectors x. The probability 

density function p(x) must satisfy

                                               p p d( ) , ( )x x x≥ =
- •

•

Ú0 1and                                        (3.8)

where the integral is understood to be an n-fold multiple integral and the element of n-dimensional 

volume dx = dx1 dx2
… dxn.

If the components of x are statistically independent, then the joint probability density function 

factors as,

                                                                        p p x j

j

n

( ) ( )x =
=

’
1

                                                          (3.9)

Class-conditional Probability Density Function

We now consider total sample space (data matrix) wherein the continuous vector random variable 

x is an n-dimensional vector that corresponds to feature vector for each sample point (each row in 

data matrix) and y is the discrete scalar random variable that corresponds to the class to which x 

belongs.

y y y y y q MM qŒ º = = º{ , , , } { ; , , }1 2 1

The variable y has M discrete values: {y1, y2,…, yM} = {1, 2, …, M}. We consider x to be a 

continuous random variable whose density function depends on the class y, expressed as p(x|y). 

This is the class-conditional probability density function—the probability density function for x 

given that the class is y. The difference between p(x|yq) and p(x|yk) describes the difference in the 

feature vector x between data of classes yq and yk ; q, k Œ 1, 2,…, M.

If the attribute values xj ; j = 1,…, n, are statistically independent, then 

  p y p x yj

j

n

( | ) ( | )x =

=

’
1

                                             (3.10)

Figure 3.3 illustrates the class-conditional probability density function under the assumption of 

statistical independence.
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Figure 3.3  Class-conditional probability density function

Probability that xj is between xj0 and xj0 + Dx, 
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If Dx is incrementally small,

                                P x x x x y p x x y xj j j q j j q( | ) ( | )0 0 0£ < + = =D D                            (3.11b)

Estimation of Probability Distributions

The probabilistic structure of a random variable can be characterized completely if its distribution 

function (probability mass function (pmf)/probability density function (pdf)) is known. Therefore 

pmf/pdf constitutes a mathematical model of the random variable.

Once mathematical models of random variables are specified, it is possible to design optimal 

classifiers. Bayesian decision theory [1, 4] gives a basic statistical model for designing optimal 

classifiers. This model is based on quantifying the trade-offs between various classification decisions 

and the risks associated with them. It assumes that the decision problem is posed in probabilistic 

terms, and that all the relevant pmfs/pdfs; specifically, probability mass function P(yq) and

class-conditional densities p(x|yq), q = 1, …, M, are known.

Sadly, in pattern recognition applications, we hardly ever have this kind of total knowledge of 

the probabilistic structure of the problem. Typically, we only have some rough, general knowledge 

about the situation, along with several design samples or training data—specific representatives of 

the patterns we wish to categorize. The problem, therefore, is to discover some method of using this 

information for  designing or training the classifier.

One model for this problem is to make use of the samples to make an estimation of unknown 

probabilities, and probability densities, and then employ the resulting estimates as if they were the 

true values. Typically, for supervised pattern classification, the probabilities P(yq) are estimated 

quite easily without any problems (refer to Eqn (3.1)). But then, estimation of class-conditional 

densities p(x|yq) is not practical (refer to Eqn (3.5)). The available samples turn out to be small 

in number for feasibility of this estimation, and serious issues emerge as a result of the large 

dimensionality of the vector   x.
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If our general knowledge pertaining to the problem allows parameterization of the conditional 

densities, then the difficulties associated with these issues can be brought down. Parametric forms 

of models of certain commonly observed density functions are known; once the form of underlying 

density function is chosen, we need to simply estimate its parameters.

Parameter estimation is a classical problem in statistics, which can be approached in many 

ways. Two widely used and feasible methods are maximum likelihood estimation and Bayesian 

estimation. Even though the results obtained from these two methods are often almost same, the 

models differ in terms of concept.

Maximum-likelihood technique looks at the parameters as quantities wherein values are fixed 

but not known. The ideal estimate of their value is one that maximizes the probability of obtaining 

the samples actually observed. Bayesian techniques consider the parameters to be random variables 

with certain known prior distribution. On observation, the samples convert this to a posterior 

density, which helps us tune our earlier estimate of the actual values of the parameters. Typically, 

the effect of observing additional samples is to improve a posteriori density function, sharpening it 

to peak near the true values of the parameters (refer to [4] for details on both the methods).

3.2.2  Descriptive Measures of Probability Distributions

Expected (mean or average) Value

One of the most important descriptive values of a random variable is the point around which 

distribution is centered, known as measure of central tendency. The expected (mean or average) 

value is the best measure for central tendency.

For a scalar random variable x, the expected value, denoted as E [x] (or m), is

                                                                E [x] = m =
- •

•

Ú xp x dx( )                                                (3.12a)

where p(x) is the probability density function. 

For a discrete random variable described by a large random sample S,

                                                                E [x] = m =
Œ

Â xP x

x S

( )                                          (3.12b)

where P(x) is probability mass function.

The following results immediately follow:

 1. E [C] = C; C = constant                                                                                     (3.13a)

 2. E [Cx] = C E [x]                                                                                                      (3.13b)
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E [xj]                                                                                                (3.13c)

 4. If there are two random variables x1 and x2 defined on a sample space, then
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     where p(x1, x2) is joint probability density function. 

 5. If f (x) is any function of x, the expected value of f is defined as,

                                                          E [ f (x)] = f x p x dx( ) ( )

- •

•

Ú                                          (3.13e)

 6. For a vector random variable x,
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     In discrete case,
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Variance

The expected value or mean is used more than any other single number to describe a random 

variable. Usually it is also desired to know the ‘spread’ of the random variable about the mean. The 

most convenient measure used for this purpose is variance, denoted as Var[x] or s 2, defined below:

                                    Var [x] = s 2 = E [(x – m)2] = ( ) ( )x p x dx-
- •

•

Ú m
2                                (3.14a)

It may be noted that variance is simply the weighted average of squared deviations from the 

mean value.

In discrete case,

                                      Var [x] = s 2 = E [(x – m)2] = ( ) ( )x P x

x S

-

Œ

Â m
2                              (3.14b)

A more convenient measure of dispersion is the square root of variance, called the standard 

deviation, s, i.e., 

                                                            s = Var [ ]x                                               (3.14c)

The following results immediately follow:

1.  Var [x] = E[(x – E[x])2]

                = E[x2 – 2x E[x] + (E [x])2

                = E[x2] – (E [x])2                                                                                                (3.14d)

      E[x2] is called the second moment (E[x] is the first moment) of the random variable.

 2. The moments of difference between a random variable and its mean value are called central 

moments. Variance is thus a second central moment.

 3. For two random variables x1 and x2 defined on a sample space, E[x1 x2] is the joint second 

moment of x1 and x2. 
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Covariance

The joint second moment of x1 and x2 about their respective means m1 and m2, is the covariance of 

x1 and x2, i.e.,

                                          Cov [x1, x2] = s12 = E[(x1 – m1) (x2 – m2)]                             (3.15a)

                                                             = E[x1x2] – E [x1] E[x2]                                     (3.15b)

The covariance is an important measure of the degree of statistical dependence between x1 and 

x2. If x1 and x2 are statistically independent, E[x1x2] = E[x1] E[ x2], and Cov [x1, x2] = s12 = 0. If 

Cov [x1, x2] = 0, then x1 and x2 are said to be uncorrelated. 

Sometimes correlation coefficient, denoted as r, is more convenient to use. It is defined as,  
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r is normalized covariance and must always be between –1 and +1. If r = +1, then x1 and x2 are 

maximally positively correlated (the values of x1 and x2 tend to be both large or small relative to 

their respective means); while if r = –1, they are maximally negatively correlated (the values of x1 

tend to be large when values of x2 are small and vice versa). If r = 0, the variables are uncorrelated.

The following results immediately follow:

 1. For an n-dimensional random vector x, covariance matrix S describes the correlations among 

its n components x1, x2, …, xn; l = [m1 m2
… mn]

T represents the mean vector. 

                                                S = E[(x – l) (x – l)T ]                                                           (3.17a)
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 2. The covariance matrix S is defined as the (square) matrix whose jkth element sjk is the 

covariance of xj and xk :
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 3. S is symmetric and its diagonal elements are simply the variances of the individual elements 

of x, which can never be negative; the off-diagonal elements are the covariances, which can 

be positive or negative. If the variables are statistically independent, the covariances are zero, 

and the covariance matrix is diagonal.

3.2.3  Descriptive Measures from Data Sample 

A statistic is a measure of a sample of data. Statistics is the study of these measures and the 

samples they are measured on. Let us summarize the simplest statistical measures employed in data 

exploration. 

 1. Range: It is the difference between the smallest and the largest observation in the sample. It 

is frequently examined along with the minimum and maximum values themselves.

 2. Mean: It is the arithmetic average value, that is, the sum of all the values divided by the 

number of values.

 3. Median: The median value divides the observations into two groups of equal size—one 

possessing values smaller than the median and another one possessing values bigger than the 

median

 4. Mode: The value that occurs most often, is called the mode of data sample.

 5. Variance and Standard Deviation: The difference between a given observation and

the arithmatic average of the sample is called its deviation. The variance is defined as the 

arithmatic average of the squares of the deviations. It is a measure of dispersion of data 

values; measures how closely the values cluster around their arithmatic average value. A low 

variance means that the values stay near the arithmatic average; a high variance means the 

opposite. 

  Standard deviation is the square root of the variance and is commonly employed in measuring 

dispersion. It is expressed in units similar to the values themselves while variance is expressed 

in terms of those units squared.

 6. Covariance matrix: Arithmatic average of the matrix (x(i) – l) (x(i) – l)T gives us sample 

covariance matrix; i = 1,…, N are the N observations in the data sample, and l is the arithmatic 

average of the sample. x and l are both n-dimensional vectors.
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Correlation coefficient r between two attributes can be calculated from data samples using

Eqn (3.16).



84  Applied Machine Learning

3.2.4  Normal Distributions

Of the different density functions explored, the maximum attention has been received by the 

multivariate Gaussian (normal) density. This is primarily because of its analytical tractability. It has 

a simple parameterized form, and is entirely controlled by numerical values of the two parameters, 

the mean and the variance/covariance. Multivariate normal density is, for many applications, an 

appropriate model for the given data.

According to the central limit theorem in statistics:

As random samples are increasingly taken from a population, the distribution of the averages (or 

any similar statistic) of the sample follows the normal distribution. With an increase in the number 

of samples, the average of the samples comes closer to the average of the entire population.

The contrapositive is true as well, that is, if the distribution of the values does not follow a 

normal distribution, then it is highly unlikely that the original values were drawn randomly. And, if 

they were not drawn randomly, some other process is at work.

The normal or Gaussian probability density function is significant for not only theoretical but 

also practical reasons. In one dimension, it is defined by (univariate normal probability density 

function):
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The conventional description of normal density is a bell-shaped curve, totally controlled by 

the numerical values of the two parameters, the mean m and the variance s2. The distribution is 

symmetrical about the mean; the peak occurring at x = m, and the width of the bell is proportional 

to the standard deviation s (Fig. 3.4).

p x( )

s

m      s– 2 m    s– m m s+ m s2+
x

Figure 3.4  A univariate normal distribution

If the random variable is the standardized random variable, u = (x – m)/s, then the normal 

distribution is said to be standardized having zero mean and unit standard deviation—that is,
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Consider now a vector random variable x with each of the n scalar random variable xj normally 

distributed with mean m j and variance sj
2. If these variables are independent, their joint density has 

the form
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In this case, covariance matrix S is diagonal.
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We can write joint density compactly in terms of quadratic form:
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This, in fact, is the general form of a multivariate normal density function, where the covariance 

matrix S is no longer required to be diagonal (normally distributed random variables xj may be 

dependent).

3.2.5  Data Similarity

Machine learning, like animal learning, relies heavily on the notion of similarity, in its search for 

valuable knowledge in database. Machine learning algorithms that interface with numerical form 
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of data representation: patterns are specified by a fixed number (n) of features, where each feature 

has a numerical value (real) for the pattern, visualize each data as a point in n-dimensional state 

space. Characterizing the similarity of the patterns in state space can be done through some form 

of metric (distance) measure: distance between two vectors is a measure of similarity between two 

corresponding patterns. Many measures of ‘distance’ have been proposed in the literature.

The ease with which humans classify and describe patterns, often leads to incorrect assumption 

that the capability is easy to automate. The choice of similarity measure is a deep question that lies 

at the core of machine learning.

Let us use dil to depict a distance metric or dissimilarity measure, between patterns i and l. For 

pattern i, we have the vector of n measurements ( , , , ),
( ) ( ) ( )
x x x

i i

n

i

1 2 º  while for pattern l, we have the 

vector of measurements ( , , , ).
( ) ( ) ( )
x x x

l l

n

l

1 2 º  

Distances can be defined in multiple ways, but in general the following properties are required:

Nonnegativity: dil  ≥ 0

Self-proximity: dii = 0                                                                                                                (3.25)

Symmetry: dil = dli

Triangle Inequality: dil £ dik + dkl

Euclidean distance: The most popular distance measure is the Euclidean distance, dil, which 

between two patterns i and l, is defined by,

                                    d x x x x x x
il

i l i l

n

i

n

l
= - + - +º+ -( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 1

2
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2 2                                 (3.26)

Despite Euclidean distance being the most commonly used similarity measure, there are three 

primary characteristics that need to be taken into consideration.

 (i) It depends highly on scale, and variables that possess bigger scales impact the total distance 

to a great extent. Thus, we first normalize continuous measurements and only then calculate 

the Euclidean distance. This transforms all measurements to the same scale.

 (ii) Euclidean distance entirely ignores the relationship between measurements. If there is a 

strong correlation between measurements, a statistical distance measure seems to be a better 

candidate.

 (iii) Euclidean distance is sensitive to outliers, and if the data comprises outliers, a preferred 

choice is the use of robust distances like Manhattan distance.

Statistical distance: This metric takes into consideration the correlation between measurements. 

With this metric, measurements extremely correlated with other measurements do not contribute 

as much as the uncorrelated or less correlated. The statistical distance, also referred to as the 

Mahalanobis distance, between patterns i and l is defined as, 

                                          d
il

i l T i l
= - -

-( ) ( )( ) ( ) ( ) ( )
x x x xS 1                                                  (3.27)

where x(i) and x(l) are n-dimensional vectors of measurement values of patterns i and l, respectively, 

and S is the covariance matrix of these vectors. 
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Manhattan  distance:  This distance looks at the absolute differences rather than squared 

differences, and is defined by, 
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Minkowski metric: One general class of metrics for n-dimensional patterns is the Minkowski 

metric (also referred to as the Lp norm):
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where p ≥ 1 is a selectable parameter. Setting p = 2 gives the familiar Euclidean distance (L2 norm) 

and setting p = 1 gives the Manhattan distance (L1 norm). With respect to Eqns (3.26)–(3.29),                                L x xp
i l i l

p j
i

j
l p

j

n
p

( , ) || || | |( ) ( ) ( ) ( ) ( ) ( )

/

x x x x= - = -
Ê

Ë
Á

ˆ

¯
˜

=
Â

1

1

                             (3.30a)
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(Manhattan norm)

In this section, we have presented a handful of key ideas from descriptive statistics that we will 

be using in the book. Some other concepts/measures from statistics that have proven to be useful 

in machine learning are: Null Hypothesis; P-values; Z-scores, Confidence Interval; Chi-Square 

Distribution; t-Distribution; Chi-Square Test; t-Test; Analysis of Variance (ANOVA), and other 

measures [6, 19].

3.3  BAYESIAN REASONING: A PROBABILISTIC APPROACH TO INFERENCE

In the earlier chapters, while defining a prediction problem, the assumption made was that the 

objective is to maximize the success rate of predictions. In a classification case, for instance, 

the result of each instance is correct (in case the prediction agrees with the actual value for that 

instance), or incorrect (in case it does not agree). Everything is either black or white; there is no 

question of grey.

The Bayesian model of statistical decision making has a softer edge. It associates a probability 

each with prediction. The Bayesian classification aims to estimate the probabilities that a pattern 

to be classified belongs to various possible categories. The Bayesian method assumes that the 
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variables of interest are governed by probability distributions and that optimal decisions are made 

by reasoning about these probabilities along with the observed data [48].

Bayesian learning techniques have relevance in the study of machine learning for two separate 

reasons.

 (i) Bayesian learning algorithms that compute explicit probabilities, for example, the naive Bayes 

classifier, are among the most practical approaches to specific kinds of learning problems. 

For instance, the naive Bayes classifier is probably among the most effective algorithms for 

learning tasks to classify text documents. The naive Bayes technique is extremely helpful 

in case of huge datasets. For example, Google employs naive Bayes classifier to correct the 

spelling mistakes in the text typed in by users.  

   Empirical outcomes reported in the literature show that naive Bayes classifier is competitive 

with other algorithms, such as decision trees and neural networks; in several cases with huge 

datasets, it outperforms the other methods.

 (ii) The importance of Bayesian techniques to our study of machine learning is also because it 

gives a meaningful perspective to the comprehension of various learning algorithms that do 

not explicitly manipulate probabilities. It is essential to have at least a basic familiarity with 

Bayesian techniques to understand and characterize the operations of several algorithms in 

machine learning.

Why are other machine learning algorithms required when Bayesian reasoning results in optimal 

solutions to our classification tasks? It is because Bayesian reasoning offers a probabilistic approach 

to inference and finds basis in the assumption that variables of interest are governed by probability 

distributions and that it is possible to make optimal decisions by reasoning about these probabilities, 

along with observed data. A practical challenge in the application of Bayesian methods is that they 

need initial knowledge of several probabilities. If there is no prior knowledge of the probabilities, 

their estimation is often done on the basis of the background knowledge, available data, and 

assumptions pertaining to the form of underlying distributions. Usually, in pattern recognition 

problems, the assumption that there was knowledge of forms of underlying density functions, is 

weak; the popular parametric forms rarely fit the densities which are faced in practice. Specifically, 

all the classical parametric densities possess one local maximum, that is, they are unimodal, while 

we encounter multimodal densities in many practical problems. 

A second practical issue is the high computational cost needed to compute the Bayes optimal 

hypothesis in the general case. In some special cases, it is possible to significantly reduce this 

computational cost. 

For these reasons, we are forced to look for alternative algorithms requiring tolerance for 

suboptimal decisions. Naive Bayes classifier provides an approximate solution to the practical 

problems, particularly when the datasets are very large, but leads to suboptimal decisions. 

Bayes theorem is the cornerstone of Bayesian learning methods. Let us begin with the description 

of this theorem.

3.3.1  Bayes Theorem

Bayes theorem takes its name from Thomas Bayes, for all the initial work he did in probability and 

decision theory in the 18th century.
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We are often interested in determining the best hypothesis h from some space H, considering 

the observed training data D. We may specify what we imply by the best hypothesis by demanding 

the most probable hypothesis given the observed data D in addition to any initial knowledge

about the prior probabilities of various hypotheses in H. Bayes theorem offers a method of 

calculating the  probability of a hypothesis on the basis of its prior probability, the probabilities of 

observing different data given the hypothesis, and the observed data itself.

To link it to machine learning problems, we will introduce the Bayes theorem by referring to the 

data D as training examples of certain target function, and referring to H as the space of candidate 

target functions (in fact, Bayes theorem is much more general; it can be applied equally well to any 

set H of mutually exclusive propositions whose probabilities sum to one). We will be concerned 

with classification problems; the candidate outputs for prediction we consider are, therefore, the 

classes yq ; q = 1, …, M. We are looking for probability that the data x belongs to a specified class, 

given that we know the attribute description of x.

We, therefore, describe and use the Bayes theorem for the following problem setting:

Given the data,

                                                      D : {x(i), y(i)}; i = 1, 2,…, N                                                  (3.31)

with patterns

                                                    x = [x1 x2 … xn]
T

The n features/attributes are xj ; j = 1, …, n; and the output is y. The question that is often of most 

significance is: What is the most probable class of new pattern x, given the training data D? The 

class label is, therefore, the output variable y.

We consider y to be a random variable that must be described probabilistically. The domain of 

random variable y is countable.

                                                           y : {y1, y2, …, yq, …, yM}

The value yq ; q = 1, …, M, corresponds to the class q Œ{1, …, M}. The occurrence of discrete 

values yq is expressed by the probability P(yq). The distribution of all possible values of discrete 

random variable y is expressed as probability distribution,

                                                     P(y) = P y P yM( ), , ( )1 º                                                 
(3.32)

                                                    P(y1) + … + P(yM) = 1

We assume that there is some a priori probability (or simply prior) P(yq) that the next feature 

vector belongs to the class q. The prior probabilities reflect our prior knowledge of how likely we 

are to get a class q before the feature vector is actually observed.

The attributes xj ; j = 1, …, n, in the dataset D may be categorical as well as continuous. We assume 

first that the continuous attributes are binned (attribute xj is divided into equal-sized intervals, 

named bins) and converted to categorical variables. Therefore, each attribute xj is assumed to have 

value set V v v vx x x d xj j j j j
:{ , , , };1 2 º  the values vl x j

;l = 1, 2, …, dj, are countable. 

Bayes theorem provides a way to calculate the probability of a class yq based on its prior 

P(yq), probabilities of observing various patterns given the class, P(x|yq), and the probabilities of 

observing patterns themselves, P(x). Suppose that we have both the prior probabilities P(yq) and 
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the conditional probabilities P(x|yq) for q = 1, …, M. The probability P(x) can be obtained from 

the knowledge of P(yq) and P(x|yq). We are interested in the probability P(yq|x) that class yq holds 

given the observed data x. P(yq|x) is called the posterior probability (or simply posterior) of yq 

given x, because it reflects our confidence that class yq holds after we have seen the pattern x. Note 

that the posterior P(yq|x) reflects the influence of seeing the pattern x, in contrast to the prior P(yq) 

which is independent of x.

Bayes theorem provides a way to calculate posterior P(yk |x); k Œ{1, …, M} from the known 

priors P(yq), together with known conditional probabilities P(x|yq); q = 1, …, M.
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P(x) expresses variability of the observed data, independent of the class.

P(x|yk) is called the class likelihood and is the conditional probability that a pattern belonging 

to class yk has the associated observation value x. As one might expect, posterior P(yk |x) increases 

with prior P(yk) and with class likelihood P(x|yk). It is also reasonable to see that posterior P(yk |x) 

decreases as P(x) increases, because the more probable it is that x will be observed independent of 

yk, the less evidence x provides in support of yk .

                                                    posterior = 
prior liklihood

evidence

¥

                                                (3.34)

Because of the normalization by the evidence, the posteriors sum to 1.

Given the priors,

P y P yq q

q

M

( ) ; ( )≥ =

=

Â0 1
1

and likelihoods,

                                                      P(x|yq); q = 1, …, M,

the posteriors can be calculated as,
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The practicability of Bayes theorem when the features x have discrete values, lies in the fact that 

conditional probability function P(yq |x) can be calculated from P(x|yq) and P(yq), which can be 

estimated from data much more easily than P(yq|x) itself. The naive Bayes classifier, described in 

the next sub-section, uses data-based probability estimation.



Statistical Learning  91

In many learning scenarios, the learner is interested in finding the most probable class k (or 

at least one of the maximally probable if there are several), given the observed data x. Any such 

maximally probable class is called a Maximum A Posteriori (MAP) class. We can determine the 

MAP class by choosing:

                                       Class k if P y P yk
q

q( | ) ( | )x x= max                                                         (3.36)

Thus, yMAP corresponds to MAP class provided,

                                              yMAP ∫ arg max
q

qP y( | )x  

                                                       ∫ arg max
q

q qP y P y

P

( ) ( | )

( )

x

x
 

                                                       ∫ arg max
q

q qP y P y( ) ( | )x                                               (3.37)

arg max (argument of the maxima) is the point of the domain q (i.e., the class yq) at which the 

function is maximized.

Notice that we dropped P(x) because it is a constant independent of y.

In some cases, we will assume that every class is equally probable a priori (P(yq) = P(yk); " q, 

k). In this case, we can further simplify Eqn (3.37) and we need only consider the term P(x|yq) to 

find the most probable class. Since P(x|yq) represents the likelihood of the data x given class yq, 

any class that maximizes P(x|yq) is called Maximum Likelihood (ML) class. Thus yML corresponds 

to ML class provided,

 y P y
q

qML ∫ arg max ( | )x  (3.38)

 So far, we have used the assumption of binning the continuous data. In fact, Bayes theorem does 

not need this assumption. It uses probability density functions instead of probability distribution 

functions, when the data is continuous (refer to Section 3.2). Here, we consider the general Bayes 

theorem. The version given in Eqn (3.33), based on categorical data assumption, is only a specific 

application of the theorem.

General Bayes Theorem

Let {y1, …, yM} be the finite set of M categories (classes) in the observed training data D. We 

consider yq ; q = 1, …, M, to be a variable that must be described probabilistically. Let feature 

vector x in the training data D be an n-component vector-valued random variable and p(x) be 

the probability density function that data tuple x will be observed (i.e., the probability of x given 

no knowledge about which class it belongs to). Let p(x|yq) be the conditional probability density 

function for x conditioned on yq being its class; P(yq) describes the prior probability that x belongs 

to class yq.

The posterior probability P(yk |x) can be computed from p(x|yq) and P(yq) using the Bayes 

formula:
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p y P y
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where
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Thus, Bayes theorem provides a way to calculate the probability of a class k based on its prior 

P(yk), the probability density function p(x|yk)—the probabilities of observing various patterns 

given the class; and the probability density function p(x)—the probabilities of observed patterns 

themselves. The probability density function p(x) for the feature vector in the entire population 

(independent of the class) can be obtained from the knowledge of p(x|yq) and P(yq); q = 1, …, M. 

We therefore need P(yq) and p(x|yq); q = 1, …, M, to compute P(yk |x); k Œ{1, …, M}.

A practical difficulty in applying Bayes theorem is that it requires initial knowledge of P(yq) 

and p(x|yq). In real-world applications, these probabilities are not known in advance. Sometimes 

we have some general knowledge about the probabilistic structure of the problem; this knowledge 

permits us to parameterize the conditional densities (P(yq) are relatively easy to determine). 

Suppose, for instance, we are able to reasonably assume that p(x|yq) is a multivariate Gaussian 

(normal) density with mean lq and covariance matrix Sq, despite not knowing the precise values of 

these quantities. This information makes the problem simpler, turning it from one of estimating an 

unknown function p(x|yq) to estimating the parameters lq and Sq.

The issue of parameter estimation is a classical one in statistics, which can be approached in 

many ways. Two widely used and reasonable methods are maximum likelihood estimation and 

Bayesian estimation [1, 4].

Usually in pattern-recognition problems, the assumption that there was knowledge of the forms 

of probability density functions, is weak. The common parametric forms rarely fit the densities 

truly faced in practice. All the classical parametric densities are unimodal, that is, they have only 

one local maximum, while we encounter multimodal densities in many practical problems.

Often, our general knowledge pertaining to the problem is not expressed by a parameterized 

density function. It is, rather, depicted as statistical dependencies (or independencies) or the causal 

relationships among the features xj of vector x. There are several cases where we are aware (or it is 

safe for us to assume) which are the variables that are causally linked, even though it may not be 

easy to specify accurate probabilistic relationships among these variables. We graphically represent 

these causal dependencies using Bayesian belief networks.

Can we invent efficient algorithms to learn belief nets from training data? If the network structure 

is provided in advance, it is simple to learn the conditional probabilities. However, learning belief 

nets where the network structure is unknown in advance is tough.

If the dependency relationships among the features used by a classifier are unknown, we usually 

proceed by opting for the most basic assumption— the features are conditionally independent given 

the class. Practically speaking, this so called naive Bayes rule frequently works rather well, even 

with its manifest simplicity.

In the remainder of this section, we discuss naive Bayes classification in detail, and give a brief 

exposition of Bayesian belief networks.
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3.3.2  Naive Bayes Classifier

The most basic idea we exploit in machine learning is that simple algorithms often work very 

well. It is recommended that a ‘simplicity first’ strategy be adopted while analyzing practical 

datasets in applied machine learning. In the unlimited range of varying possible datasets, there are 

several different types of structures that can exist. A machine learning tool—irrespective of how 

advanced—that is searching for one class of structures, may totally miss regularities of a different 

type.

A comprehensive study has revealed that very simple learning methods perform well on most 

commonly used datasets. Inspite of simplicity, these techniques do well as compared to state-of-

the-art learning techniques, only a few percentage points less precise.

A very simple rule for classifying a record into one of the M classes, ignoring all information 

from (x1, x2, …, xn) attributes that we may have, is to classify the record as a member of the 

majority class. Take an illustrative example of predicting flight delays [20]. Assume that there are 

six attributes in the data table (x1: Day of Week, x2: Departure Time, x3: Origin, x4: Destination, 

x5: Carrier, x6: Weather), and output y gives class labels (Delayed, On Time). Say 82% of the 

entries in y column record ‘On Time’. A naive rule for classifying a flight into two classes, ignoring 

information on x1, x2, …, x6 is to classify all flights as being ‘On Time’. The naive rule is used as 

a baseline for evaluating the performance of more complicated classifiers. Clearly, a classifier that 

uses attribute information should outperform the naive rule. 

An easy method is to use all the attributes and permit them to contribute to the decisions, taking 

into account the features as equally important and independent of each other, considering the class. 

Of course, this is unrealistic; in real-life data, the attributes are definitely not  equally important or 

independent. However, this assumption results in a simple scheme, which, when put in practice, 

works astonishingly well. The scheme is called Naive Bayes Classifier, although there is nothing 

‘Naïve’ about its use in appropriate circumstances.

Naive Bayes classifier performs well only with categorical attributes. Continuous attributes 

should be binned (input is divided into equal-sized intervals, named bins) and transformed into 

categorical variables before the naive Bayes classifier can proceed using them.

In order to apply the Bayes theorem to calculate P(yk |x); k Œ{1, …, M}, we must specify what 

values are to be used for P(yq) and P(x|yq); q = 1, …, M (P(x) will be determined once we choose 

the other two). The choice of values of P(yq) and P(x|yq) represents our prior knowledge about the 

learning task.

In pattern recognition applications, we hardly ever have this type of advance knowledge 

regarding the probabilistic structure of the problem. Typically, we simply have some rough general 

knowledge regarding the situation together with training data. The problem is to look for some 

means of using this information to design or train the classifier.

One approach to this problem is to use the samples to estimate the unknown probabilities 

P(yq) and class-conditional probabilities P(x|yq); and then use the resulting estimates as if they 

were the true values. In typical supervised pattern classification problems, the estimation of prior 

probabilities P(yq) presents no serious difficulties. Each of the P(yq) may be estimated simply by 

counting the frequency with which class yq occurs in the training data:
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                                            P y
y

N
q

q
( ) =

Number of data with class

Total number ( ) of data
  (3.40)

If the decision must be made with so little information, it seems logical to use the following rule:

                                                      Decide yk if P(yk) > P(yl); k π l

How well this rule works depends upon the values of prior probabilities P(yq); q = 1, …, M. 

If P(yk) is very much greater than all other P(yl); l π k, our decision in favor of yk will be right 

most of the time (unbalanced data). For balanced data, it will not work; we would always make 

the same decision even though feature vectors belonging to different classes may appear. In most 

circumstances, we are not asked to make decisions with so little information. We need to estimate 

class-conditional probabilities P(x|yq) as well:

                                P y
y

q

q
( | )x

x
=

Number of times pattern appears with class

Number of timmes appears in the datayq
                      (3.41)

Number of distinct P(x|yq) terms that must be estimated from the training data is equal to the 

number of training patterns (N) times the number of possible classes (M).

In order to obtain reliable estimate of P(x|yq), we need to see every pattern x in the feature space 

many times. This is not feasible unless we have a very large set of training data.

The naive Bayes classifier is based on the simplifying assumption that the attribute values are 

conditionally independent, given the class. In other words, the assumption is that given the class 

of the pattern, the probability of observing the conjunction x1, x2, …, xn is just the product of the 

probabilities for the individual attributes:

                                      P x x x y P x yn q j q

j

( , , , | ) ( | )1 2 º =’                                                              (3.42)

Substituting this into Eqn (3.37), we have the naive Bayes algorithm:

                                 y P y P x y
q

q j q

j

NB = ’arg max ( ) ( | )   (3.43)

where yNB denotes the class output by the naive Bayes classifier. With conditional independence 

assumption, the MAP classifier becomes the NB classifier.

Notice that in a naive Bayes classifier, the number of distinct P(xj |yq) terms that must be estimated 

from the training data is just the number of distinct attributes (n) times the number of distinct classes 

(M)—a much smaller number than if we were to estimate the P(x1, x2, …, xn |yq) = P(x|yq) terms.

One interesting difference between the naive Bayes learning and other Bayesian learning 

methods is that there is no explicit search through the space of possible probability distribution/

density functions for the possible values that can be assigned to the various P(yq) and P(x|yq) terms. 

Instead, the values are generated simply by counting the frequency of various data combinations 

within the training examples.
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Given:
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Values of x may be categorical or continuous. If the features are continuous-valued, a discretization 

process gives us categorical values.

Vx j
: value set for attribute xj .

v vx xj j1 2, , ,º  are the values. If dj are countable values xj can take, we have,

                                          V v v v v l dx x x d x lx jj j j j j j
= º = = º{ , , , } { ; , , , }1 2 1 2

Given the unseen sample x : {x1, …, xn }, its values belong to the value sets V V V
x x xn1 2

, , , .º

Let the value of xj be vlxj
.  Then 

                                                                P x y N Nj q qv qlxj

( | ) /=                                                   (3.44)

where Nqvlxj

is the number of training samples of class yq having the value vlxj
for attribute xj, and 

Nq is the total number of training samples with class yq. 

Class prior probabilities may be calculated as, 

                                                                   P(yq) = Nq/N                                                          (3.45)

where N is the total number of training samples and Nq is the number of samples of class yq.

In practice, the computation of P(x|yq) can easily prove to be an enormous task. If each component 

xj can have dj values, then (dj)
n possible values of xj need to be considered.

Within the framework of error-minimization in machine learning, it is not clear from the training 

data alone, which hypothesis (model) will give the best generalization; so we resort to partitioning of 

the dataset to select an appropriate level of complexity through such techniques as cross-validation. 

The hypothesis function is a parametric model and hypothesis complexity is measured in terms of 

number of parameters.

The naive Bayes classifier is a non-parametric method. It uses the Bayes theorem as the model 

and estimates the priors P(yq) and likelihoods P(x|yq) for an unseen sample x directly from the 

given dataset. The data is partitioned into training and test sets, and then naive Bayes classifier is 

applied to the test samples using training set for estimating probability distributions. Choosing the 

right training set is perhaps the most important step in the procedure.

    Example 3.1

Consider the dataset D given in Table 3.1.
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Table 3.1  Dataset for Example 3.1

Gender

x1

Height

x2

Class y

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(9)

s(10)

s(11)

s(12)

s(13)

s(14)

s(15)

F

M

F

F

F

M

F

M

M

M

F

M

F

F

F

1.6 m

2 m

1.9 m

1.88 m

1.7 m

1.85 m

1.6 m

1.7 m

2.2 m

2.1 m

1.8 m

1.95 m

1.9 m

1.8 m

1.75 m

Short

Tall

Medium

Medium

Short

Medium

Short

Short

Tall

Tall

Medium

Medium

Medium

Medium

Medium

y1

y3

y2

y2

y1

y2

y1

y1

y3

y3

y2

y2

y2

y2

y2

y1 corresponds to the class ‘short’, y2 corresponds to the class ‘medium’, and y3 corresponds to 

the class ‘tall’. Therefore,

      M = 3, N = 15.

P y
N

N
P y

N

N
( ) . ; ( ) .1

1
2

24

15
0 267

8

15
0 533= = = = = =

P y
N

N
( ) .3

3 3

15
0 2= = =

 V M F v v d
x x x1 1 11 2 1 2:{ , } { , };= =

           V v v v v v v d
x x x x x x x2 2 2 2 2 2 21 2 3 4 5 6 2 6= ={ , , , , , };

                 = bins {( , . ], ( . , . ], ( . , . ], ( . , . ], ( . , . ], ( .0 1 6 1 6 1 7 1 7 1 8 1 8 1 9 1 9 2 0 2 0,, )}•
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The count table generated from data is given in Table 3.2.

Table 3.2  Number of training samples, Nqv lxj

, of class q having value vlx j

Value

vlxj

Count Nqvlxj

Short

q = 1

Medium

q = 2

Tall

q = 3

v
x1 1
:M

v
x2 1
:F

v
x1 2

0 1 6: ( , . ]  bin

v
x2 2

1 6 1 7: ( . , . ]  bin

v
x3 2

1 7 1 8: ( . , . ]  bin

v
x4 2

1 8 1 9: ( . , . ]  bin

v
x5 2

1 9 2 0: ( . , . ]  bin

v
x6 2

2 0: ( . , ]•  bin

1

3

2

2

0

0

0

0

2

6

0

0

3

4

1

0

3

0

0

0

0

0

1

2

We consider an instance from the given dataset (the same procedure applies for a data tuple not 

in the given dataset (unseen instance)):

                                                             x : {M, 1.95 m} = {x1, x2}

In the discretized domain, ‘M’ corresponds to v
x1 1

and ‘1.95 m’ corresponds to v
x5 2

.

                                          P x y N Nv x
( | ) / /1 1 1 11 1

1 4= =

                                         P x y N Nv x
( | ) / /1 2 2 21 1

2 8= =

                                         P x y N Nv x
( | ) / /1 3 3 31 1

3 3= =

                                         P x y N Nv x
( | ) / /2 1 1 15 2

0 4= =

                                        P x y N Nv x
( | ) / /2 2 2 25 2

1 8= =

                                         P x y N Nv x
( | ) / /2 3 3 35 2

1 3= =

P y P x y P x y( | ) ( | ) ( | )x 1 1 1 2 1

1

4
0 0= ¥ = ¥ =
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P y P x y P x y( | ) ( | ) ( | )x 2 1 2 2 2

2

8

1

8

1

32
= ¥ = ¥ =

                                      P y P x y P x y( | ) ( | ) ( | )x 3 1 3 2 3

3

3

1

3

1

3
= ¥ = ¥ =

                             P y P y( | ) ( ) .x 1 1 0 0 267 0= ¥ =

                            P y P y( | ) ( ) . .x 2 2

1

32
0 533 0 0166= ¥ =

                             P y P y( | ) ( ) . .x 3 3

1

3
0 2 0 066= ¥ =

                                             y P y P y
q

q qNB = ¥arg max ( | ) ( )x

This gives q = 3.

Therefore, for the pattern x = {M 1.95m}, the predicted class is ‘tall’.

The true class in the data table is ‘medium’. Note that we are working with an artificial toy 

dataset. Use of naive Bayes algorithm on real-life datasets will bring out the power of naive Bayes 

classifier when N is large.

3.3.3  Bayesian Belief Networks

As discussed in the previous sub-section, the naive Bayes classifier makes significant use of the 

assumption that values of attributes x1, x2, …, xn are conditionally independent given the target 

value yq. This assumption dramatically reduces the complexity of learning the target function. 

However, in many cases, this conditional independence assumption is clearly overly restrictive. 

In contrast to the naive Bayes classifier, which assumes that all the variables are conditionally 

independent given the value of the target variable, Bayesian belief networks [6, 49] allow stating 

conditional independence assumptions that apply to subsets of variables. Bayesian belief networks, 

thus, provide an intermediate approach that is less constraining than the global assumption of 

conditional independence made by naive Bayes classifier, and is more tractable than avoiding 

conditional independence assumption altogether (Earlier in this section, a parametric estimation 

procedure was suggested as a solution to problems where conditional independence assumptions 

were not made, but that solution is not feasible for many applications). 

Generally speaking, a Bayesian belief network is a description of the probability distribution 

over a set of variables. Suppose there is an arbitrary set of random variables a1, a2, …, am with 

each variable ai capable of taking on the set of possible values Vai
. We define the joint space of 

variables ai to be V V V
a a am1 2
¥ ¥º¥ . In other words, each item in the joint space corresponds to 

one of the possible assignment of values to the tuple of variables {a1, a2, …, am}. The probability 

distribution over this joint space is called the joint probability distribution (Section 3.2). It specifies 

the probability for each of the possible variable bindings for the tuple {a1, a2, …, am}. A Bayesian 

belief network describes the joint probability distribution for a set of variables.
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Let a, b, and c be discrete-valued random variables. We say that a is conditionally independent of 

b given c if the probability distribution governing a is independent of the value of b given a value 

of c; that is, if :

                           for all values va ŒVa, for all values vb ŒVb and for all values vc ŒVc,

P(a = va|b = vb, c = vc) = P(a = va|c = vc) (3.45a)

We commonly write this expression in abbreviated form:

                                                                        P a b c P a c( | , ) ( | )=                                                                        (3.45b)

This definition of conditional independence can be extended to sets of variables as well. Let {a1, 

…, am}, {b1, …, bl}, and {c1, …, cn} be three discrete-valued sets of random variables. We say 

that the set of variables {a1, …, am} is conditionally independent of the set of variables {b1, …, bl} 

given the set of variables {c1, …, cn} if, 

                                              P a a b b c c P a a c c
m l n m n

( , , | , , ; , , ) ( , , | , , )1 1 1 1 1º º º = º º                          (3.46)

Note the correspondence between this definition and our use of conditional independence in the 

naive Bayes classifier, wherein we assume that given the attribute set {x1, x2, …, xn}, the attribute xj 

is conditionally independent of all other attributes xk given the target value yq. This allows the naive 

Bayes classifier to calculate P x x yn q( , , | )1 º  as follows:

         P x x y P x y P x y P x yn q q q n q( , , | ) ( | ) ( | ) ( | )1 1 2º = º

                                                                 =
=

’ P x yj q

j

n

( | )
1

                                            (3.47)

Let us consider a simple network for illustration [17]. Figure 3.5(a) shows a belief network with 

six Boolean variables: a1 (FamilyHistory), a2 (LungCancer), a3 (PositiveXRay), a4 (Smoker), a5 

(Emphysema) and a6 (Dyspnea). The arcs in Fig. 3.5(a) allow a representation of causal knowledge. 

For example, having lung cancer is influenced by a person’s family history of lung cancer, as well 

as whether or not the person is a smoker. The variable PositiveXRay is independent of whether the 

patient has a family history of lung cancer or is a smoker, given that we know the patient has lung 

cancer. In other words, once we know the outcome of the variable LungCancer, then the variables 

FamilyHistory and Smoker do not provide additional information regarding PositiveXRay. The 

arcs also show that the variable LungCancer is conditionally independent of Emphysema, given 

FamilyHistory and Smoker (We say LungCancer is a descendent of FamilyHistory and Smoker). 

The network arcs, thus, represent that a variable is conditionally independent of other variables in 

the network, given its immediate predecessors in the network.

Figure 3.5(b) shows the conditional probability table associated with the variable LungCancer. 

The top left entry in the table, for example, expresses the assertion that P(LungCancer = 

True|FamilyHistory = True, Smoker = True) = 0.8. The bottom rightmost entry corresponds to 

P(LungCancer = False|FamilyHistory = False, Smoker = False) = 0.9. The set of local conditional 

probability tables for all the variables, together with the set of conditional independence assumptions 

described by the network, give the full joint probability distribution for the network. 
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(a) A proposed causal modal

FH, S FM, ~ S ~ FM, S

LC 0.8 0.5 0.7

~ LC 0.2 0.5 0.3

(b) Conditional probability table

FH : FamilyHistory

~ FH : , S:No FamilyHistory Smoker

~ S: , LC :Not Smoker LungCancer

~ LC : No LungCancer

~FM, ~ S

0.1

0.9

FamilyHistory
a1

Smoker
a4

Dyspnea
a6

PositiveXRay
a3

LungCancer
a2

Emphysema
a5

Figure 3.5

An attractive feature of Bayesian belief networks is that they permit an easy method of 

representing causal knowledge, such as the fact that LungCancer = True results in PositiveXRay 

= True. In the language of conditional independence, this is expressed through the statement that 

PositiveXRay is conditionally independent of other variables in the network, given the value of 

LungCancer.

The joint probability for any desired assignment of values ( , , )v v
a a

m1
º  to the tuple of network 

variables ( , , )a a
m1 º  can be computed by the formula,

                                                      P v v P v a
a a a i

i

m

m i
( , , ) ( | ( ))

1
1

º =

=

’ Parents                                   (3.48)

where Parents (ai) denotes the set of immediate predecessors of ai in the network. The values of 

P v Parents a
a ii

( | ( )) are precisely the values stored in the conditional probability table associated 

with node ai.

We may like to employ a belief network to infer the value of some target variable (e.g., Dyspnea), 

given the observed values of other variables. It is possible to infer the probability distribution for 

the target variable, which specifies the probability that it will take on each of its possible values 

given the observed values of other variables.

Experts who build belief networks for a specific domain at times stand to gain by representing 

causal effects by directed arcs. Therefore, when we are aware of the causal structure, it is relatively 

easy to induce models from data. But when machine learning methods are applied to induce models 

from data whose causal structure is not known, they only build a network on the basis of the 

correlations observed in the data. Inference of causality from correlations is always tough. 



Statistical Learning  101

Training Bayesian Belief Networks

Let us first summarize the graphical representation of belief nets. Though these nets are capable 

of representing continuous multidimensional distributions over their variables, they have enjoyed 

greatest application and success for discrete variables. Here, we shall focus on the discrete case.

Each node (or unit) is representative of one of the data attributes, where it takes on discrete 

values. The nodes are labeled by A, B,…, and their values by the corresponding lower case letter. 

Each link in the net (arc in the graph) is directional and connects two nodes; the link represents 

the causal influence of one node on another. For a single node in a net, we demarcate the set of 

nodes before that node—known as its parents—and set of those immediately after it—known as its 

children (descendants).

Let us say there is a belief net, which has causal dependencies depicted by the topology of the links. 

By applying the Bayes rule directly, it is possible to establish the probability of any configuration of 

variables in the joint distribution. To progress, we require the conditional probability tables, which 

provide the probability of any variable at a node for each conditioning event—in other words, 

for the values of the variables in the parent nodes. If the node is without parents, the table simply 

comprises earlier probabilities of the variable values.

The network and the conditional probability tables consist of all the information of the problem 

domain. This network model can be used for inference.

A simple belief net is shown in Fig. 3.6 [4].

a1, , ,a a a2 3 4

A
b b1 2,

B

z z1 2,
Z

c1, ,c c2 3

C
d1, d2

D

P a( )1 P a( )2 P a( )3 P a( )4

0.25 0.25 0.25 0.25

P b( )1 P b( )2

0.6 0.4

P c( )1|zj

0.6 0.2 0.2

P c( )2|zj P c( )3|zj

0.2 0.3 0.5

z1

z2

P d( )1|zj

0.3 0.7

P d( )2|zj

0.6 0.4

z1

z2

P z( ,1| )a bi j

0.5 0.5a b1 1,

P z( ,2| )a bi j

0.7 0.3a b1 2,

0.6 0.4a b2 1,

0.8 0.2a b2 2,

0.4 0.6a b3 1,

0.1 0.9a b3 2,

0.2 0.8a b4 1,

0.3 0.7a b4 2,

Figure 3.6   A simple belief net
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In situations wherein the network structure is provided in advance and the variables are 

completely observable (all the variable values are known) in the training examples, it is simple to 

learn the conditional probability tables. We just estimate the conditional probability table entries as 

we would for a naive Bayes classifier.

When the network structure is given but only some of the values are observable in the training 

data, the learning problem is more difficult. There are various methods to choose from for training a 

belief network (learning the entries in conditional probability tables) in such situations. Two widely 

used methods are gradient ascent procedure and EM algorithm.

We represent the set of all possible entries in conditional probability tables by wijk. The wijk  

are viewed as weights in the optimization procedure. The gradient ascent optimization procedure 

searches through the space of weights wijk . The weights are initialized to random probability values. 

The gradient ascent strategy performs greedy hill-climbing. At each iteration, weights are updated 

and will eventually converge to local optimal solution for maximization of P(D |weight space) 

(refer to [1] for details).

A popular alternative to gradient ascent is the Expectation-Maximization (EM) Algorithm for 

training Bayesian belief networks (refer to [2] for details). EM algorithm is also the basis for some 

clustering strategies (Section 7.6 gives detailed description of EM algorithm).

Learning Bayesian networks when the network structure is not known in advance, is a difficult 

problem. Many approaches have been proposed for handling such problems. One simple and very 

fast algorithm is known as K2 algorithm. Another good learning algorithm is TAN (Tree-Augmented 

Naive Bayes) (refer to [2, 18] for details).

Bayesian belief networks is an active area of research. We have only skimmed through the 

surface of the subject.

3.4  k-NEAREST NEIGHBOR (k-NN) CLASSIFIER

Earlier in this chapter, we have introduced naive Bayes classification method that is simple and 

intuitive. Here we introduce another simple and intuitive method: k-nearest neighbor (k-NN) 

classification. Both techniques are commonly used in practice. They do not assume anything 

about the data structure and are therefore data-driven, and not model-driven. There is, naturally, 

a trade-off between simplicity and performance. However, in the presence of huge datasets, the 

simple techniques often perform surprisingly well.

The k-NN algorithm is a classification technique  that does not make assumptions about the 

model between the class membership (y) and the features (x1, x2, …, xn). This is a non-parametric 

technique as it does not involve estimation of parameters in an assumed model. Rather, this method 

pulls out information from similarities existing amongst the values of the patterns in the dataset.

In model-based techniques, a model is assumed over the entire input space, and the parameters 

of the model are estimated. After calculating these parameters from the training set, we preserve the 

model and hardly require the training set to compute output for an unseen pattern. In non-parametric 

techniques, on the contrary, the model-free algorithm finds similar past patterns or instances from 

the training set with the use of a suitable distance measure and interpolates from them the correct 

output. In machine learning, these techniques are also known as instance-based or memory-based 
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learning algorithms, as they store the training instances and interpolate from these. N is usually 

quite large, and this increased requirement of memory and computation is the drawback of the 

non-parametric techniques.

There are several types of non-parametric methods of interest in pattern recognition. One 

consists of procedures for estimating the density functions p(x|yq) from sample patterns (without 

the assumption that forms of underlying densities are known, as in maximum likelihood or Bayesian 

estimation methods; and with the assumption that attributes are statistically independent, as in naive 

Bayes classifier). If these estimates are satisfactory, they can be substituted in the Bayes theorem for 

the true densities when designing the classifier (Parzon-Window approach to estimating densities is 

quite popular [4]). Another consists of procedures for directly estimating a posteriori probabilities 

P(yq|x), bypassing probability estimation. Our focus here will be on this method, using nearest-

neighbor rule.

Let us start with basic concepts of non-parametric estimation of probability density function of a 

pattern distribution. From these concepts, the k-NN approach of classification will emerge.

In density estimation, we assume that the sample {x(i)}; i = 1,…, N, is drawn independently from 

some unknown probability density p(◊). ˆ ( )p ◊  is our estimate of p(◊). We start with the univariate case 

where x(i) are scalars (n = 1), and later generalize to the multidimensional case.

For the non-parametric estimation, the oldest and the most popular method is the histogram, 

where the input space is divided into equal-sized intervals, named bins. Given the origin x° and the 

bin width h, the bins are the intervals [x° + mh, x° + (m + 1)h] for positive and negative integers m. 

The corresponding probability is approximated by the frequency ratio:

 ˆ ( )
# { }

( )

P x
x x

N

i

=

in the same bin as
 (3.49)

where #{.} denotes the number of training instances x(i) that lie in the same bin as the test instance 

x. This approximation converges to the true probability as N Æ •. The corresponding probability 

density function value is assumed constant throughout the bin and is approximated as, 

                                  ˆ ( ) ˆ ( )
# { }

( )

p x p x
x x

N h

i

∫ =
È

Î
Í

˘

˚
˙

in the same bin as 1
                              (3.50)

where x  is the midpoint of the bin | | ,x x
h

- £Ê
ËÁ

ˆ
¯̃2

 and h is the width of the bin. 

In constructing the histogram, we have to choose both an origin and a bin width. With small bins, 

the estimate is spiky, and with larger bins, the estimate is smoother. There are discontinuities at the 

boundaries (Fig. 3.7).

The naive density estimator frees us from setting the origin: For bins of size 2h,

                                                           ˆ ( )
# { }

( )

p x
x h x x h

Nh

i

=
- < £ +

2
                                        (3.51)
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ˆ ( )p x

x

ˆ ( )p x

p x( )

Figure 3.7  Histogram for density estimation.

For fixed N and small h, p(x) is approximated by a finite number of d-like spiky functions, 

centered at the training sample points. For a fixed h and N Æ •, the space becomes dense in points 

and spiky functions are closely located. For a large enough number of samples, the smaller the h, 

the better the accuracy of the resulting estimate. 

Usually, a large N is necessary for acceptable performance. If a one-dimensional interval needs 

to be filled up with say N equidistant points, the corresponding 2-dimensional square will need N2 

points, the 3-dimensional cube, N 3, and so on. The large number of data points puts a high burden 

on computational requirements.

The nearest-neighbor class of estimators adopts the reasonable amount of smoothing to the local 

density of the data. The degree of smoothing is controlled by k (the number of neighbors taken into 

account), which is much smaller than N (the sample size).

For each x (n = 1), we define

                                                        d1(x) £ d2(x) £ … £ dN(x)                                      (3.52)

to be distances (|x – x(i)|) arranged in ascending order from x to the points in the sample. d1(x) is the 

distance to the nearest sample, d2(x) is the distance to the next nearest, and so on.

d1(x) = min
i

i
x x| |( )
-

If l is the closest sample, namely, 

                                                                  l = arg min
i

i
x x| |,( )
-

then                                                        d x x x
i l

i

2 ( ) | |( )
= -

π

min

and so forth.

The k-nearest neighbor (k-NN) density estimate is 

                                                                ˆ ( )
( )

p x
k

N d xk

=

2
                                                         (3.53)
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This is like a naive density estimator with h = dk(x); the difference being that instead of fixing h 

and checking how many samples fall in the bin, we fix k, the number of observations to fall in the 

bin, and compute the bin size. Where density is high, bins are small, and where density is low, bins 

are larger.

Generalizing to multivariable data,

                                                                  ˆ ( )
( )

p
k

NVk
x

x

=                                                          (3.54)

where Vk(x) is the volume of the n-dimensional hyperspace centered at x with radius r = ||x – x(k)||; 

x(k) is the kth nearest observation to x among the neighbors.

When used for classification, we need the class-conditional densities, p(x|yq) of the feature-

vector distributions. The estimator of the class-conditional density is given as, 

                                                         ˆ ( | )
( )

p y
k

N V
q

q

q k

x

x

=                                             (3.55)

where kq is the number of neighbors out of k nearest that belong to class yq; and Nq is the number 

of labeled instances belonging to class yq.

Here, we will not enter into the theoretical details of necessary and sufficient conditions for 
ˆ ( )p x  to coverage to p(x) [4]. We will rather use the practical observation that k-NN estimate is not 

a good estimate of probability density function, however, k-NN method results in good estimates of 

a posteriori probabilities (particularly when N is large), bypassing probability density estimation.

A reasonable estimate for P(yq|x) is 
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                                                                = kq/k                                                                              (3.56)

Thus, the estimate of the a posteriori probability that yq is the class for sample x is just the 

fraction of the samples within the cell Vk(x) that are labeled yq.

We first determine the k points that are closest neighbors of x with the help of a specific distance 

metric. The categorization of x is then given by the class label found in most of the k neighbors. All 
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neighbors have equal vote, and the class with the most number of votes among the k neighbors is 

selected. Ties are randomly broken or weighted vote is taken. k is usually taken an odd number to 

reduce ties: confusion exists usually between two neighboring classes.

Note that k = 1 is usually not sufficient for determining the class of x due to noise and outliers in 

the data. A set of nearest neighbors is needed to accurately decide the class.

The key issue of k-NN algorithm is the distance/similarity function, which is selected on the 

basis of  applications and nature of the data. The cautious selection of an appropriate distance 

function is a crucial step in the use of k-NN. A validation set can be made use of to pick the 

appropriate distance function for a given dataset by applying all candidates to gauge which one 

gives better results [50, 51].

Another question is the number of neighbors to select. Again, investigation of varying numbers 

of neighbors with the help of the validation set can facilitate establishing the optimal number, as  

the number is dependent on the data distribution and relies heavily on the problem being solved.

Selecting the appropriate training set is probably the most important step in k-NN process. 

The training set should include enough examples of all probable categories, that is, it should be a 

balanced training set having more or less the same number of instances for all classes. Generally 

speaking, the size of the training set should have at least thousands, if not hundreds of thousands 

or millions, of training examples.

The data is partitioned into training, validation, and test sets. Validation set is used to compare 

error rates for various values of k/various similarity measures, and test set is used to evaluate the 

performance.

Despite its simplicity, researchers have shown that classification accuracy of k-NN can be as 

high as those of elaborated methods (to be discussed in later chapters). k-NN is, however, slow at 

classification task. Due to the fact that there is no model building (in fact, training set itself along 

with distance measure is the non-parametric model), each test instance is compared with every 

training example at the classification time, which can be quite time consuming when the training 

data is large.

In the k-NN procedure, all neighbors have equal vote. In the Parzon-window approach [4], the 

weight of the vote is given by a kernel function, typically giving more weight to closer instances.

The computational flow diagram of the Parzon-Window method resembles the connectionist 

structure of a neural network, hence the name: Probabilistic Neural Network (PNN) given to this 

method [4].

3.5  DISCRIMINANT FUNCTIONS AND REGRESSION FUNCTIONS

In Section 1.7, classification and regression problems were defined as prediction of categorical 

(class, labels) variables, and prediction of numeric (continuous) variables, respectively. These 

two kinds of problems are of utmost importance. For example, in the case of speech or character 

recognition systems, fault detection systems, readers of magnetic-strip codes or credit cards, various 

alarm systems, and so on, we predict class or category. In control applications, signal processing, 

and financial markets, we predict (numeric values) various signals and stock prices based on past 

performance.
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3.5.1  Classification and Discriminant Functions

There are many different ways to represent pattern classifiers. One of the most useful ways is in 

terms of discriminant functions. The concepts of discriminant functions are introduced here.

The patterns are feature vectors x(i); i = 1, …, N, and class labels yq; q = 1, 2, …, M. The Bayesian 

approach to classification assumes that the problem of pattern classification can be expressed in 

probabilistic terms and that a priori probabilities P(yq) and the conditional probability-density 

functions p(x|yq); q = 1, … M, are known. The posterior probability P(yq |x) is sought for classifying 

objects into corresponding classes. This probability can be expressed in the form of Bayes rule:
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The probability density function
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provides necessary scaling, ensuring that sum of posterior probabilities is 1.

Having the posterior probabilities P(yq |x), one can formulate the following classification 

decision rule:

Assign an object to a class yq having the largest value of posterior conditional probability P(yq|x) 

for a given feature vector x. In other words, assign a given pattern with an observed feature vector 

x to a class yk when

                                         P y P y q M q kk q( | ) ( | ) , , , ;x x> " = º π1 2                                 (3.58a)

or for a given feature vector x, decide class yk if

                             p y P y p y P y q M q kk k q q( | ) ( ) ( | ) ( ) , , , ;x x> " = º π1 2                          (3.58b)

A pattern classifier assigns the feature vector x to one of the number of possible classes yq; q Œ{1, 

2, …, M}, and in this way partitions feature space into line segments, areas, volumes, and hyper 

volumes, which are decision regions in the case of one-, two-, three-, or higher-dimensional feature 

space, respectively. All feature vectors belonging to the same class are ideally assigned to the same 

decision region. The decision regions are often nonoverlapping volumes or hyper volumes, and 

decision regions of the same class may also be disjoint, consisting of two or more nontouching 

regions. The boundaries between adjacent regions are decision boundaries because classification 

decisions change across boundaries. These class boundaries are points, straight lines or curves, 

planes or surfaces, and hyperplanes or hyper surfaces in the case of one-, two-, three-, and higher-
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dimensional feature space, respectively. In the case of straight lines, planes, and hyperplanes, the 

decision boundaries are linear.

More generally, classification decisions based on feature vector x may be stated using a set of 

explicitly defined discriminant functions

                                                               gq(x); q = 1, 2, …, M                                                  (3.59)

where each discrminant is associated with a particular recognized class yq; q = 1, 2, …, M.

The classifier designed using the discriminant functions assigns a pattern with feature vector x 

to a class yk for which the corresponding discriminant value gk is the largest:

                                         g g q M q kk q( ) ( ) , , , ;x x> " = º π1 2                                          (3.60)

Note that the classification is based on the largest discriminant function gk(x) regardless of how 

the corresponding discriminant functions are defined. Therefore, any monotonic function of a 

discriminant function, f (g(x)), will provide identical classification because of the fact that for the 

monotonic function f (◊), the maximal gk(x) gives rise to the maximal f (gk(x)). Therefore, if some 

gq(x); q = 1, 2, …, M, are the discriminant functions for a given classifier, so also are the functions 

gq(x) + C, or Cgq(x) for any class-independent constant C; or log functions. 

In the case of a Bayes classifier, instead of gq(x) = P(yq|x) or p(x|yq)P(yq), the natural algorithm 

of P(yq|x) is used as a discriminant function: 

                                            g P y p y P yq q q q( ) ln ( | ) ln ( | ) ( )x x x= or

                                                     = + = ºln ( | ) ln ( ); , , ,p y P y q Mq qx 1 2                       (3.61)

In the case of two-class or binary classification, instead of two discriminants, g1(x) and g2(x), 

applied separately, it is more common to define a single discriminant function

                                                   g g g( ) ( ) ( )x x x∫ -1 2   (3.62)

and to use the following decision rule:

Decide y1, if g(x) > 0; otherwise decide y2

In the case of normally distributed classes (Gaussian classes), which are very common, 

discriminant functions are quadratic [3, 4]. These become linear (straight lines, planes, and hyper 

planes for two-, three-, and n-dimensional feature vectors, respectively) when the covariance 

matrices of corresponding classes are equal [3, 4]. In order to apply the most general Bayes 

procedure, practically everything about the underlying analyzed process must be known. This 

includes priors P(yq) and the class-conditional probability densities p(x|yq).

3.5.2  Numeric Prediction and Regression Functions

For simplicity of presentation, we consider a two-dimensional case (where only two variables are 

involved; output y and the feature variable x). Conceptually, nothing changes in multivariable cases 

with higher-dimensional inputs and outputs; the regression curves become hyper curves or hyper 

surfaces.
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Let x and y be random variables with a joint probability density function p(x, y). If this function 

is continuous in y, then the conditional probability density function of y with respect to fixed x can 

be written as [3]:
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By using this function, the regression curve f(x) is defined as the expectation of y for any value 

of x:
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It can easily be shown that the regression curve gives the best estimation of y in the mean-squared-

error sense. Depending upon the joint probability density function p(x, y), this function belongs to 

a certain class, for example, the class of all linear functions or the class of all functions of a given 

polynomial form.

Regression function for jointly normally distributed variables is linear [3]. This is an interesting 

property that was heavily exploited in statistics. Linear regression and correlation analysis, which 

are closely related, are both highly developed and widely used in diverse fields.

3.5.3  Practical Hypothesis Functions

The classical statistical techniques are based on the fundamental assumption that in most of 

the real-life problems, the stochastic component of data follows normal distribution. With this 

assumption, the data can be modeled by linear regresser functions/linear discriminant functions 

(when covariance matrices of corresponding classes are equal). The Bayes method for determination 

of these functions requires prior knowledge on probability distributions.

Linear discriminant functions and linear regresser functions have a variety of pleasant analytical 

properties. However, the assumptions on which the classical statistical paradigm relied, turned 

out to be inappropriate for many contemporary real-life problems. The underlying real-life data 

generation laws may typically be very far from the normal distribution and a model-builder must 

consider this difference in order to construct an effective algorithm. One obvious way is to look 

for polynomial regression. But for nonlinear model assumptions, only greedy algorithms, local 

minima, and heuristic searches were known in statistical paradigm.

Statistical approach is, thus, very convenient to deal with the design of linear classifiers described 

by linear discriminant functions, and linear regressors described by linear approximation functions. 

There is a flood of problems being faced today for which the design of linear classifiers/linear 

regressors do not lead to a satisfactory solution. The design of nonlinear classifiers/regressors 

emerges as an unescapable necessity. As we have remarked earlier, statistical approach is not very 



110  Applied Machine Learning

helpful for such problems. For choosing the appropriate nonlinear function and optimizing the 

parameters embedded in the function, there is no principled or automatic statistical method.

It should be stressed here that inspite of serious practical limitations of statistical approaches, 

they still are and will remain very good theoretical and practical tools in the cases where the 

mentioned assumptions are valid.

What we seek is a way to learn the nonlinearity. This is the approach of machine learning. As we 

shall see in later chapters, machine learning can, at least in principle, provide the optimal solution 

to an arbitrary classification/regression problem.

Machine learning involves searching through a space of possible hypotheses to determine one 

that best fits the observed data and any prior knowledge held by the learner. Hypotheses space 

is theoretically infinite. The learning task is, thus, to search through this vast space to locate the 

hypothesis that is most consistent with the available training examples.

There are many possible approximating functions for a given set of data; unfortunately, there 

is no theoretical method of determining which out of many possible approximating functions will 

yield the best approximation. Fortunately, there are only a few possible candidate functions in use 

today on the basis of empirical experience. The most widely used functions are linear functions, 

kernel functions, tangent hyperbolic functions, radial basis functions (Gaussians being most 

popular), and standard membership functions applied in fuzzy logic models (triangle, trapezoidal, 

singleton, etc.). Our focus in this book will be on these functions only. Through heuristic search, an 

appropriate function for the problem in hand will be selected. As we shall see in later chapters, an 

appropriate network of these functional elements can approximate any nonlinearity.

Heuristic search is organized as per the following two-step procedure.

 (i) The search is first focused on a hypothesis class chosen for the learning task in hand. The 

different hypotheses classes are appropriate for learning different kinds of functions. The 

main hypotheses classes are:

 1. Linear Models

 2. Logistic Models

 3. Support Vector Machines

 4. Neural Networks

 5. Fuzzy Logic Models

 6. Decisions Trees

 7. k-Nearest Neighbors (k-NN)

 8. Naive Bayes

  Linear Models (Section 3.6; Chapters 4 and 5), Logistic Models (Section 3.7; Chapter 5), 

Support Vector Machines (Chapter 4), Neural Networks (Chapter 5), and Fuzzy Logic 

Models (Chapter 6) are representative of parametric techniques. Parametric techniques 

make assumptions on the hypotheses classes by means of a fixed number of parameters and 

optimize these parameters using the learning set. On the other hand, Decision Trees (Chapter 

8), and k-NN (Section 3.4) are non-parametric techniques; they can adapt the shape of the 

modal they produce on the basis of the learning set. Naive Bayes (Section 3.3) is a very 

simple method of probabilistic framework used for classification, of which Bayesian network 

is a generalization.
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  Linear Model: (Section 3.6)

                            h(x, w, w0) = w0 + w1 x1 + w2 x2 + … + wn xn = w0 + wTx (3.65)

  where {w, w0} is the set of adjustable weights.

  The model given by Eqn (3.65) assumes that the given data is approximately linear. We go 

for nonlinear models when this is not true. The following are the commonly used learning 

models for creating nonlinear approximating functions.

  Logistic Model: (Section 3.7)

  P(Class 1|x) = 
1

1 0+ - +exp[ ( )]w x
T

w

  where {w, w0} is the set of adjustable weights in binary classification (nonlinearity is a  

sigmoid function).

  Multi-Layer Perceptron (MLP) Model: (Chapter 5)

                                                     h v w v
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  where s ( )◊  is a set of sigmoidal functions and {vl, v0, wl, wl0} is the set of adjustable weights.

  Radial Basis Function (RBF) Model: (Chapter 5)
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  where fl ( )◊  is a set of radial basis functions (e.g., Gaussians) and {vl, wl} is the set of 

adjustable weights.

  Fuzzy Logic (FL) Model: (Chapter 6)
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  where m is the number of rules, rl are the rules, and the basis functions G(x, cl) are the input 

membership functions centered at cl.

  Kernel Functions: (Chapter 4)

  Assume that there exists a mapping from low-dimensional feature space to m-dimensional 

feature space so that classes can be satisfactorily separated by linear functions. m is generally 

much higher than the input space dimensionality (n) to make the classes linearly seperable. 

Kernel functions provide such a mapping. 
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  Commonly used kernels include the following:

  Polynomial of degree d: K i k i T k d( , ) ( )( ) ( ) ( ) ( )
x x x x= +1                                                                     (3.69a)

       Gaussian RBF:                     K i k i k( , ) exp || ||( ) ( ) ( ) ( )
x x x x= - -Ê
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ˆ
¯̃
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2 2

2

s

                                                        (3.69b)

  These different hypotheses classes are appropriate for learning different kinds of functions. 

Initial choice of a class is made on the basis of the learning task in hand, and prior knowledge/

experience held by the designer.

 (ii) For each of these hypotheses classes, the corresponding learning algorithm organizes the 

search through all possible underlying functions (structures of the learning machine).

   It should be stressed here that the approaches which in pattern recognition problems most 

often result in linear discriminant functions, and in regression problems result in linear 

approximating functions, still are and will remain very good theoretical and practical tools if 

the mentioned assumptions are valid. Very often, in modern real-world applications, many of 

these postulates are satisfied only approximately. However, even when these assumptions are 

not totally sound, linear discriminants have shown acceptable performance in classification 

problems, as linear approximators in regression problems. Because of their simple structure, 

these techniques do not overfit the training dataset, and for many classification/regression 

tasks, they may be good starting points or good first estimates of success rate of learning 

machines for the problems in hand.

   A point made earlier in Section 3.1 may be repeated here before concluding this section. The 

two perspectives: inferential statistical analysis and machine learning, have now converged. 

We will be using the term ‘machine learning’ in a broader practical sense—the techniques 

that include statistical learning, and form the basic tools for data mining applications.

3.6  LINEAR REGRESSION WITH LEAST SQUARE ERROR CRITERION

In Section 3.5, we observed that the practical limitation of statistical approach is the assumed initial 

knowledge available on the process under investigation. For the Bayes procedure, one should know 

the underlying probability distributions. If only the forms of underlying distributions were known, 

we can use the training samples to estimate the values of their parameters.

In this section, we shall instead assume we know the proper forms of the regressor functions, 

and use the samples to estimate the values of parameters of the function. We shall examine both 

the non-statistical and statistical procedures for determining regressor functions. These procedures, 

however, do not require the knowledge of the forms of underlying probability distributions. 

Linear regressor functions have a variety of good analytical properties. As we observed in 

Section 3.5, they can be optimal if the underlying distributions are cooperative, such as Gaussians. 

Even when they are not optimal, we might be willing to sacrifice some performance to be able to 

gain the benefit of their simplicity. Linear regressor functions are comparatively simple to compute, 

and if there is no information to suggest otherwise, linear regressors are ideal candidates for early, 

trial regression.
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The problem of finding a linear regressor function will be formulated as a problem of minimizing 

a criterion function. The widely-used criterion function for regression purposes is the sum-of-error-

squares (refer to Section 2.7).

In general, regression methods are used to predict the value of response (dependent) variable 

from attribute (independent) variables, where the variables have continuous numeric values. Linear 

regressor model fits a linear function (relationship) between dependent (output) variable and 

independent (input) variables—it expresses the output ŷ  as a linear combination of the attributes 

x1, x2, …, xn; given the N data points ( , ); , , ; , , .( ) ( )
x y i N j nj

i i
= º = º1 1  The linear regressor model, 

thus, has the form 
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= + +º+ = º0 1 1 1                                      (3.70)

where {w0, w1, …, wn} are the parameters of the model.

Of interest is the difference between the predicted value ŷ  and the actual value y. The method of 

linear regression is to choose the (n + 1) coefficients w0, w1, …, wn, to minimize the residual sum 

of squares of these differences over all the N training instances. The performance criterion is thus 

the sum-of-error-squares:

Residual error
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Residual sum-of-error-squares
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3.6.1  Minimal Sum-of-Error-Squares and the Pseudoinverse

How to minimize sum-of-error-squares E given by Eqn (3.71b)? A matrix X of input vectors x(i); i = 

1, …, N; vector y of the desired outputs y(i), i = 1, …, N, and the weights vector w  of the coefficients 

of the linear model are introduced as follows:
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                                              y = º[ ]( ) ( ) ( )
y y y

N T1 2                                                                 (3.72c)

                                             w = º[ ]w w w w
n

T

0 1 2                                                                 (3.72d)

For an optimum solution for w , the following equations need to be satisfied:

                                                           y
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                                                             y w X= ( )T T
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The vector of residual errors becomes

                                                          y w X- ( )T T

Hence the error function can be written as,

                                                      E
T T T T T( ) [ ( ) ] [ ( ) ]w y w X y w X= - -  

                                                                  = - +w XX w w Xy y y
T T T T
[ ] 2                             (3.75)

In this least-squares estimation task, the objective is to find the optimal w
*
 that minimizes E ( ).w  

The solution to this classic problem in calculus is found by setting the gradient of E ( )w , with 

respect to w , to zero.
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∂
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XX w Xy 02 2                                   (3.76a)

This gives

                                                                w XX Xy
* ( )=

-T 1                                                 (3.76b)

The fitted output values at the training data are

                                                                    ˆ ( )
*

y X w X XX Xy= =

-T T T 1                                  (3.77)

The (n + 1) ¥ N matrix X
+

= (XXT)–1X is called the pseudoinverse matrix of the matrix XT. Thus, 

the optimal solution

                                                                               w
*

= X+y                                                            (3.78)
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It is assumed that the matrix XXT is nonsingular. It might happen that the columns of X are not 

linearly independent. Then XXT is singular and the least squares coefficients w
*
are not uniquely 

defined. The singular case occurs most often when two or more inputs were perfectly correlated. 

A natural way to resolve the non-unique representation is by dropping redundant columns in X. 

Most regression software packages detect these redundancies and automatically implement some 

strategy for removing them.

When the number of training samples is equal to the number of weights to be determined, X 

is a square matrix and X+ = (XT)–1; pseudoinverse coincides with regular inverse. This is of little 

practical interest. Training patterns will almost always be corrupted with noise, and to reduce 

the influence of these disturbances, the number of training samples must be (much) larger than the 

adapted weights.

From a computational point of view, the calculation of optimal weights requires the pseudoinverse 

of N ¥ (n + 1) dimensional matrix. With respect to computing time, the critical part is the inversion 

of (n + 1) ¥ (n + 1) matrix XXT. In the real-life applications, it is quite common for input vectors 

to be of very high dimension, and in such a situation this part of the calculation may not be easy.

Various methods are available to take care of this problem. For most real-life problems, Recursive 

Least Squares Algorithm [3] might be the best on-line (sequential/recursive/iterative/incremental), 

weight-adapting procedure with high rate of convergence (in terms of iteration steps). 

3.6.2  Gradient Descent Optimization Schemes

A classical optimization method that has become widely used in the field of soft computing is the 

Gradient Descent Method (for minimization tasks). Changes of the weights are made according to 

the following algorithm:

                                                   w w
w

k k
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+ = -
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1 h                                                                   (3.79)

where h denotes the learning rate, and k stands for the actual iteration step. There are two approaches 

for designing the iteration step. The batch (off-line, one-shot) methods use all the data in one 

shot. The kth iteration step means the kth presentation of the whole training dataset; the gradient 

is calculated across the entire set of training patterns. On the other hand, in the online methods, 

k denotes the iteration step after single data pair is presented. Online gradient descent methods 

share almost all good features of recursive least squares algorithm with reduced computational 

complexity.

Gradient descent procedure has two advantages over merely computing the pseudoinverse: (1) 

it avoids the problems that arise when XXT is singular (it always yields a solution regardless of 

whether or not XXT is singular); and (2) it avoids the need for working with large matrices. Extended 

discussion on linear regression will appear in Chapter 5, where we will present the gradient descent 

procedures.

3.6.3  Least Mean Square (LMS) Algorithm

Till now we have discussed about deterministic algorithms to determine the optimum setting of the 

weights w  that minimizes the criterion function given by Eqn (3.75). Now we explore a digression 
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from this error function. Consider the problem of computing weights vector w  so as to minimize 

Mean Square Error (MSE) between desired and true outputs, defined as follows:
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where E is the statistical expectation operator.

The solution to this problem requires the computation of autocorrelation matrix E [xxT] of the set 

of feature vectors, and cross-correlation matrix E[xy] between the desired response and the feature 

vector. This presupposes knowledge of the underlying distributions, which in general is not known 

(after all, if it were known, why not use Bayesian method?). Thus, our major goal becomes to see if 

it is possible to solve the optimization problem without having this statistical information.

The Least Mean Square (LMS) algorithm, originally formulated by Widrow and Hoff, is a 

stochastic gradient algorithm that iterates weight vector w  in the regressor in the direction of the 

gradient of the squared amplitude of error signal with respect to that weight vector. LMS is called 

a stochastic gradient algorithm because the gradient vector is chosen at ‘random’ and not, as in the 

steepest descent case—precisely derived from the shape of the total error surface. Random here 

means the instantaneous value of the gradient. This is then used as the estimator of the true quantity.

In practice, this simply means that LMS uses at each iteration step the actual value of the 

error after single data pair is presented, not the full sum-of-error-squares function which requires 

presentation of the entire set of training patterns for calculation of the gradient. Thus, LMS is used 

in an online mode, described earlier in this section, where the weights are updated after each data 

pair is presented.

The design of the LMS algorithm is very simple, yet a detailed analysis of its convergence 

behavior is a challenging mathematical task. It turns out that under mild conditions, the solution 

provided by the LMS algorithm converges in probability to the solution of MSE optimization 

problem. 

Extended discussion on linear regression in Chapter 5 will provide the detailed account of LMS 

algorithm.

3.7  LOGISTIC REGRESSION FOR CLASSIFICATION TASKS

Linear regression models are well-suited to estimating continuous quantities that can take on wide 

range of values (the target variable y Œ¬, i.e., it can take on values from –• to +•). Modeling 

a binary outcome such as yes/no, does not seem like a regression task. Because classification 

problems are extremely common, statisticians have found a way to adopt regression models to this 

task. The resulting method is called logistic regression.

Technically, one can apply linear regression to classification problems treating the dependent 

variable y in the data matrix as continuous (of course, y must be coded numerically, e.g., 1 for 

‘yes’ and 0 for ‘no’). Using the linear regression model to predict y yields predictions that are not 

necessarily 0 and 1. Therefore, linear regression is inappropriate for categorical response.
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The task can be restated as ‘what is the probability that an instance belongs to class q?’ Because 

probabilities are continuous numbers, the problem is now a regression task. However, this regression 

task is also not appropriate for linear regression because linear regression yields predictions that are 

not necessarily restricted between 0 and 1.

In casual speech, the words probability and odds are used interchangeably. In statistics, each 

has a specific meaning. Probability is a number between 0 and 1 indicating the chance of particular 

outcome occurring. Odds is the ratio of probability of a particular outcome occurring to the 

probability of it not occurring. The odds is a number between 0 and infinity. This brings us half 

way to the range of ¬. One more step, the log of odds yields a function that goes from –• to 

+•; log(odds) is called logit. The transformation to log(odds), with logit as a dependent variable, 

converts the problem to a possibly linear regression task. For binary classification problem, it is 

assumed that

                               log(odds) = log
( | )

( | )

P

P
w w x w x

n n

Class

Class

1

1 1
0 1 1

x

x-

= + + +�  (3.81) 

w0, w1, …, wn are (n + 1) parameters of linear logit function.

Solving for probability P(Class 1|x) from Eqn (3.81) requires a bit of algebra. The result is 

                                           P
e

w w x w xn n

( | )
( )

Class1
1

1 0 1 1
x =

+
- + +º+

 (3.82a)

                                           P(Class 2|x) = 1 – P(Class 1|x) (3.82b)

This is the logistic function (detailed description of logistic functions given in Chapter 5) that never 

gets smaller than 0 and never gets larger than 1, but takes on every value in between.

In the following sub-section, we discuss maximum likelihood criterion for estimating parameters 

of logistic regression model.

Maximum Likelihood Estimation of Logistic Regression Models

We are given a set of observed data:

 D = {x(i), y(i)}; i = 1, …, N

 x = [x1 x2 … xn]
T Œ¬

n

 y Œ{0, 1}

The proposed model, given by (3.82), is

P y
e

w w x w xn n
( | )

( )
=1

1

1 0 1 1
x =

-
- + +º+

                                                                =
-

- +

1

1 0e
T

w( )w x
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                                                         P(y = 0|x) = 1 – P(y = 1|x)

where                                                     wT = [w1 w2 … wn]

The maximum likelihood approach [4] answers the question: for all possible values of the 

parameters {w, w0} that the distribution (3.82) might have, which of these are most likley. We call 

this ‘most likely’ estimate, the maximum likelihood estimate. It is computed as follows:

 • For each of our observed data points, we compute a likelihood as a function of the parameters 

we seek to estimate. This likelihood is just the value of the corresponding probability 

distribution evaluated at that particular point.

 • We then compute the likelihood function, which is the combination of likelihoods for all the 

data points we observed.

 • Thereafter, we estimate the set of parameters which will maximize the likelihood function.

Given the input sample x(i), the probability that it belongs to class y(i) Œ{0, 1} is P(y(i)|x(i)). 

We assume that the samples of the distribution D are iid – independent and identically distributed 

random variables. The likelihood function is, therefore, defined as,

L ({w, w0}, D) = L ( , ) ( | )( ) ( )
w xD =

=

’P y
i i

i

N

1

Note that the likelihood function can be viewed as a function with the parameters as function 

of data rather than the data as function of the parameters. We assume that the data is fixed, but 

parameters can vary.

In the maximum likelihood problem, our goal is to find w  that maximizes L. That is, we wish 

to find w* where

w w
w

* ( , )= arg max L D

Often we maximize log ( ( , ))L Dw  instead because it is analytically easier. Because the logarithm 

is monotonically increasing, the w* that maximizes log-likelihood, also maximizes the likelihood.

log ( ( | )) log ( | )( ) ( )
L Dw x=

Ê

Ë
Á

ˆ

¯
˜

=
’P y

i i

i

N

1

                                                                     = log ( | )( ) ( )
P y

i i

i

N

x
=

Â
1

If P(y(i)|x(i)) is a well-behaved differentiable function of parameters w w, *can easily be found by 

standard differential calculus (say, gradient method).

The logistic regression model (3.82) may be expressed in terms of discriminant function g( , )x w  

as,

                           P y g

e e

i i i

w
T T

( | ) ( , )( ) ( ) ( )

( )
x x w

w x w x

= =
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+
- + -

1

1

1

10

 (3.83)
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where

                                      w
T

n
w w w= [ ]0 1� ; x = [ ]1 1x x

n

T
�

Assuming y(i), given x(i), is Bernoulli1 with P(y(i)|x(i)) = g(x(i), w); we model log-likelihood as,

log ( ( | )) log ( | ) ( ( | ))( ) ( ) ( ) ( )( ) ( )

L Dw x x= - -
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To maximize log-likelihood with respect to w, let us look at each example:
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Taking derivative of log(Li(◊)) with respect to w, we have 
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                                        — = -
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1   A trial is performed whose outcome is either ‘success’ or ‘failure’. The random variable Y is a 0/1 indicator 
variable and takes the value 1 for a success and 0 otherwise. P{Y = 1} = p is the probability that the result 
of trial is a success.
Then P{Y = 0} = 1 – p. This can equivalently be written as, 

         P{Y = y} = py (1 – p)1 – y; y Œ [0, 1]

If Y is Bernoulli, its expected value and variance are [6]

        E[Y ] = p, Var [Y] = p(1 – p)
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Considering all training examples, we get,

                                         — = -

=

Âw
w x w x(log( ( | ))) ( ( , ))( ) ( ) ( )

L D

i

N
i i i

y g
1

 (3.84a)

Note that analytical solution for the optimal w  cannot be obtained in this case; so we need to resort 

to iterative optimization methods, the most commonly employed being that of gradient descent 

(Section 3.6). We get the updated equation (refer to Eqn (3.79)) for gradient ascent (maximization 

problem):

                                                  w w x w x¨ + -

=

Âh ( ( , ))( ) ( ) ( )
y g
i i i

i

N

1

 (3.84b)

Batch training and incremental training procedures for gradient methods will be discussed in 

detail in Chapter 5.

Once training is complete and we have the final w and w0, during testing, given x(k), we calculate 

y(k) = g(x(k), w, w0), and we choose Class 1 if y(k) > 0.5 and choose Class 2 otherwise. Instead of 0.5, 

the cut-off can also be chosen to maximize overall accuracy. The overall accuracy is computed for 

various values of the cut-off value and the one that yields maximum accuracy is chosen.

The procedure given above for a two-class discrimination problem, can easily be extended to a 

multi-class discrimation problem [6].

In Chapter 5, we will discuss the use of neural networks for classification problems. We will 

use sum-of-error-squares minimization criterion for logistic regression to solve multi-class 

discrimination problems.

In a general multi-class problem, we have M classes denoted as yq; q = 1, …, M, and input 

instance belongs to one and exactly one of them. In many cases, the multi-class discrimination 

problem can be handled using two-class discriminant functions. As we will see in Section 4.9, we 

can view an M-class classification problem as M two-class problems. Training examples belonging 

to class yk are positive instances, and the examples of all other classes yq; q π k, are the negative 

instances for the classification algorithm. An alternative scheme is pairwise classification of the M 

classes. This scheme requires construction of M (M – 1)/2 two-class classifiers. Section 4.9 gives 

the details.

3.8  FISHER’S LINEAR DISCRIMINANT AND THRESHOLDING FOR CLASSIFICATION

The primary objective of Fisher’s Linear Discriminant (FLD) is to perform dimensionality reduction 

while preserving as much of the class discriminatory information as possible. As we shall see in this 

section, FLD provides a specific choice of direction for projection of n-dimensional data down to 

one dimension. We shall also see that despite the name, FLD is not a discriminant (classification) 

function; however, it can be used for classification problems.

3.8.1  Fisher’s Linear Discriminant 

Consider the problem of projecting the data from n-dimensional space onto a line. Of course, even 

if the samples formed well-seperated compact clusters in n-dimensional space, projection onto 
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an arbitrary line will usually produce a confused mixture of samples from all the classes and thus 

result in poor recognition performance. However, by moving the line around, we might be able to 

find an orientation for which the projected samples are well seperated. Once we achieve this goal, 

the problem reduces to classification of one-dimensional data.

Suppose that we have a dataset of N samples X = x(i); i = 1, …, N; x = [x1 x2 … xn]
T. N1 is the 

subset X1 labeled Class y1, and N2 is the subset X2 labeled Class y2: X1 = x(l), l = 1, …, N1; X2 = x(k), 

k = 1, …, N2; N1 + N2 = N and X1 » X2 = X.

If we form a linear combination of the components of x, we obtain

                                                     z w x w x w x
n n

T
= + +º+ =

1 1 2 2
w x                                          (3.85)

where w is some n ¥ 1 vector [w1 w2 … wn]
T. This gives us a corresponding set of one-dimensional 

samples Z = z(i); i = 1, …, N; divided into subsets Z1 = z(l); l = 1, …, N1, and Z2 = z(k); k = 1, …, N2. 

Z1 samples are labeled Class y1 and Z2 samples are labeled Class y2 (Fig. 3.8).
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Figure 3.8  Many-to-one mapping

Geometrically, each z(i) is the projection of the corresponding x(i) onto a line in the direction of w 

(Fig. 3.9). The magnitude of w is of no real significance because it merely scales z(i). The direction 

of w is important, however.

x2

w

T

i

= z
( )

x

( )i

w

x
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x1

Figure 3.9  Projection of x onto a line in two-dimensional space

The goal is to search for the direction w that results in well-seperated univariate subsets Z1 and 

Z2 of the multivariate projected data subsets X1 and X2. Of all possible lines, we would like to 

select the one that maximizes the seperability of the scalars z(i); i = 1, …, N. In order to find a good 

projection vector w, we need to define a measure of separation between the projections. 

The means of data subsets Z1 and Z2 are given by

                                            ˆ ; ˆ
( ) ( )
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1 1

2

2 1
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We could then choose the distance between the means of data subsets Z1 and Z2 as our objective 

function.

                                                         Separation = | m̂
1

– m̂
2
|                                                      (3.87)

However, the distance between the means m̂1 and m̂2 is not a very good measure since it does not 

take into account the variance within the classes. The solution proposed by Fisher is to maximize a 

function that represents difference between the means, normalized by a measure of the within-class 

variance.

For each class, the variance is given by
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Why are we using Nq – 1 (q = 1, 2), and not Nq? Using Nq provides a biased estimation of 

variance, particularly for small Nq. Proper normalization for an unbiased estimator is done using 

Nq – 1 [4].

Within-class variance in data Z is the pooled estimate of variance about the means:
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The separation of the univariate subsets Z1 and Z2 is assessed in terms of difference between the 

means expressed in standard deviation units:

Normalized separation = 
| |m m

s

� �
1 2

2

-

pooled

                                                                                        (3.90)

Therefore, we will be looking for projection where examples from the same class are projected 

very close to each other (small spooled), and at the same time, the means of the projected data 

belonging to different classes are as farther apart as possible.

In order to define the optimum projection w, we need to express normalized separation as an 

explicit function of w and maximize it (straightforward but we need linear algebra and calculus).
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where
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Similarly,
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Thus,

                         s

m m

pooled
2

1
2

2
2

11

1 2

21

2
=

- + -

+ -

==

ÂÂ ( ) ( )( ) ( )
z z

N N

l k

k

N

l

N

� �

                                    =

- -
È

Î
Í
Í

˘

˚
˙
˙

+ - -
=
Âw x x w w x x

T l l T

l

N

T k k( ) ( ) ( ) ( )( ) ( ) ( ) ( )m m m m1 1

1

2 2

1
TT

k

N

N N

=
Â
È

Î
Í
Í

˘

˚
˙
˙

+ -

1

1 2

1

2

w

                                   =

- - + - -

+

= =
Â Â

w

x x x x

T

l l T

l

N

k k T

k

N

N N

( ) ( ) ( ) ( )( ) ( ) ( ) ( )m m m m1 1

1

2 2

1

1

1 2

22 2-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ w

                                      =
- + -

+ -

È

Î
Í

˘

˚
˙w w

X XT
N N

N N

( ) ( )1 2

1 2

1 1

2

1 2
S S

                                                   (3.93a)

                                      = w w
T S Spooled pooled is the covariance matrix;                                    (3.93b)

where

                                                 S

m m

X

x x

1

1

1 1

1

1 1
=

- -

-

=

Â ( ) ( )( ) ( )l l T

l

N

N
                                              (3.93c)

                                                S

m m

X

x x

2

2

2 2

1

2 1
=

- -

-

=

Â ( ) ( )( ) ( )k k T

k

N

N
                                            (3.93d)

Thus, the Fisher’s linear discriminant is defined as the linear function wTx that maximizes the 

criterion
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w can be found by solving the equation based on the first derivative of J(w).
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Simplification of this equation gives
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Multiplication by the inverse of the matrix Spooled  on the two sides, gives
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Since 
w

w w

T

T

( )m m
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 is a real number, it can be ignored (we are looking for direction of w; the 

magnitude is not important).

Therefore,

                                                               w = -

-

S m mpooled
1

1 2( )                                                     (3.98)

The linear function w x
T

 maximizes the distance between the projected means, normalized by 

the within-class variance.

This is known as Fisher’s Linear Discriminant (FLD). Despite the name, FLD is not a discriminant 

(classification) function, but provides a specific choice of direction for projection of n-dimensional 

data down to one dimension. FLD is thus a tool that performs dimensionality reduction while 

preserving as much of the class discriminatory information as possible.

3.8.2  Thresholding

Can Fisher’s Linear Discriminant (FLD) also be used for classification? Clearly it can. The 

classification problem has been converted from an n-dimensional problem to a hopefully more 

manageable one-dimensional problem. This mapping is many-to-one, and in theory cannot possibly 

obtain the minimum achievable error rate if we have a very large training set. In general, one is 

willing to sacrifice some of the theoretically achievable performance for the advantages of working 

in one dimension.

All that remains is to find the threshold t, that is, the cut-point along one-dimensional subspace 

of projected data z(i) = wTx(i); i = 1, …, N, so that we classify a new data point x(N + 1) as belonging 

to Class y1 if z
(N + 1) = wTx(N + 1) ≥ t, and classify it as belonging to Class y2 otherwise. 

w can be calculated using Eqn (3.98), but the Fisher’s criterion does not give us the optimum t. 

Then, how can we find the threshold if we want to use FLD for classification problems? It makes 
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sense to choose the cut-point that empirically minimizes training error. This is something that has 

been found to work well in practice.

If the prior probabilities P(y1) and P(y2) are equal ( ( ) / ; ( ) / )P y N N P y N N1 1 2 2� � , then the best 

choice for the cut-point is the point midway between the projected means. That is (refer to Eqn 

(3.91) and Eqn (3.98)),
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Given a new point x(N + 1). Allocate it to Class y1 if
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Otherwise, allocate x(N + 1) to Class y2.

If the prior probabilities are not equal, moving the cut-point toward the smaller class will improve 

the error rate. By trial-and-error, we then choose the cut-point to minimize misclassification error 

over the training data. FLD as a classifier has a good track record.

Finally, for the sake of completeness, we underline that FLD can be extended to where there are 

more than two classes. In this case, the algorithm is called multiclass FLD [4].

3.9  MINIMUM DESCRIPTION LENGTH PRINCIPLE

Recall from Chapter 2 the discussion on Occam’s razor, a popular inductive bias that can be 

summarized as ‘choose the simplest hypothesis consistent with the data.’ In that chapter, we also 

discussed ‘complexity versus accuracy’ issue in machine learning using arguments based on over 

fitting, bias-variance dilema, PAC-theory and VC-theory.

Another framework to discuss hypothesis complexity versus prediction accuracy issue is offered 

by the Minimum Description Length (MDL) principle. Though conceptually quite different, this 

principle results in a formalism which is identical to the Bayesian one [52].

Suppose there is a ‘sender’ who desires to transmit output values (y) corresponding to the 

learning cases (training data D) to a ‘receiver’ who is already aware of the input values (x), with the 

use of a message of the shortest possible length (wherein length of the message is measured by the 

number of bits, for instance). There are many options for this transmission. One approach would 

be simply to transmit a suitable encoded form of the output values of each case in D using some 

fixed coding scheme. In another approach, an accurate model able to recompute the output values 

from the inputs (the model is expected to be complex one that makes no errors) is transmitted. Still 

another approach is to send an approximate (less complex) model together with error corrections. 

The MDL principle states that the best model for the learning sample is the one which minimizes 

the length of the message which has to be sent to the receiver:
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when K(h) is the minimal number of bits necessary to describe the model to the receiver, and K(D 

using h) is the minimal number of bits necessary to describe the errors made by the model on the 

learning sample. Intuitively, the lower is the empirical risk of the model (achieved with increasing 

model complexity), the lower will be the length K(D using h); in the limit if the model perfectly 

fits the data D, this term vanishes. On the other hand, the number of bits used to code a model is 

certainly an increasing function of the number of parameters used to represent the model and hence 

of its complexity. Thus the two terms making up the description length are essentially representing 

a trade-off between the empirical risk and the model complexity.

The two terms in Eqn (3.101) defining K(h,D) are in theory, defined as the Kolmogorov 

complexities. These quantities are essentially non-computable and hence various approximations 

have been proposed in the literature leading to various practical versions of MDL principle.

3.9.1  Bayesian Perspective

The shortest description length is expected when the hypothesis h results in a precise representation 

of the statistical process which generated the data, and it is also expected, on an average, this 

hypothesis will have the ideal generalization properties.

For the discrete hypothesis space and data, we will write P(h) to express the prior probability that 

hypothesis h holds; it may be based on the background knowledge we possess about the probability 

that h is the right hypothesis. In the same way, we will write P(D |h) to imply the probability 

of observing data D given a world wherein hypothesis h holds; and P(D) to express the prior 

probability that training data D will be observed with no knowledge about which hypothesis holds. 

We are interested in the posterior probability of h, P(h|D), that h holds given the observed data D. 

Bayes formula states

                                                    P h
P h P h

P
( | )

( ) ( | )

( )
D

D

D
=                                                 (3.102)

The optimal hypothesis h* is the one yielding highest posterior probability, that is,

                                       h P h P h
h

* [ ( ) ( | )]= arg max D                                                                (3.103)

When h* in Eqn (3.103) is equivalently expressed in terms of log2, we have

                                     h P h P h
h

* [log ( ) log ( | )]= +arg max 2 2 D   (3.104a)

or alternatively, minimizing the negative of this quantity:

                                     h P h P h
h

* [ log ( ) log ( | )]= - -arg min 2 2 D                                    (3.104b)

Shannor and Weaver (1949) showed that the optimal code (i.e., the code that minimizes the 

expected message length) assigns (–log2 P(x)) bits to encode message x. Equation (3.104b) can 
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thus be interpreted in terms of MDL principle; linking minimum description length to Bayesian 

approach.

Probability distributions are, however, mostly unknown in real learning problems.

3.9.2  Entropy and Information

A particularly clear application of MDL principle is in the design of decision-tree classifiers. 

We now turn to a simple naive version of the principle with respect to applications to pattern 

recognition using entropy-based error measures. The concept generalizes to other machine learning 

applications as well.

To maintain the simplicity of things, suppose that the sequence of instances x(1), x(2), …, x(N) 

is already known to the transmitter as well as the receiver, so that we require to just transmit the 

categories yq(q = 1, …, M). Now if the yq given in the training data are exactly the same as the 

predictions of the hypothesis h, then there is no requirement for transmission of any information 

pertaining to these instances (the receiver can compute these values once it has received the 

hypothesis). The description length of the classifications, keeping in mind the hypothesis known is, 

thus, zero. In situations when some instances are misclassified by h, then for each misclassification, 

we require to transmit a message that identifies the misclassified instance, as well as its precise 

classification. The description length then comprises transmission of the approximate hypothesis 

along with corrections of errors. As per the MDL principle, the most ideal hypothesis for the training 

sample is one which reduces the length of the message to be sent to the receiver, to the minimum.

As we shall see in Chapter 8, an entropy-based error criterion helps design decision trees using 

MDL principle. The description lengths are equivalently expressed in terms of entropy. We have 

also used this equivalence in discretization problems in Chapter 7.

The concept of entropy was originally developed by physicists in the context of equilibrium 

thermodynamics and later extended through development of statistical mechanics. It was introduced 

into information theory by Shannon. Here we discuss the interpretation of entropy based on 

information content.

An intuitive notion of information will help understand the notion of entropy. If everything about 

message or signal is known, there is nothing new to know and hence it carries no information. If the 

signal is random, i.e., some level of uncertainty is associated, then it carries some information. Thus 

information content is related to randomness or unpredictability of the message. 

Consider a discrete source S of independent messages s(1), s(2), …, s(N) with probability of 

occurrence as P1, P2, …, PN. Information carried by the event s(i) is given by log2
1

P
i

Ê
ËÁ

ˆ
¯̃

. It is a 

measure of randomness or unpredictability of the event. A certain event has probability 1 and hence 

carries no information. When we use log base 2, the unit of information is bits. 

The average information from the discrete source
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It is called information entropy. It represents level of randomness or disorder in S. More the 

randomness (less the prior knowledge), more the information content, more the information 

entropy. In case any of the probabilities vanish, we use the fact that 

                                                lim log log
P

P P
Æ

= =

0
2 20 0 0 0to define                                      (3.106)

Note that entropy does not depend on the messages themselves, just on their probabilities. For 

a given number N of equally likely messages, the entropy is maximum—we have the maximum 

uncertainty about the identity of the message that will be chosen. Conversely, if all Pi are 0 except 

one, we have the minimum entropy—we are certain as to the message that will appear.

For decision-tree classifiers (Chapter 8), minimum description length given by Eqn (3.101) has 

the following two components:

 (i) K(h) representing complexity of the hypothesis. Algorithmic complexity of a decision tree is 

proportional to the number of nodes and branches.

 (ii) K(D using h) representing errors made by the hypothesis on the training sample, i.e., the 

amount of randomness or uncertainty created by the hypothesis. For a decision tree, it could 

be expressed in terms of entropy (in bits) of the data D—the weighted sum of the entropies 

of the data at the leaf nodes.

Thus, if the tree is grown/pruned based on the entropy criterion, there is an implicit global cost 

criterion that is equivalent to minimizing a measure of the general form of Eqn (3.101), providing 

a way of trading off hypothesis complexity for the randomness created by hypothesis (number of 

errors committed by the hypothesis). It might select a shorter hypothesis that makes a few errors 

over a larger hypothesis that perfectly classifies the training data.
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4.1  INTRODUCTION 

The classical regression and Bayesian classification statistical techniques (overview given in Section 

3.5) are based on the very strict assumption that probability distribution models or probability 

density functions are known. Unfortunately, in real-world practical situations, there is not enough 

information about the underlaying distributions, and distribution-free regression or classification is 

needed that does not require knowledge of probability distributions. The only available information 

is the training dataset.

Under the assumption that the data follows a normal distribution, statistical techniques result in 

linear regression functions. For the classification problems with normally distributed classes and 

equal covariance matrices for corresponding classes, we get linear discriminant functions using 

statistical techniques.

The linear functions are extremely powerful for the regression/classification problems whenever 

the stated assumptions are true. Unfortunately, the classical statistical paradigm turns out to be 

inappropriate for many real-life problems because the underlying real-life data generation laws 

may typically be very far from normal distribution.

Till the 1980s, most of the data analysis and learning methods were confined to linear statistical 

techniques. Most of the optimal algorithms and theoretical results were available for inference 

of linear dependencies from data; for nonlinear ones, only greedy algorithms, local minima, and 

heuristic search were known.

A paradigm shift occurred in the 1980s when researchers, armed with powerful computers of 

the day, boldly embraced nonlinear methods of learning. The simultaneous introduction of decision 

trees (Chapter 8) and neural network algorithms (Chapter 5) revolutionalized the practice of  pattern 

recognition and numeric prediction. These methods opened the possibility of efficient learning of 

nonlinear dependencies.

A second paradigm shift occurred in the 1990s with the introduction of the ‘kernel methods’. 

The differences with the previous approaches are worth mentioning. Most of the earlier learning 
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algorithms had, to a large extent, been based on heuristics or on loose analogies with natural 

learning systems, e.g., model of nervous systems (neural networks). They were mostly the result of 

creativity and extensive tuning by the designer, and the underlying reasons for their performance 

were not fully understood. A large part of the work was devoted to designing heuristics to avoid 

local minima in hypothesis search process. 

With the emergence of computational learning theory (Section 2.3), new efficient representations 

of nonlinear functions have been discovered and used for the design of learning algorithms. This 

has led to the creation of powerful algorithms, whose training often amounts to optimization. In 

other words, they are free from local minima. The use of optimization theory marks a radical 

departure from the previous greedy search algorithms. In a way, researchers now have the power of 

nonlinear function learning together with the conceptual and computational convenience, that was, 

hitherto, a characteristic of linear systems. Support Vector Machine (SVM), probably, represents 

the best known example of this class of algorithms.

In the present state-of-the-art, no machine learning method is inherently superior to any other; 

it is the type of problem, prior distribution, and other information that determine which method 

should provide the best performance. If one algorithm seems to outperform another in a particular 

situation, it is a consequence of its fit to the particular problem, not the general superiority of 

the algorithm. Machine learning involves searching through a space of possible hypotheses to 

determine one that fits the observed data and any prior knowledge held by the learner. We have 

covered in this book, hypotheses space which is being exploited by the practitioners in data mining 

problems. 

In the current chapter, we present the basic concepts of SVM in an easily digestible way. Applied 

learning algorithms for support vector classification and regression have been thoroughly explained. 

The support vector machine is currently considered to be the best off-the-shelf learning algorithm 

and has been applied successfully in various domains.

Support vector machines were originally designed for binary classification. Initial research 

attempts were diverted towards making several two-class SVMs to do multiclass classification. 

Recently, several single-shot multiclass classification algorithms appeared in literature. Our focus 

in this chapter will be on binary classification; multiclass problems will be reduced to binary 

classification problems. 

Support vector regression is the natural extension of methods used for classification. We will 

see in this chapter that SVM regression analysis retains all the properties of SVM classifiers. It has 

already become a powerful technique for predictive data analysis with many applications in varied 

areas of study.

In Section 3.5, we observed that the practical limitation of statistical approach is the assumed 

initial knowledge available on the process under investigation. For the Bayes procedure, one should 

know the underlying probability distributions. If only the forms of underlying distributions were 

known, we can use the training samples to estimate the values of their parameters. 

In this chapter, we shall instead assume that we know the proper forms for the discriminant 

functions, and use the samples to estimate the values of parameters of the classifier. We shall examine 

various procedures for determining discriminant functions; none of them requiring knowledge of 

the forms of underlying distributions.

We shall be concerned with linear discriminant functions which have a variety of pleasant 

analytical properties. As we observed in Section 3.5, they can be optimal if the underlying 
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distributions are cooperative, such as Gaussians having equal covariance. Even when they are 

not optimal, we might be willing to sacrifice some performance in order to gain the advantage of 

their simplicity. Linear discriminant functions are relatively easy to compute and in the absence 

of information suggesting otherwise, linear classifiers are attractive candidates for initial, trial 

classifiers.

The problem of finding a linear discriminant function will be formulated as a problem of 

minimizing a criterion function. The obvious criterion function for classification purposes is 

the misclassificastion error (refer to Section 2.8). Instead of deriving discriminants based on 

misclassification error, we investigate related criterion function that is analytically more tractable. 

4.2  LINEAR DISCRIMINANT FUNCTIONS FOR BINARY CLASSIFICATION

Let us assume two classes of patterns described by two-dimensional feature vectors (coordinates 

x1 and x2) as shown in Fig. 4.1. Each pattern is represented by vector x = [x1 x2]
T Œ ¬2. In Fig. 4.1, 

we have used circle to denote Class 1 patterns and square to denote Class 2 patterns. In general, 

patterns of each class will be characterized by random distributions of the corresponding feature 

vectors. 

Figure 4.1 also shows a straight line separating the two classes. We can easily write the equation 

of the straight line in terms of the coordinates (features) x1 and x2 using coefficients or weights w1 

and w2 and a bias (offset) or threshold term w0, as given in Eqn (4.1). The weights determine the 

slope of the straight line, and the bias determines the deviation from the origin of the straight line 

intersections with the axes:

                                                    g(x) = w1 x1 + w2 x2 + w0 = 0                                             (4.1)

We say that g(x) is a linear discriminant function that divides (categorizes) ¬2 into two decision 

regions.
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Figure 4.1  Linear discriminant function in two-dimensional space
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The generalization of the linear discriminant function for an n-dimensional feature space in ¬n 

is straight forward:

                                                          g(x) = wTx + w0 = 0                                             (4.2)

                                                               x = [x1 x2 … xn]
T is the feature vector 

                                                              w = [w1 w2 … wn]
T is a weight vector 

                                                             w0 = bias parameter 

The discriminant function is now a linear n-dimensional surface, called a hyperplane; symbolized 

as H  in the discussion that follows. 

For the discriminant function of the form of Eqn (4.2), a two-category classifier implements the 

following decision rule:

Decide Class 1 if g(x) > 0 and Class 2 if g(x) < 0.                                                                      (4.3) 

Thus, x is assigned to Class 1 if the inner product wTx exceeds the threshold (bias) –w0, and to 

Class 2 otherwise. If g(x) = 0, x can ordinarily be assigned to any class, but in this chapter, we shall 

leave the assignment undefined.

Figure 4.2 shows the architecture of a typical implementation of the linear classifier. It consists 

of two computational units: an aggregation unit and an output unit. The aggregation unit collects 

the n weighted input signals w1 x1, w2 x2, …, wn xn and sums them together. Note that the summation 

also has a bias term—a constant input x0 = 1 with a weight of w0. This sum is then passed on to the 

output unit, which is a step filter that returns –1 if its input is negative and +1 if its input is positive. 

In other words, the step filter implements the sign function:

                                                 ŷ  = sgn w x wj j
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n

+
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=
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1

  (4.4a)

                                                     = sgn (wTx + w0) = sgn(g(x)) (4.4b)

The sgn function extracts the appropriate pattern label from the decision surface g(x). This means 

that linear classifier implemented in Fig. 4.2 represents a decision function of the form, 

                                                  ŷ  = sgn (g(x)) = sgn (wTx + w0)       (4.5)

The values ±1 in output unit are not unique; only change of sign is important. ±1 is taken for 

computational convenience.
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Figure 4.2  A simple linear classifier
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If x(1) and x(2) are two points on the decision hyperplane, then the following is valid:

wTx(1) + w0 = wTx(2) + w0 = 0

This implies that 

wT(x(1) - x(2)) = 0

The difference (x(1) - x(2)) obviously lies on the decision hyperplane for any x(1) and x(2).

The scalar product is equal to zero, meaning that the weights vector w is normal (perpendicular) 

to the decision hyperplane. Without changing the normal vector w, varying w0 moves the 

hyperplane parallel to itself. Note also that wTx + w0 = 0 has an inherent degree of freedom. We can 

rescale the hyperplane to KwTx + Kw0 = 0 for K Œ ¬+ (positive real numbers) without changing

the hyperplane. Geometry for n = 2 with w1 > 0, w2 > 0 and w0 < 0 is shown in Fig. 4.3.
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Figure 4.3  Linear decision boundary between two classes

The location of any point x may be considered relative to the hyperplane H. Defining xP as the 

normal projection of x onto H (shown in Fig. 4.3), we may decompose x as, 

                                                                 x = xP + r 
w

w|| ||
                                           (4.6)

where ||w|| is the Euclidean norm of w, and w/||w|| is a unit vector (unit length with direction that 

of w). Since by definition 

g(xP) = wTxP + w0 = 0

it follows that

                                        g(x) = wTx + w0 = wT
x

w

w
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In other words, |g(x)| is a measure of the Euclidean distance of the point x from the decision 

hyperplane H. If g(x) > 0, we say that the point x is on the positive side of the hyperplane, and if 

g(x) < 0, we say that point x is on the negative side of the hyperplane. When g(x) = 0, the point x 

is on the hyperplane H.

In general, the hyperplane H divides the feature space into two half-spaces: decision region H + 

(positive side of hyperplane H ) for Class 1 (g(x) > 0) and region H – (negative side of hyperplane 

H ) for Class 2 (g(x) < 0). The assignment of vector x to H + or H – can be implemented as,
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The perpendicular distance d from the coordinates origin to the hyperplane H  is given by w0/||w||, 

as is seen below. 
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The origin is on the negative side of H  if w0 < 0, and if w0 > 0, the origin is on the positive side 

of H. If w0 = 0, the hyperplane passes through the origin. 

Geometry for n = 3 is shown in Fig. 4.4.



136  Applied Machine Learning

w

d

x

x3

x1

x2

x P

H
( (

) =
0)

g x

H
+

H
–

r

Figure 4.4  Hyperplane H separates the feature space into two 

     half-space H +(g(x) > 0) and H  –(g(x) < 0)

4.3  PERCEPTRON ALGORITHM 

Let us assume that we have a set of N samples x(1), x(2), …, x(N); some labeled Class 1 and some 

labeled Class 2:

                                                    D : {(x(1), y(1)), …, (x(N), y(N))}                           (4.10)

with x(i) Œ ¬n, and y(i) Œ {+1, –1}.

We want to use these samples to determine the weights w and w0 in a linear discriminant function 

                                  g(x) = wTx + w0                                          (4.11)

Let us say there is a reason behind the belief that there is a solution for which the likelihood of 

error is quite low. This leads to the desire to seek a weight vector that correctly classifies all the 

samples. If there does exist such a weight vector, the samples are said to be linearly separable

(Fig. 4.5a).
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x1 x1
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(a) Linearly seperable (b) Linearly inseperable

Figure 4.5
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Mostly, the classes are overlapped and the genuine separability is given by nonlinear decision 

boundaries (Fig. 4.5b). The samples in these cases are said to linearly inseparable.

Consider now the problem of constructing a criterion function for solving the linear classification 

problem to determine the weights w and w0. The criterion function, which is the most obvious for 

the purpose of classification, is the number of samples misclassified by the weight vector. But 

since this function is stepwise constant, it is naturally a weak candidate for gradient search. The 

Perceptron Algorithm seems to be a better alternative for this criterion function.

Rosenblatt (1950s) proposed the machine—the perceptron—whose architecture encodes the 

structure of a linear discriminant function (Fig. 4.3). Although it seemed initially promising, it was 

quickly proved that perceptrons could not be trained to recognize many classes of problems. Inspite 

of limitations, the perceptron is an interesting machine because, even in such a simple system, we 

can find most of the central concepts that we will need for the theory of Neural Networks (discussed 

in the next chapter) and Support Vector Machines (discussed in the present chapter). 

In the following, we describe perceptron training algorithm and its limitations for classification 

problems.

A perceptron takes a vector of real-valued inputs xj ; j = 1, …, n, calculates a linear combination 

of these inputs w xj j
T

j
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, then outputs a +1 if the result is greater than the threshold (–w0) 

and –1 if the result is less than the threshold (Fig. 4.3). The perceptron algorithm tests the decision 

function g(x) on each element in the training set, and if the test fails, it adjusts the free parameters w 

and w0 incrementally. This process continues until all the elements of the training set are perfectly 

classified. 

At the heart of the algorithm are two update rules (Here y(i) is the target output for the current 

training sample x(i)(i = 1, …, N), and ˆ( )
y

i
is the output generated by the perceptron): 

                                        w ¨ w + Dw = w + h y(i) x(i)                                          (4.12a)

                                       w0 ¨ w0 + Dw0 = w0 + h y(i) R2                           (4.12b)

The quantity R is called the radius of the training data and can be considered the radius of 

the hypersphere centered at the origin of our coordinate system that encloses all the points 

of the dataset. In our case where the data universe is ¬n, this is simply the position vector length of 

the training set point located farthest from the origin [53]:

                                                              R
i N

i
¨

£ £

max
1

|| ||( )
x                               (4.13)

where || ◊ || stands for the Euiclidean norm.

The quantity h is a positive scale factor (0 < h £ 1) that sets the step size. Called the learning rate, 

it controls the convergence speed of the search heuristic. Note that if h is too small, convergence 

is needlessly slow, whereas if h is too large, the correction process will overshoot, and can even 

diverge. So choice of h is crucial. 
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The intuition behind the update rules is that if ˆ( ) ( )
y y

i i
= (the point is correctly classified), there is 

no weights update (Dw = 0, Dw0 = 0). In case of a misclassified point ( ˆ( ) ( )
y y

i i
π ), the rules attempt 

to correct the position of the decision surface in such a way that the point is no longer misclassified.

One may come across different expressions of the weight changes Dw, Dw0 in the literature 

compared to the ones given in (4.12). However, the conceptual framework of the weight updates 

remains the same. For example, the following update rules are probably most commonly employed: 

                                             w w w w x¨ + = + -D h ( )
( )

( )
( )

y yi
i

i�  
(4.14)

                                            w w w w y
i

0 0 0 0¨ + = +D h (
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Here, we describe the conceptual framework with respect to the rules given in (4.12).

Consider a training dataset point (x(i), y(i)) with y(i) = +1. If this point is correctly classified 

by the decision surface ( ˆ( )
y

i
 = +1), Dw and Dw0 are zero and no weights are updated. Suppose 

the perceptron outputs a –1, when the target output is +1. The update rule (4.12a) attempts to 

correct this misclassification by rotating the decision surface in the direction of x(i). The rotation 

is accompalished by adding a scaled version of x(i) to the normal vector w (refer to Fig. 4.6). An 

analogous computation can be performed for a misclassified point with a target value of –1. In this 

case, the adjustment term will be subtracted from the normal vector, causing the rotation in the 

opposite direction. 
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Figure 4.6  The point x(i) is no more misclassified after rotation of hyperplane

The second update rule (4.12b) attempts to correct a misclassification by translating the decision 

surface. We may rewrite the rule as, 

                                                        –w0 ¨ –w0 – h y(i) R2 

or                                                             b ¨ b – h y(i) R2                             (4.15)

For a misclassified point with y(i) = +1, b is reduced and we need to translate the decision surface 

in the direction opposite to the normal vector (refer to Fig. 4.7). 
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Figure 4.7  Translation of hyperplane

The overall effect of the two update rules is demonstrated in Fig. 4.8. A square point is 

misclassified at time step t. Decision surface is rotated and translated at time step t+1. The square 

point is now correctly classified but overcompensation results in misclassification of a circle point. 

This misclassification in turn forces the perceptron algorithm to apply the update rules in the 

opposite direction during the next iteration, leading to a decision surface at time step t+2. This 

process continues. If one episode is completed (all data used), another episode starts from the first 

sample. The algorithm terminates when all the points are classified correctly.

t + 1

t

t +
2

x2

x1

Figure 4.8  Rotation and translation of decision surface

The solution is nonunique because there are more than one hyperplanes separating two linearly 

separable classes (refer to Fig. 4.9). The decision surface search stops as soon as some surface is 

found that separates the training set. This can lead to decision surfaces that are positioned close to 

training set points. Considering that the training dataset is only an approximate representation of 

the rest of the data universe, such solutions can lead to misclassifications of unseen points.

Attractiveness of the perceptron algorithm lies in its simplicity. There is, however, a major 

problem associated with this algorithm for real-world solutions: datasets are almost certainly not 

linearly separable, while the algorithm finds a separating hyperplane only for linearly separable 

data. When the dataset is linearly inseparable, the test of the decision surface will always fail for 

some subset of training points, regardless of the adjustments we make to the free parameters, and the 

algorithm will loop forever. There may, however, be situations when linear separating hyperplane 
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can be good solution even when data are overlapped; an upper bound needs to be imposed on the 

number of iterations when this method is applied in practice.

x2

x1

Figure 4.9  Nonunique solution

Summary of the Perceptron Learning

Given the set of N data points that are used for training: x(i), y(i); i = 1, …, N.

Perform the following steps for i = 1, …, N. 

Step 1: Choose the learning rate h > 0 (h = 0.1 may be a good initial choice) and initial weights w, 

w0 (initial weights can be random or zero). 

Step 2: Apply the next (the first one for i = 1) training sample (x(i), y(i)) to the perceptron and using 

Eqn (4.5), find the perceptron output ˆ( )
y

i
for the data pair applied and the given weights w and w0.

Step 3: Find the errors and adapt the weights using the update rules (4.12a)/(4.12b). 

Step 4: Stop the adaptation of the weights if ( y(i) – ˆ( )
y

i ) = 0 for all data pairs. Otherwise, go back 

to Step 2.

How do we cope with problems which are not linearly separable? The perceptron gives 

us a simple method when the samples are linearly separable. The minimization of classification 

error is the perceptron criterion function. It is an error-correcting process, as it requires that the 

weights be modified, only when an error crops up. Since no weight vector can accurately classify 

each sample in a nonseparable group, it is quite clear that the error-correcting process in perceptron 

algorithm can never stop. Support Vector Machines (SVM), as we shall see in this chapter, seek a 

weight vector that maximizes the margin (the minimum distance from the samples to the separating 

hyperplane), and employ an optimization procedure that works well for both the linearly separable 

and inseparable samples. The SVM criterion function of largest margin provides a unique solution 

and promises a good classification with previously unseen data.
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Another strong alternative is available in Neural Networks (NN). History has proved that limitations 

of Rosenblatt’s perceptron can be overcome by Neural Networks (discussed in the next chapter). 

The perceptron criterion function considers misclassified samples, and the gradient procedures 

for minimization are not applicable. The neural networks primarily solve the regression problems 

considering all the samples and minimum squared-error criterion, and employ gradient procedures 

for minimization. The algorithms for separable—as well as inseparable—data classification are 

first developed in the context of regression problems and then adapted for classification problems.

In the present chapter, our interest is in SVM-based solutions to real-life (nonlinear) classification 

and regression problems. To explain how a support vector machine works for these problems, it is 

perhaps easiest to start with the case of linearly separable patterns in the context of binary pattern 

classification. In this context, the main idea of a support vector machine is to construct a hyperplane 

as the decision surface in such a way that the margin of separation between Class 1 and Class 

2 examples is maximized. We will then take up the more difficult case of linearly nonseparable 

patterns. With the material on how to find the optimal hypersurface for linearly nonseparable 

patterns at hand, we will formally describe the construction of a support vector machine for real-life 

(nonlinear) pattern recognition task. As we shall see shortly, basically the idea of a support vector 

machine hinges on the following two mathematical operations:

 (i) Nonlinear mapping of input patterns into a high-dimensional feature space.

 (ii) Construction of optimal hyperplane for linearly separating the feature vectors discovered in 

Step (i). 

The final stage of our presentation will be to extend these results for application to multiclass 

classification problems, and nonlinear regression problems. 

4.4  LINEAR MAXIMAL MARGIN CLASSIFIER FOR LINEARLY SEPARABLE DATA

Let the set of training (data) examples D be 

                                            D = {x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}                (4.16)

where x = [x1 x2 … xn]
T is an n-dimensional input vector (pattern with n-features) for the ith 

example in a real-valued space X Õ ¬n; y is its class label (output value), and y Œ{+1, –1}. +1 

denotes Class 1 and –1 denotes Class 2.

To build a classifier, SVM finds a linear function of the form 

                                                               g(x) = wTx + w0                             (4.17)

so that the input vector x(i) is assigned to Class 1 if g(x(i)) > 0, and to Class 2 if g(x(i)) < 0, i.e., 

                                               y
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                               (4.18)

Hence, g(x) is a real-valued function; g: X Õ ¬n Æ ¬.

w = [w1 w2 … wn]
T Œ ¬n is called the weight vector and w0 Œ ¬ is called the bias. 
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In essence, SVM finds a hyperplane

                                                                    wTx + w0 = 0                              (4.19)

that separates Class 1 and Class 2 training examples. This hyperplane is called the decision 

boundary or decision surface. Geometrically, the hyperplane (4.19) divides the input space into 

two half spaces: one half for Class 1 examples and the other half for Class 2 examples. Note that 

hyperplane (4.19) is a line in a two-dimensional space and a plane in a three-dimensional space.

For linearly separable data, there are many hyperplanes (lines in two-dimensional feature 

space; Fig. 4.9) that can perform separation. How can one find the best one? The SVM framework 

provides good answer to this question. Among all the hyperplanes that minimize the training error, 

find the one with the largest margin—the gap between the data points of the two classes. This is an 

intuitively acceptable approach: select the decision boundary that is far away from both the classes 

(Fig. 4.10). Large-margin separation is expected to yield good classification on previously unseen 

data, i.e., good generalization.

From Section 4.2, we know that in wTx + w0 = 0, w defines a direction perpendicular to the 

hyperplane. w is called the normal vector (or simply normal) of the hyperplane. Without changing 

the normal vector w, varying w0 moves the hyperplane parallel to itself. Note also that wTx + w0 = 

0 has an inherent degree of freedom. We can rescale the hyperplane to KwTx + Kw0 = 0 for K Œ ¬+ 

(positive real numbers), without changing the hyperplane.

x2

x1
Class 2 ( = –1)y

Class 1 ( = +1)y

Separating line
(decision boundary)

x2

x1

Separating
line

(a) Large margin separation (b) Small margin separation

Class 2 ( = –1)y

Class 1 ( = +1)y

Figure 4.10

Since SVM maximizes the margin between Class 1 and Class 2 data points, let us find the 

margin. The linear function g(x) = wTx + w0 gives an algebraic measure of the distance r from x 

to the hyperplane wTx + w0 = 0. We have seen earlier in Section 4.2 that this distance is given by 

(Eqn (4.7)) 

                                                                   r
g

=

( )

|| ||

x

w

                                                              (4.20)

Now consider a Class 1 data point (x(i), +1) that is closest to the hyperplane wTx + w0 = 0 (Fig. 

4.11).
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The distance d1 of this data point from the hyperplane is 

                                                  d1 = 
g wi T i
( )

|| || || ||

( ) ( )
x

w

w x

w

=

+ 0
                (4.21a)

Similarly,

                                                  d2 = 
g wk T k
( )

|| || || ||

( ) ( )
x

w

w x

w

=

+ 0
               (4.21b) 

where (x(k), –1) is a Class 2 data point closest to the hyperplane wTx + w0 = 0.

Class 1

d1

d2

x
( )k

w

x

xP

r

M

x2

Class 2

x1

H : + = +1( ( ) > 0)w x x
T w g01

H ( ( ) = 0)g x: + = 0w x
T w0

H2 ( ( ) < 0)g x: + = –1w x
T w0

x
( )i

Figure 4.11  Geometric interpretation of algebraic distances of points to a

                                hyperplane for two-dimenstional case

We define two parallel hyperplanes H1 and H2 that pass through x(i) and x(k), respectively. H1 

and H2 are also parallel to the hyperplane wTx + w0 = 0. We can rescale w and w0 to obtain (this 

rescaling, as we shall see later, simplifies the quest for significant patterns, called support vectors)

                                                         H1 : w
Tx + w0 = +1  

(4.22)
                                                         H2 : w

Tx + w0 = –1

such that 

                                                    wTx(i) + w0 ≥ 1  if  y(i) = +1  

(4.23a)
                                                   wTx(i) + w0 £ –1 if  y(i) = –1

or equivalently 

                                                      y(i) (wTx(i) + w0) ≥ 1                (4.23b)
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which indicates that no training data fall between hyperplanes H1 and H2. The distance between the 

two hyperplanes is the margin M. In the light of rescaling given by (4.22), 

                                                    d d1 2

1 1
= =

-

|| ||
;

|| ||w w
                              (4.24)

where the ‘-’ sign indicates that x(k) lies on the side of the hyperplane wTx + w0 = 0 opposite to that 

where x(i) lies. From Fig. 4.11, it follows that

                                                               M =

2

|| ||w
                                                                  (4.25)

Equation (4.25) states that maximizing the margin of separation between classes is equivalent to 

minimizing the Euclidean norm of the weight vector w. 

Since SVM looks for the separating hyperplane that minimizes the Euclidean norm of the weight 

vector, this gives us an optimization problem. A full description of the solution method requires a 

significant amount of optimization theory, which is beyond the scope of this book. We will only 

use relevant results from optimization theory, without giving formal definitions, theorems or proofs 

(refer to [54, 55] for details). 

Our interest here is in the following nonlinear optimization problem with inequality constraints:

                                              minimize f (x)                                                      
(4.26)

                                              subject to gi (x) ≥ 0; i = 1, …, m

where x = [x1 x2 … xn]
T, and the functions f and gi  are continuously differentiable. 

The optimality conditions are expressed in terms of the Lagrangian function 

                                               L f gi i

i

m

( , ) ( ) ( )x x xl = -

=

Âl

1

                               (4.27)

where k = [l1 … lm]T is a vector of Lagrange multipliers.

An optimal solution to the problem (4.26) must satisfy the following necessary conditions, called 

Karush-Kuhn-Tucker (KKT) conditions:

 (i) 
∂

∂

L

xj

( , )x l
 = 0; j = 1, …, n 

(ii) gi (x) ≥ 0; i = 1, …, m (4.28)

 (iii) li ≥ 0; i = 1, …, m

 (iv) li gi (x) = 0; i = 1, …, m

In view of condition (iii), the vector of Lagrange multipliers belongs to the set {k Œ ¬m, k ≥ 0}. 

Also note that condition (ii) is the original set of constraints.

Our interest, as we will see shortly, is in convex functions f and linear functions gi . For this class 

of optimization problems, when there exist vectors x0 and k0 such that the point (x0, k0) satisfies the 
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KKT conditions (4.28), then x0 gives the global minimum of the function f (x), with the constraint 

given in (4.26). 

Let 

L L L L
m n

*

*
( ) ( , ), ( ) ( , )x x x

x

= =
Œ¬ Œ¬

max min

l
l l land

It is clear from these equations that for any x Œ¬n and k Œ¬m,

L
*
(k) £ L(x, k) £ L*(x)

and thus, in particular

L
*
(k) £ L*(x)

This holds for any x Œ¬n and k Œ¬m; so it holds for the k that maximizes the left-hand side, and 

the x that minimizes the right-hand side. Thus, 

max min min max

l l
l l

Œ¬ Œ¬ Œ¬ Œ¬

£
m n n m

L L

x x

x x( , ) ( , )

The two problems, min-max and max-min, are said to be dual to each other. We refer to the 

min-max problem as the primal problem. The objective to be minimized, L*(x), is referred to as 

the primal function. The max-min problem is referred to as the dual problem, and L
*
(k) as the 

dual function. The optimal primal and dual function values are equal when f is a convex function 

and gi are linear functions. The concept of duality is widely used in the optimization literature. 

The aim is to provide an alternative formulation of the problem which is more convenient to solve 

computationally and/or has some theoretical significance. In the context of SVM, the dual problem 

is not only easy to solve computationally, but also crucial for using kernel functions to deal with 

nonlinear decision boundaries. This will be clear later. 

The nonlinear optimization problem defined in (4.26) can be represented as min-max problem, 

as follows:

For the Lagrangian (4.27), we have

L f g
m

i i

i

m
*( ) ( ) ( )x x x= -

È

Î
Í
Í

˘

˚
˙
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l

l

1

Since gi (x) ≥ 0 for all i, li = 0 (i = 1, …, m) would maximize the Lagrangian; thus, 

L*(x) = f (x)

Therefore, our original constrained problem (4.26) becomes the min-max primal problem:

minimize

x

x
Œ¬

n

L
*( )

                                                                subject to gi (x) ≥ 0; i = 1, …, m

The concept of duality gives the following formulation for max-min dual problem:

maximize

l l
l

Œ¬ ≥
m

L

,
*
( )

0
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More explicitly, this nonlinear optimization problem with dual variables k, can be written in the 

form:

                                              maximize min
l ≥ Œ¬ =

-
È

Î
Í
Í

˘

˚
˙
˙

Â
0 x

x x
n

f gi i

i

m

( ) ( )l

1

                              (4.29)

Let us now state the learning problem in SVM.

Given a set of linearly separable training examples,

                                                  D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))},

the learning problem is to solve the following constrained minimization problem:

                                       minimize       f (w) = 1
2

wT w                                       

   (4.30)

                                       subject to      y(i)(wT x(i) + w0) ≥ 1; i = 1, …, N

This formulation is called the primal formulation of hard-margin SVM. Solving this problem 

will produce the solutions for w and w0 which in turn, give us the maximal margin hyperplane wTx 

+ w0 = 0 with the margin 2/||w||.

The objective function is quadratic and convex in parameters w, and the constraints are linear 

in parameters w and w0. The dual formulation of this constrained optimization problem is obtained 

as follows.

First we construct the Lagrangian:

                                     L(w, w0, k) = 1
2 0

1

1w w w x
T

i
i T i

i

N

y w- + -

=

Âl [ ( ) ]( ) ( )
  (4.31)

The KKT conditions are as follows:

 (i) 
∂

∂

L

w
 = 0; which gives w = li
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i
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x
=

Â
1

  
∂
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N
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( )

=

Â
1

= 0 (4.32)

 (ii) y(i) (wTx(i) + w0) – 1 ≥ 0; i = 1, …, N

 (iii) li ≥ 0; i = 1, …, N

 (iv) li[y
(i)(wTx(i) + w0) – 1] = 0; i = 1, …, N

From condition (i) of KKT conditions (4.32), we observe that the solution vector has an 

expansion in terms of training examples. Note that although the solution w is unique (due to the 

strict convexity of the function f (w)), the dual variables li need not be. There is a dual variable li 

for each training data point. Condition (iv) of KKT conditions (4.32) shows that for data points not 

on the margin hyperplanes (i.e., H1 and H2), li = 0:

                                                y(i)(wTx(i) + w0) – 1 > 0 fi li = 0
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For data points on the margin hyperplanes, li ≥ 0:

                                                y(i)(wTx(i) + w0) – 1 = 0 fi li ≥ 0

However, the data points on the margin hyperplanes with li = 0 do not contribute to the 

solution w, as is seen from condition (i) of KKT conditions (4.32). The data points on the margin 

hyperplanes with associated dual variables li > 0 are called support vectors, which give the name 

to the algorithm, support vector machines.

To postulate the dual problem, we first expand Eqn (4.31), term by term, as follows:

                      L w y w y
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Transformation from the primal to the corresponding dual is carried out by setting the partial 

derivatives of the Lagrangian (4.33) with respect to the primal variables (i.e., w and w0) to zero, and 

substituting the resulting relations back into the Lagrangian. The objective is to merely substitute 

condition (i) of KKT conditions (4.32) into the Lagrangian (4.33) to remove the primal variables; 

which gives us the dual objective function.

The third term on the right-hand side of Eqn (4.33) is zero by virtue of condition (i) of KKT 

conditions (4.32). Furthermore, from this condition we have,
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Accordingly, minimization of function L in Eqn (4.33) with respect to primal variables w and w0, 

gives us the following dual objective function:
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We may now state the dual optimization problem. 

Given a set of linearly separable training examples {( , )} ,( ) ( )
x

i i
i
N

y
=1  find the dual variables { } ,l

i i

N

=1  

that maximize the objective function (4.34) subject to the constraints

 • li
i

i

N

y
( )
=

=
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1

  (4.35) • li ≥ 0; i = 1, …, N

This formulation is dual formulation of the hard-margin SVM. 

Having solved the dual problem numerically (using MATLAB’s quadprog function, for 

example), the resulting optimum li values are then used to compute w and w0. w is computed using 

condition (i) of KKT conditions (4.32):

                                                             w x=

=

Âli
i i

i

N

y
( ) ( )

1

                  (4.36)
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and w0 is computed using condition (iv) of KKT conditions (4.32):

                                         li [y
(i)(wTx(i) + w0) – 1] = 0; i = 1, …, N                  (4.37)

Note that though there are N values of li in Eqn (4.36), most vanish with li = 0 and only a small 

percentage have li > 0. The set of x(i) whose li > 0 are the support vectors, and as we see in Eqn 

(4.36), w is the weighted sum of these training instances that are selected as the support vectors:

                                                         w = li
i i

i svindex

y( ) ( )
x

Œ

Â                    (4.38)

where svindex denotes the set of indices of support vectors.

From Eqn (4.38), we see that the support vectors x(i); i Œ svindex, satisfy 

y(i)(wTx(i) + w0) = 1

and lie on the margin. We can use this fact to calculate w0 from any support vector as, 

                                                  w
y
i

T i
0

1
= -

( )

( )
w x  

For y(i) Œ [+1, –1], we can equivalently express this equation as, 

                                                              w0 = y(i) – wTx(i )                                        (4.39)

Instead of depending on one support vector to compute w0, in practice, all support vectors are 

used to compute w0, and then their average is taken for the final value of w0. This is because the 

values of li are computed numerically and can have numerical errors.

                                     w
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i T i
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1
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Â
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w x                               (4.40)

where |svindex| corresponds to total number of indices in the set svindex, i.e., total number of 

support vectors.

The majority of li are 0, for which y(i)(wTx(i) + w0) > 1. These are the x(i) points that exist more 

than adequately away from the discriminant, and have zero effect on the hyperplane. The instances 

that are not support vectors have no information; the same solution will be obtained on removing 

any subset from them. From this viewpoint, the SVM algorithm can be said to be similar to the 

k-NN algorithm (Section 3.4) which stores only the instances neighboring the class discriminant.  

During testing, we do not enforce a margin. We calculate 

                                                                         g(x) = wTx + w0             (4.41a)

and choose the class according to the sign of g(x): sgn (g(x)) which we call the indicator function iF,

                                                        iF = ŷ  = sgn (wTx + w0)             (4.41b)

Choose Class 1 ( ŷ  = +1) if wTx + w0 > 0, and Class 2 ( ŷ  = –1) otherwise. 
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    Example 4.1

In this example, we visualize SVM (hard-margin) formulation in two variables. Consider the toy 

dataset given in Table 4.1.

SVM finds a hyperplane 

H : w1 x1 + w2 x2 + w0 = 0

and two bounding planes 

                                                      H1: w1 x1 + w2 x2 + w0 = +1

                                                      H 2: w1 x1 + w2 x2 + w0 = –1

such that 

                                                    w1 x1 + w2 x2 + w0 ≥ +1    if  y(i) = +1

                                                    w1 x1 + w2 x2 + w0 £ –1    if  y(i) = –1

or equivalently

                                                    y(i)(w1 x1 + w2 x2 + w0) ≥ 1 

We write these constraints explicitly as (refer to Table 4.1), 

(–1) [w1 + w2 + w0] ≥ 1

(–1) [2w1 + w2 + w0] ≥ 1

(–1) [w1 + 2w2 + w0] ≥ 1

(–1) [2w1 + 2w2 + w0] ≥ 1

(+1) [4w1 + 4w2 + w0] ≥ 1

(+1) [4w1 + 5w2 + w0] ≥ 1

(+1) [5w1 + 4w2 + w0] ≥ 1

(+1) [5w1 + 5w2 + w0] ≥ 1

Table 4.1  Data for classification

Sample i x
1

(i) x
2

(i) y(i)

1 1 1 –1

2 2 1 –1

3 1 2 –1

4 2 2 –1

5 4 4 +1

6 4 5 +1

7 5 4 +1

8 5 5 +1
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The constraint equations in matrix form:
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 (4.42b)

      Y = diag(y); y = [y(1) y(2) … y(N)]T                                                                                 (4.42c)

Our aim is to find the weight matrix w and the bias term w0 that maximize the margin of separation 

between the hyperplanes H1 and H2, and at the same time satisfy the constraint equations (4.42). It 

gives us an optimization problem 

                                                 maximize
w

T

w
w w

, 0

1

2( )  

                                                 subject to Y(Xw + w0e) ≥ e 

(4.43)

Once we obtain w and w0, we have our decision boundary: 

wTx + w0 = 0

and for a new unseen data point x, we assign sgn (wTx + w0) as the class value.

For solving the above problem in primal, we need to rewrite the problem in the standard QP 

(Quadratic Programming) format.
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Another way to solve the above primal problem is the Lagrangian dual. The problem is more 

easily solved in terms of its Lagrangian dual variables:

                                                      max minimize L w
wl

l
≥

È
Î

˘
˚0 w

w
,

( , , )
0

0   

                              

                                                      where (Eqn (4.31)) (4.44)

L(w, w0, k) = 
1

2
wTw – kT [Y(Xw + w0e) – e]

                                              l
( )N ¥1

= [l1 l2 … lN]T is a vector of Lagrange multipliers.

It leads to the dual optimization problem (Eqns (4.34–4.35))

                                          maximize T T T

l
l l le YXX Y-È

Î
˘
˚

1

2
                                       

(4.45)

                                          subject to eT Yk = 0; k ≥ 0

Some standard quadratic optimization programs typically minimize the given objective function:

                                                   minimize T T

l
l l l1

2
Q e-È

Î
˘
˚  

                                                   subject to yTk = 0; k ≥ 0                                                       (4.46)

                                                   where Q = Y X XT Y

The input required for the above program is only X and y. It returns the Lagrange multiplier 

vector k. 

Having solved the dual problem numerically (using a standard optimization program), optimum 

li values are then used to compute w and w0 (Eqns (4.38, 4.40)):

                                                       w = li
i i

i svindex

y( ) ( )
x

Œ

Â                             (4.47a) 

                                                     w0 = 
1

| |
[ ]( ) ( )

svindex
y i T i

i svindex

-È

ÎÍ
˘

˚̇Œ
Â w x                (4.47b)

Using the MATLAB quadprog routine for the dataset of Table 4.1, we obtain [56]

kT = [0   0   0   0.25   0   0.25   0   0   0   0]

This means that data points with index 4 and 6 are support vectors; i.e., support vectors are:
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and svindex is {4, 6}; |svindex| = 2.

                                w = li
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i svindex

y( ) ( ) . [ ] . [ ]
.
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È
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˚
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                              w0 = 
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2
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Î
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˘
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                                   = –3

Therefore, the decision hyperplane g(x) is 

g(x) = 0.5x1 + 0.5x2 – 3

and the indicator function

iF = ŷ  = sgn (g(x)) = sgn (0.5x1 + 0.5x2 – 3)

4.5  LINEAR SOFT MARGIN CLASSIFIER FOR OVERLAPPING CLASSES

The linear hard-margin classifier gives a simple SVM when the samples are linearly separable. 

In practice, however, the training data is almost always linearly nonseparable because of random 

errors owing to different reasons. For instance, certain instances may be wrongly labeled. The 

labels could be different even  for two input vectors that are identical.

If SVM has to be of some use, it should permit noise in the training data. But, with noisy data, 

the linear SVM algorithm described in earlier section, will not obtain a solution as the constraints 

cannot be satisfied. For instance, in Fig. 4.12, there exists a Class 2 point (square) in the Class 1 

region, and a Class 1 point (circle) in the Class 2 area. However, in spite of the couple of mistakes, 

the decision boundary seems to be good. But the hard-margin classifier presented previously cannot 

be used, because all the constraints

y(i)(wTx(i) + w0) ≥ 1; i = 1, …, N

cannot be satisfied.

So the constraints have to be modified to permit mistakes. To allow errors in data, we can relax 

the margin constraints by introducing slack variables, zi(≥ 0), as follows:

                                         wT x(i) + w0 ≥ 1 – zi         for         y(i) = + 1

                                         wT x(i) + w0 £ –1 + zi       for         y(i) = – 1 

Thus, we have the new constraints 

                                                  y(i)(wTx(i) + w0) ≥ 1 – zi; i = 1, …, N

               zi ≥ 0                              (4.48)
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The geometric interpretation is shown in Fig. 4.12.
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Figure 4.12  Soft decision boundary

In classifying an instance, there are four possible cases (see Fig. 4.12(b)). Instance 1 is on the 

correct side and far away from the origin; y(i)g(x(i)) > 1, zi = 0. Instance 2 is on the correct side and 

on the margin; zi = 0. For instance 3, zi = 1 – g(x(i)), 0 < zi < 1, the instance is on the correct side 

but in the margin and not sufficiently away. For instance 4, zi = 1 + g(x(i)) > 1, the instance is on the 

wrong side—this is a misclassification.

We also need to penalize the errors in the objective function. A natural way is to assign an extra 

cost for errors to change the objective function to 

1

2
1

0w w
T

i

i

N

C C+
Ê

Ë
Á

ˆ

¯
˜ ≥

=
Âz ;

where C is a user specified penalty parameter. This parameter is a trade-off parameter between 

margin and mistakes.

The parameter C trades off complexity, as measured by norm of weight vector, and data 

misfit, as measured by the number of nonseperable points. Note that we are penalizing not only 

the misclassified points but also the ones in the margin for better generalization. Increasing C 

corresponds to assigning a high penalty to errors, simultaneously resulting in larger weights. The 

width of the soft-margin can be controlled by penalty parameter C.

The new optimization problem becomes 

                                                  minimize 1
2

1

w w
T

i

i

N

C+

=

Âz

(4.48a)

                                                  subject to y(i)(wTx(i) + w0) ≥ 1 – zi; i = 1, …, N                      

                                                                                        zi ≥ 0; i = 1, …, N
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This formulation is called the soft-margin SVM.

Proceeding in the manner similar to that described earlier for separable case, we may formulate 

the dual problem for nonseparable patterns as follows. 

The Lagrangian 

      L w C y w
T

i i
i T i

i i i

i

N

( , , , , ) [ ( ) ]( ) ( )
w w w w x0

1
2 0

1

1z l m = + - + - + -

=

Âz l z m z
ii

N

i

N

==

ÂÂ
11

  (4.49)

where li, mi ≥ 0 are the dual variables.

The KKT conditions for optimality are as follows:
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∂
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( ) ( )( ) ; , ,w x + - + ≥ = º0 1 0 1z                                                          (4.50)

      zi ≥ 0; i = 1, …, N 

 (iii) li ≥ 0; i = 1, …, N

     mi ≥ 0; i = 1, …, N

 (iv) li(y
(i)(wTx(i) + w0) –1 + zi) = 0; i = 1, …, N

     mizi = 0; i = 1, …, N

We substitute the relations in condition (i) of KKT conditions (4.50) into the Lagrangian (4.49) 

to obtain dual objective function. From the relation C – li – mi = 0, we can deduce that li £ C 

because mi ≥ 0. Thus, the dual formulation of the soft-margin SVM is 

                                  maximize L
*
(k) = l l li i k

i k i T k

k

N

i

N

i

N

y y-

===

ÂÂÂ 1
2

111

( ) ( ) ( ) ( )
x x

                                  subject to li
i

i

N

y
( )
=

=

Â 0
1

                                                                     (4.51)

                                                   0 £ li £ C; i = 1, …, N

Interestingly, zi and mi are not in the dual objective function; the objective function is identical 

to that for the separable case. The only difference is the constraint li £ C (inferred from C – li – mi 

= 0 and mi ≥ 0). The dual problem (4.51) can also be solved numerically, and the resulting li values 

are then used to compute w and w0. The weight vector w is computed using Eqn (4.36). 
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The bias parameter w0 is computed using condition (iv) of KKT conditions (4.50):

                                                      li(y
(i)(wTx(i) + w0) – 1 + zi) = 0                (4.52a)

                                                                                           mizi = 0   (4.52b)

Since we do not have values for zi, we have to get around it. li can have values in the interval 0 

£ li £ C. We will separate it into the following three cases:

Case 1: li = 0

We know that C – li – mi = 0. With li = 0, we get mi = C. Since mizi = 0 (Eqn (4.52b)), this implies 

that zi = 0; which means that the corresponding ith pattern is correctly classified without any error 

(as it would have been with hard-margin SVM). Such patterns may lie on margin hyperplanes or 

outside the margin. However, they do not contribute to the optimum value of w, as is seen from 

Eqn (4.36).

Case 2: 0 < li < C

We know that C – li – mi = 0. Therefore, mi = C – li, which means mi > 0. Since mizi = 0 (Eqn 

(4.52b), this implies that zi = 0. Again the corresponding ith pattern is correctly classified. Also, 

from Eqn (4.52a), we see that for zi = 0 and 0 < li < C, y(i)(wTx(i) + w0) = 1; so the corresponding 

patterns are on the margin.

Case 3: li = C

With  li = C, y(i)(wTx(i) + w0) + zi = 1, and zi > 0. But zi ≥ 0 is a constraint of the problem. So zi 

> 0; which means that the corresponding pattern is mis-classified or lies inside the margin.

Note that support vectors have their li > 0, and they define w as given by Eqn (4.36). We can 

compute w from the following equation (refer Eqn (4.38)):

                                                            w = li
i i

i svindex

y( ) ( )
x

Œ

Â                               (4.53a)

where svindex denotes the set of indices of support vectors (patterns with li > 0).  

Of all the support vectors, those whose li < C (Case 2), are the ones that are on the margin, and 

we can use them to calculate w0; they satisfy

y(i)(wTx(i) + w0) = 1

We can compute w0 from the following equation (refer Eqn (4.40)):

                                                  w0 = 
1

| |
( )( ) ( )

svmindex
y i T i

i svmindex

-

Œ

Â w x                         (4.53b)

where svmindex are the set of support vectors that fall on the margin.

Finally, expressions for both the decision function g(x) and an indicator function iF = sgn (g(x)) 

for a soft-margin classifier are the same as for linearly separable classes (refer Eqns (4.41)): 

                                              g(x) = wTx + w0                                          (4.54a)
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                                                  iF = ŷ  = sgn (g(x)) = sgn (wTx + w0)                (4.54b)

The following points need attention of the reader: • A significant property of SVM is that the solution is sparse in li. Majority of the training data 

points exist outside the margin area and their li’s in the solution are 0. The data points on the 

margin with li = 0, do not contribute to the solution either. Only those data points that are on 

the margin hyperplanes with 0 < li < C, and those mis-classified or inside the margin (li = C) 

make contribution to the solution. In the absence of this sparsity property, SVM would prove 

to be impractical for huge datasets. 

 • Parameter C in the optimization formulation (4.51) is the regularization parameter, fine-tuned 

with the help of cross-validation. It defines the trade-off between margin maximization and 

error minimization. In case it is too big, there is high penalty for nonseparable points, and 

we may store several support vectors and overfit. In case it is too small, we may come across 

very simple solutions that underfit.

  The tuning process can be rather time-consuming for huge datasets. Many heuristic rules for 

selection of C have been recommended in the literature. Refer to [57] for a heuristic formula 

for the selection for the parameter, which has proven to be close to optimal in many practical 

situations. More about the difficulty associated with choice of C will appear in a later section.

 • The final decision boundary is 

wTx + w0 = 0

Substituting for w and w0 from Eqns (4.53), we obtain 
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We notice that w and w0 do not need to be explicitly computed. As we will see in a later section, 

this is crucial for using kernel functions to handle nonlinear decision boundaries.

    Example 4.2

In Example 4.1, SVM (hard margin) formulation was developed in matrix form. In the following, 

we give matrix form of SVM (soft margin) formulation [56].

If all the data points are not linearly separable, we allow training error or in other words, allow 

points to lie between bounding hyperplanes and beyond. When a point, say x(i) = [x1
(i) x2

(i) … xn
(i)]T
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with y(i) = +1 lies either between the bounding hyperplanes or beyond (into the region where wTx(i) 

+ w0 £ –1), we add a positive quantity zi to the left of inequality (refer to (4.23a)) to satisfy the 

constraint wTx(i) + w0 + zi ≥ +1. Similarly, when a point with y(i) = –1 lies either between the 

bounding hyperplanes or beyond (into the region where wTx(i) + w0 ≥ +1), we subtract a positive 

quantity zi from the left of the inequality (refer to (4.23a)) to satisfy the constraint wTx(i) + w0 – zi £
–1. For all other points, let us assume that we are adding zi terms with zero values. Thus, we have 

the constraints (Eqn (4.47))

y(i)(wTx(i) + w0) ≥ 1 – zi ; zi ≥ 0

The constraint equation in matrix form can be written as, 

                                                        Y(Xw + w0e) + y ≥ e                              (4.56)

where                                              z
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and matrices/vectors Y, X, w and e have already been defined in Eqns (4.42). 

The optimization problem becomes (Eqn (4.48a))

                                             Minimize C
T T

w

w w e

, z
z1

2
+È

Î
˘
˚                                           

                                             subject to Y(Xw + w0e) +  y ≥ e, and y ≥ 0                              

(4.57)

Here, C is a scalar value (≥ 0) that controls the trade-off between margin and errors. This C is to 

be supplied at the time of training. Proper choice of C is crucial for good generalization performance 

of the classifier. Usually, the value of C is obtained by trial-and-error with cross-validation. 

Minimization of the quantity 1
2
w w e
T T

C+ z with respect to w and y causes maximum separation 

between the bounding planes with minimum number of points crossing their respective bounding 

planes. 

Proceeding in the manner similar to that described in Example 4.1 for hard-margin SVM, we 

may formulate the dual problem for soft-margin SVM as follows (Eqn (4.51)): 

                                                Minimize T

l
l l l- +{ }e Q1

2

T                                   

                                                 subject to yT k = 0, 0 £ k £ Ce                                             

(4.58)

                                                 

where k = [l1 l2 … lN]T are dual variables, and all other matrices/vectors have been defined earlier 

in Example 4.1.
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The main difference between soft-margin and hard-margin SVM classifiers is that in case of soft 

margin, the Lagrange multipliers li are bounded; 0 £ li £ C. We will separate the bounds on li into 

three cases:

 1. li = 0. This leads to zi = 0, implying that the corresponding ith pattern is correctly classified. 

 2. 0 < li < C. This also leads to zi = 0, implying that corresponding ith pattern is correctly 

classified. The points with zi = 0 and 0 < li < C, fall on the bounding planes of the class to 

which the points belong. These are the support vectors that lie on the margin. 

 3. li = C. In this case, zi > 0; this implies that the corresponding ith pattern is mis-classified or 

lies inside the margin. Since li π 0, these are also support vectors

Once we obtain Lagrange multipliers, k, using quadratic programming, we can compute w and 

w0 using Eqns (4.53). 

As we will see in Section 4.7, SVM formulation for nonlinear classifiers is similar to the one 

given in this example. There, we will consider a toy dataset to illustrate numerical solution of SVM 

(soft-margin) problem.

4.6  KERNEL-INDUCED FEATURE SPACES

So far we have considered parametric models for classification (and regression) in which the form 

of mapping from input vector x to class label y (or continuous real-valued output y) is linear. One 

common strategy in machine learning is to learn nonlinear functions with a linear machine. For this, 

we need to change the representation of the data:

                                       x = {x1, …, xn} fi  e(x) = {f1(x), …, fm(x)}                                (4.59) 

where e(.) is a nonlinear map from input feature space to some other feature space. The selection 

of e is constrained to yield a new feature space in which the linear machine can be used. Hence, the 

set of hypotheses we consider will be functions of the type 

                                                g w w wl l

l

m
T( ( ), ) ( )f fx w x w= + = +

=

Â f
1

0 0                   (4.60)

where w is now the m-dimensional weight parameter. 

This means that we will build nonlinear machines in two steps:

 (i) first a fixed nonlinear mapping transforms the data into a new feature space, and 

 (ii) then a linear  machine is used to classify the data in the new feature space. 

By selecting m functions fl( )x  judiciously, one can approximate any nonlinear discriminant 

function in x by such a linear expansion. The resulting discriminant function is not linear in x, but 

it is linear in e(x). The m functions merely map points in the n-dimensional x-space to points in 

the m-dimensional e-space. The homogeneous discriminant function wTe + w0 separates points 

in the transformed space by a hyperplane. Thus, the mapping from x to e reduces the problem of 

finding nonlinear discriminant function in x to one of finding linear discriminant function in e(x). 

With a clever choice of nonlinear e-functions, we can obtain arbitrary nonlinear decision regions in 

x-space, in particular those leading to minimum errors. 
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The central difficulty is naturally choosing the appropriate m-dimensional mappings e(x) of 

the original input feature vectors x. This approach of the design of nonlinear machines is linked 

to our expectation that the patterns which are not linearly separable in x-space become linearly 

separable in e-space. This expectation is based on the observations that by selecting fl (x); l = 1, 

…, m, functions judiciously and letting m sufficiently large, one can approximate any nonlinear 

discriminant function in x by linear expansion (4.60). 

In the sequel, we will first try to justify our expectations that by going to a higher dimensional 

space, the classification task may be transformed into a linear one, and then study popular alternatives 

for the choice of functions fl(◊).
Let us first attempt to intuitively understand why going to a higher dimensional space increases 

the chances of a linear separation. For linear function expansions such as, 

                                                           g(x, w) = w x wj j

j

n

=

Â +

1

0

or 

                                                      g(e(x), w) = w wj l

l

m

f ( )x
=

Â +

1

0

the VC dimension increases as the number of weight parameters increases. Using a transformation 

e(x) to a higher dimensional e-space (m > n), typically amounts to increasing the capacity (refer 

to Section 2.3) of the learning machine, and rendering problems separable that are not linearly 

separable to start with.

Cover’s theorem [58] formalizes the intuition that the number of linear separations increases 

with the dimensionality. The number of possible linear separations of well distributed N points in 

an n-dimensional space (N > n + 1), as per this theorem, equals 

2
1

2
1

10 0j
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nN
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N j j= =
Â Â
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ˆ
¯̃
=

-
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The more we increase n, the more terms there are in the sum, and thus the larger is the resulting 

number. 

The linear separability advantage of high-dimensional feature spaces comes with a cost: the 

computational complexity. The approach of selecting fl (x); l = 1, …, m, with m  Æ • may not work; 

such a classifier would have too many free parameters to be determined from a limited number of 

training data. Also, if the number of parameters is too large relative to the number of training 

examples, the resulting model will overfit the data, affecting the generalization performance.

So there are problems. First how do we choose the nonlinear mapping to a higher dimensional 

space? Second, the computations involved will be costly. It so happens that in solving the quadratic 

optimization problem of the linear SVM (i.e., when searching for a linear SVM in the new higher 

dimensional space), the training tuples appear only in the form of dot products (refer to Eqn (4.51)):

·e(x(i)), e(x(k))Ò = [e(x(i))]T [e(x(k))]
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Note that the dot product requires one multiplication and one addition for each of the 

m-dimensions. Also, we have to compute the dot product with every one of the support vectors. 

In training, we have to compute a similar dot product several times. The dot product computation 

required is very heavy and costly. We need a trick to avoid the dot product computations.

Luckily, we can use a math trick. Instead of computing the dot product on the transformed data 

tuples, it turns out that it is mathematically equivalent to instead apply a kernel function, K(x(i), xk), 

to the original input data. That is, 

K(x(i), x(k)) = ·e(x(i)), e(x(k))Ò

In other words, everywhere that ·e(x(i)), e(x(k))Ò appears in the training algorithm, we can replace 

it with K(x(i), x(k)). In this way, all calculations are made in the original input space, which is of 

potentially much lower dimensionality.

Another feature of the kernel trick addresses the problem of choosing nonlinear mapping e(x). 

It turns out that we don’t even have to know what the mapping is. That is, admissible kernel 

substitutions K(x(i), x(k)) can be determined without the need of first selecting a mapping function 

e(x). 

Let us study the kernel trick in a little more detail for appreciating this important property of 

SVMs to solve nonlinear classification problems.

    Example 4.3

Given a database with feature vectors x = [x1 x2]
T. Consider the nonlinear mapping 

(x1, x2) 
f
æ Ææ  (f1(x), f2(x), f3(x), f4(x), f5(x), f6(x))
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The inner product of vectors in new (higher dimensional) space has been expressed as a function 

of the inner product of the corresponding vectors in the original (lower dimensional) space. The 

kernel function is 

K(x(i), x(k)) = [x(i)T x(k) + 1]2

Constructing Kernels

In order to exploit kernel trick, we need to be able to construct valid kernel functions. A 

straightforward way of computing kernel K(◊) from a map e(◊) is to choose a feature mapping e(x) 

and then use it to find the corresponding kernel:

                                                    K(x(i), x(k)) = [ ( )] ( )( ) ( )f fx x
i T k                               (4.61)

The kernel trick makes it possible to map the data implicitly into a higher dimensional feature 

space, and to train a linear machine in such a space, potentially side-stepping the computational 

problems inherent in this high-dimensional space. One of the curious facts about using a kernel 

is that we do not need to know the underlying feature map e(◊) in order to be able to learn in the 

new feature space. Kernel trick shows a way of computing dot products in these high-dimensional 

spaces without explicitly mapping into the spaces. 

The straightforward way of computing kernel  K(◊) from the map e(◊) given in Eqn (4.61), can be 

inverted, i.e., we can choose a kernel rather than the mapping and apply it to the learning algorithm 

directly.

We can, of course, first propose a kernel function and then expand it to identify e(x). Identification 

of e is not needed if we can show whether the proposed function is a kernel or not without the need 

of corresponding mapping function.

Mercer’s  Theorem: In the following, we introduce Mercer’s theorem, which provides a test 

whether a function K(x(i),x(k)) constitutes a valid kernel without having to construct the function 

e(x) explicitly. 

Let K(x(i), x(k)) be a symmetric function on the finite input space. Then K(x(i), x(k)) is a kernel 

function if and only if the matrix

                      K = 

K K K

K

K

N

i k

N

( , ) ( , ) ( , )

( , )

(

( ) ( ) ( ) ( ) ( ) ( )
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x x x x x x
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˘

˚

˙
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˙

   (4.62)

is positive semidefinite.

For any function K(x(i), x(k)) satisfying Mercer’s theorem, there exists a space in which K(x(i), 

x(k)) defines an inner product. What, however, Mercer’s theorem does not disclose to us is how to 

find this space. That is, we do not have a general tool to construct the mapping function e(◊) once 

we know the kernel function (in simple cases, we can expand K(x(i), x(k)) and rearrange it to give 

[ ( )] ( )( ) ( )f fx x
i T k ). Furthermore, we lack the means to know the dimensionality of the space, which 

can even be infinite. For further details, see [53]. 
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What are some of the kernel functions that could be used? Properties of the kinds of kernel 

functions that could be used to replace the dot product scenario just described, have been studied. 

The most popular general-purpose kernel functions are:

Polynomial kernel of degree d 

K(x(i), x(k)) = (x(i)T x(k) + c)d; c > 0, d ≥ 2                                           (4.63)

Gaussian radial basis function kernel

K(x(i), x(k)) = exp -
-Ê

ËÁ
ˆ

¯̃
|| ||( ) ( )
x x

i k 2

22s
; s > 0                              (4.64)

The feature vector that corresponds to the Gaussian kernel has infinite dimensionality.

Sigmoidal kernel

K(x(i), x(k)) = tanh (b x(i)T x(k) + g )                                                                       (4.65)

for appropriate values of b and g so that Mercer’s conditions are satisfied. One possibility is b = 2, 

g  = 1.

Each of these results in a different nonlinear classifier in (the original) input space.

There are no golden rules for determining which admissible kernel will result in the most 

accurate SVM. In practice, the kernel chosen does not generally make a large difference in resulting 

accuracy. SVM training always finds a global solution, unlike neural networks (discussed in the 

next chapter) where many local minima usually exist.

4.7  NONLINEAR CLASSIFIER

The SVM formulations debated till now, need Class 1 and Class 2 examples to be capable of linear 

representation, that is, with the decision boundary being a hyperplane. But, for several real-life 

datasets, the decision boundaries are nonlinear. To deal with nonlinear case, the formulation and 

solution methods employed for the linear case are still applicable. Only input data is transformed 

from its original space into another space (generally, a much higher dimensional space) so that a 

linear decision boundary can separate Class 1 examples from Class 2 in the transformed space, 

called the feature space. The original data space is known as the input space.  

Let the set of training (data) examples be 

                                                    D = {x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}                              (4.66) 

where                                         x = [x1 x2 … xn]
T.

Figure 4.13 illustrates the process. In the input space, the training examples cannot be linearly 

separated; in the feature space, they can be separated linearly.
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Input space Feature space

x xÆ ( )f

 

Figure 4.13  Transformation from the input space to feature space

With the transformation, the optimization problem in (4.48a) becomes 

                                        minimize 1
2

1

w w
T

i

i

N

C+

=

Âz  
(4.67)

                                        subject to y(i)(wTe(x(i)) + w0) ≥ 1 – zi ; i = 1, …, N

                                                        zi ≥ 0; i = 1, …, N 

The corresponding dual is (refer to (4.51))

                       minimize L
*
(k) = l l li i k

i k i T k

k

N

i

N

i

N

y y-

===

ÂÂÂ 1
2

111

( ) ( ) ( ) ( )[ ( )] ( )f fx x

                       subject to li
i

i

N

y
( )
=

=

Â 0
1

                                                                               (4.68)

                                        0 £ li £ C; i = 1, …, N 

The potential issue with this strategy is that there are chances of it suffering from the curse of 

dimensionality. The number of dimensions in the feature space may be very large with certain 

useful transformations, even with a reasonable number of attributes in the input space. Luckily, 

explicit transformations are not required as we see that for the dual problem (4.68), the building 

of the decision boundary only requires the assessment of [e(x(i))]Te(x) in the feature space. With 

reference to (4.55), we have the following decision boundary in the feature space:  

                                             li
i i T

i

N

y w
( ) ( )[ ( )] ( )f fx x + =

=

Â 0

1

0                                (4.69)
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Thus, if we have to compute [e(x(i))]Te(x) in the feature space using the input vectors x(i) and x 

directly, then we would not need to know the feature vector e(x) or even the mapping e itself. In 

SVM, this is done through the use of kernel functions, denoted by K (details given in the previous 

section):

                                                            K(x(i), x) = [e(x(i))]Te(x)                  (4.70)

We replace [e(x(i))]Te(x) in (4.69) with kernel (4.70). We would never need to explicitly know 

what e is.

    Example 4.4

The basic idea in designing nonlinear SVMs is to map input vectors x Œ¬n into higher dimensional 

feature-space vectors z Œ¬m; m > n. z = e(x) where e represents a mapping ¬n Æ ¬m. Note that 

input space is spanned by components xj; j = 1, …, n, of an input vector x, and feature space is 

spanned by components zl; l = 1, …, m, of vector z. By performing such a mapping, we expect 

that in feature space, the learning algorithm will be able to linearly separate the mapped data by 

applying the linear SVM formulation. This approach leads to a solution of a quadratic optimization 

problem with inequality constraints in z-space. The solution for an indicator function, sgn (wTz + 

w0), which is a linear classifier in feature space, creates a nonlinear separating hypersurface in the 

original input space. 

There are two basic problems in taking this approach when mapping an input x-space into 

higher-order z-space:

 1. Choice of e(x), which should result in a rich class of decision hypersurfaces.

 2. Calculation of the scalar product zTz, which can be computationally very discouraging if the 

feature-space dimension m is very large. 

The explosion in dimensionality from n to m can be avoided in calculations by noticing that in 

the quadratic optimization problem (Eqn (4.51)), training data only appear in the form of scalar 

products xTx. These products are replaced by scalar products zTz in feature space, and the latter 

are expressed by using a symmetric kernel function K(x(i), x(k)) that results in positive semidefinite 

kernel matrix (Eqn (4.62))

             K(x(i), x(k)) = 
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 (4.71)

The required scalar products zTz in feature space are calculated directly by computing kernels 

K(x(i),x(k)) for given training data vectors in an input space. In this way, we bypass the computational 

complexity of an extremely high dimensionality of feature space. By applying kernels, we do not 

even have to know what the actual mapping e(x) is. Thus, using the chosen kernel K(x(i),x(k)), an 

SVM can be constructed that operates in an infinite dimensional space.
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Another problem with kernel-induced nonlinear classification approach is regarding the choice 

of a particular type of kernel function. There is no clear-cut answer. No theoretical proofs yet exist 

supporting applications for any particular type of kernel function. For the time being, one can only 

suggest that various models be tried on a given dataset and that the one with the best generalization 

capacity be chosen. 

The learning algorithm for nonlinear soft-margin SVM classifier has already been given. Let 

us give the matrix formulation here, which is helpful in using standard quadratic optimization 

software. 

In the matrix form, nonlinear SVM (soft margin) formulation is (Eqn (4.58))

                                             Minimize T T

l
l l l- +{ }e 1

2
Q                                    

                                              subject to yT k = 0, 0 £ k £ Ce                                                  

(4.72)

Here, Q = YKY, and K is kernel matrix (Eqn (4.71). This formulation follows from Eqn (4.68).

As an illustration, with consider toy dataset with n = 1.
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For the choice of the kernel function K(x(i), x(k)) = (x(i)Tx(k) + 1)2, the matrix Q = YKY is given 

by:

Q = 

4 9 36 49

9 25 121 169

36 121 676 961

49 169 961 1369
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- - -
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Î

Í
Í
Í
Í

˘
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The SVM formulation with C = 50, yields [56] 

k = [0    2.5    7.333    4.833]T = [l1    l2    l3    l4]
T.

From Eqn (4.55), we have, 

w = li
i i

i svindex

y( ) ( )
z

Œ

Â ; svindex = {2, 3, 4}

This gives 

wTz = li
i i T

i svindex

y( ) ( )
z z

Œ

Â
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                                                               = li
i i

i svindex

y K( ) ( )( , )x x
Œ

Â                (4.73)

                                                               = li
i i T

i svindex

y( ) ( )( )x x +
Œ

Â 1 2

For the given data, 

wTz = (2.5) (– 1) (2x + 1)2 + (7.333) (1) (5x + 1)2 + (4.833) (– 1) (6x + 1)2

                        = – 0.667x2 + 5.333x

The bias w0 is determined from the requirement that at the support-vector points x = 2, 5 and 6, 

the outputs must be –1, +1 and –1, respectively. From Eqn (4.55), we have  
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| |
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                          = 
1

1 2
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ˆ
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˘
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                          = 1
3

2 21 0 667 2 5 333 2 1 0 667 5[ ( . ( ) . ( )) ( . ( )- - - + + - -

                             + - - - +5 333 5 1 0 667 6 5 333 62. ( )) ( . ( ) . ( ))]

                          = – 9

Therefore, the nonlinear decision function in the input space: 

g(x) = – 0.667x2 + 5.333x – 9

and indicator function

iF = ŷ  = sgn (g(x))

                                                                 = sgn (– 0.667x2 + 5.333x – 9)

The nonlinear decision function and the indicator function for one-dimensional data under 

consideration, are shown in Fig. 4.14.
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Figure 4.14  Nonlinear SV classification for Example 4.4

4.8  REGRESSION BY SUPPORT VECTOR MACHINES 

Initially developed for solving classification problems, SV techniques can also be successfully 

applied in regression (numeric prediction) problems. Unlike classification (pattern recognition) 

problems where the desired outputs are discrete values: y Œ [+1, –1], here the system responses 

y Œ¬ are continuous values. The general regression learning problem is set as follows:

The learning machine is given N training data

                                D : {(x(1), y(1)), …, (x(N), y(N))}; x Œ¬n, y Œ¬                                       (4.75)

where inputs x are n-dimensional vectors and scalar output y has continuous values. The objective 

is to learn the input-output relationship ŷ  = f (x): a nonlinear regression model. 

In regression, typically some measure for error of approximation is used instead of margin 

between an optimal separating hyperplane and support vectors, which was used in the design of SV 

classifiers. In our regression formulations described in earlier chapters, we have used sum-of-error-

squares criterion (Section 2.7). Here, in SV regression, our goal is to find a function ŷ  = f (x) that 

has at most e deviation (when e is a prescribed parameter) from the actually obtained targets y for 

all the training data. In other words, we do not care about errors as long as they are less than e, but 

any deviation larger than this will be treated as regression error. 

To account for the regression error in our SV formulation, we use e-insensitive loss function:

                                  |y – f (x)|e D
0 if

otherwise

| ( )|

| ( )|

y f

y f

- £

- -

Ï
Ì
Ó

x

x

e

e
                  (4.76)

This loss (error) function defines an e-insensitivily zone (e-tube). We tolerate errors up to e (data 

point (x(i), y(i)) within the e-insensitivity zone or e-tube), and the errors beyond (above/below the 

e-tube) have a linear effect (unlike sum-of-error-squares criterion). The error function is, therefore, 

more tolerant to noise and is thus more robust. There is a region of no error, which results in 

sparseness.

The parameter e defines the requirements on the accuracy of approximation. An increase in e 

means a reduction in accuracy requirements; it results in smoothing effects on modeling highly 

noisy polluted data. On the other hand, a decrease in e may result in complex model that overfits 

the data (refer to Fig. 4.15).
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Figure 4.15  One-dimensional SV regression
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In formulating an SV algorithm for regression, the objective is to minimize the error (loss) and 

||w||2 simultaneously. The role of ||w||2 in the objective function is to reduce model complexity; 

thereby preventing problem of overfitting, thus improving generalization.

4.8.1  Linear Regression

For pedagogical reasons, we begin by describing SV formulation for linear regression; functions 

f (◊) taking the form 

                                                         f (x) = wTx + w0; w Œ ¬n, w0 Œ ¬                            (4.77)

Analogous to the ‘soft margin’ classifier described earlier, we introduce (non-negative) slack 

variables zi, zi
*; i = 1, …, N; to measure the deviation of training examples outside the e-insensitivity 

zone. Figure 4.16 shows how the e-insensitivity zone looks like when the regression is linear.

0

+e

–e

y

x

e-tube
zi

z*
i Predicted

( )f x +e–e

e z+ iTraining data points

( ) ( )ˆi iy y-

( ) ( )ˆi iy y
e

-

zi

(x( )i
, y( )

)
i

(a) One-dimensional support vector linear regression (b) -insensitive loss functione

Figure 4.16

If a point (x(i), y(i)) falls within the e-tube, the associated zi, zi
* is zero. If it is above the tube, zi 

> 0, zi
* = 0 and zi = 0, zi

* > 0 if the point is below it.

             |y(i) – f (x(i))| – e = zi for data ‘above’ the e-insensitivity zone (4.78a) 

             |y(i) – f (x(i))| – e = zi
* for data ‘below’ the e-insensitivity zone                             (4.78b)

The loss (error) is equal to zero for training data points inside the tube (|y(i) – ŷ (i)| £ e); the loss 

is zi for data ‘above’ the tube (yi – ŷ(i) – e = zi), and zi
* for data ‘below’ the tube ( ŷ (i) – y(i) – e = 

zi
*). Only the data points outside the tube contribute to the loss (error) with deviations penalized 

in a linear fashion.

Minimizing ||w||2 simultaneously with minimizing the loss, results in small values for w and 

thereby a flat function f (x) given by (4.77).

Analogous to the SV formulation for soft margin linear classifiers, we arrive at the following 

formulation of linear regression:
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                    minimize 1
2

1

w w
T

i i

i

N

C+ +

=

Â ( )*z z                                

                                                                                                                              (4.79)

                    subject to y(i) – wTx(i) – w0 £ e + zi ; i = 1, …, N

                                    wTx(i) + w0 – y(i) £ e + zi
*; i = 1, …, N 

                                                    zi, zi
* ≥ 0; i = 1, …, N 

Note that the constant C > 0, which influences a trade-off between an approximation error and 

the weights vector norm ||w||, is a design parameter chosen by the user. An increase in C penalizes 

larger errors (large zi and zi
*) and in this way leads to a decrease in approximation error. However, 

this can be achieved only by increasing the weights vector norm ||w||, which does not guarantee 

good generalization performance. Another design parameter chosen by the user is the required 

precision embodied in an e value that defines the size of an e-tube.

As with procedures applied to SV classifiers, the constrained optimization problem (4.79) is 

solved by forming the Lagrangian:

L(w, w0, y, y*, k, k*, l, l*)

          = + + - + - + +
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                 (4.80)

where w, w0, zi and zi
* are the primal variables, and li, l i

*, mi, mi
* ≥ 0 are the dual variables. 

The KKT conditions are as follows:

(i) 
∂

∂
= - - =

=

Â
L

i i

i

i

N

w
w x 0( )* ( )

l l

1

 

          
∂

∂
= - =

=

Â
L

w
i i

i

N

0 1

0( )*
l l

          
∂

∂

L

i
z

 = C – li – mi = 0; i = 1, …, N

        
∂

∂

L

i
z *

 = C – l i
* – mi

* = 0; i = 1, …, N 

(ii)    e + zi – y(i) + wTx(i) + w0 ≥ 0; i = 1, …, N

       e + zi
* + y(i) – wTx(i) – w0 ≥ 0; i = 1, …, N                                                         (4.81)

       zi, zi
* ≥ 0; i = 1, …, N

(iii) li, li
*, mi, mi

* ≥ 0; i = 1, …, N
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(iv)  li(e + zi – y(i) + wTx(i) + w0) = 0; i = 1, …, N

        li
*(e + zi

* + y(i) – wTx(i) – w0) = 0; i = 1, …, N

                   mizi = 0; i = 1, …, N

                   mi
*zi

* = 0; i = 1, …, N

Substituting the relations in condition (i) of KKT conditions (4.81) into Lagrangian (4.80), 

yields the dual objective function. The procedure is parallel to what has been followed earlier. The 

resulting dual optimization problem is 

maximize L
*
(k, k*) = 

                                 - + + - - - -

= = =

Â Â Âe l l l l l l l l( ) ( ) ( ) ( )* * ( ) * *
i i
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; li, li
* Œ [0, C] 

(4.82)

From condition (i) of KKT conditions (4.81), we have, 

                                                   w x= -

=

Â ( )* ( )
l l
i i

i

i

N

1

                  (4.83)

Thus, the weight vector w is completely described as a linear combination of the training patterns 

x(i). One of the most important properties of SVM is that the solution is sparse in li, li
*. For | ˆ( )

y
i

 – 

y(i)| < e, the second factor in the following KKT conditions (conditions (iv) in (4.81)):

        li(e + zi – y(i) + wTx(i) + w0) = li(e + zi – y(i) + ŷ(i)) = 0

(4.84)

                               li
*(e + zi

* + y(i) – wTx(i) – w0) = l i
*(e + zi

* + y(i) – ŷ
(i)) = 0  

are nonzero; hence li, li
* have to be zero. This equivalently means that all the data points inside the 

e-insensitive tube (a large number of training examples belong to this category) have corresponding 

li, li
* equal to zero. Further, from Eqn (4.84), it follows that only for | ˆ( )

y
i

 – y(i)| ≥ e, the dual 

variables li, l i
* may be nonzero. Since there can never be a set of dual variables li, li

* which are 

both simultaneously nonzero, as this would require slacks in both directions (‘above’ the tube and 

‘below’ the tube), we have li ¥ li
* = 0. 

From conditions (i) and (iv) of KKT conditions (4.81), it follows that 

                                                                   (C – li)zi = 0 
(4.85)

                                                                (C – li
* )zi

* = 0

Thus, the only samples (x(i), y(i)) with corresponding li, li
* = C lie outside the e-insensitive tube 

around f. For li, li
* Œ (0, C), we have zi, zi

* = 0 and moreover the second factor in Eqn (4.84) has 

to vanish. Hence, w0 can be computed as follows:
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                                               w0 = y(i) – wTx(i) – e   for   li Œ (0, C)

(4.86)

                                               w0 = y(i) – wTx(i) + e   for   li
* Œ (0, C)

All the data points with li, li
* Œ (0, C) may be used to compute w0, and then their average taken 

as the final value for w0. 

Once we solve the quadratic optimization problem for k and k*, we see that all instances that 

fall in the e-tube have li = li
* = 0; these are the instances that are fitted with enough precision. The 

support vectors satisfy either li > 0 or li
* > 0, and are of two types. They may be instances that 

are on the boundary of the tube (either li or li
* is between 0 and C), and we use these to calculate 

w0. Instances that fall outside the e-tube (li = C) are of second type of support vectors. For these 

instances, we do not have a good fit.

Using condition (i) of KKT conditions (4.81), we can write the fitted line as a weighted sum of 

the support vectors;

                                         f (x) = wTx + w0 = ( )* ( )
l l
i i

i T

i svindex

w- +

Œ

Â x x 0                           (4.87a)

where svindex denotes the set of indices of support vectors. Note that for each i Œ svindex, one 

element of the pair (li, l
*
i) is zero.

The parameter w0 may be obtained from either of the equations in (4.86). If the former one is 

used for which i Œ set of instances that correspond to support vectors on the upper boundary (li 

Œ (0, C)) of the e-tube (let us denote these points as belonging to the set svm1index of indices of 

support vectors that fall on the upper boundary), then we have (refer to Eqn (4.55)),
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svm index

y k
i i

i T k

i svindex

0

1
= - - -Ê

ËÁ
ˆ
¯̃

È

ÎÍ Œ
Â

| |
( )( ) * ( ) ( )

1
e l l x x ˘̆

˚̇

È

Î
Í

˘

˚
˙Œ

Â
k svm index1

 (4.87b)

4.8.2  Nonlinear Regression 

For nonlinear regression, the quadratic optimization problem follows from Eqn (4.82):

maximize L
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                                                                                  (4.88)

where z = e(x)

The dot product z(i)Tz(k) = [e(x(i))]Te(x(k)) in Eqn (4.88) can be replaced with a kernel K(x(i), x(k)).
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The nonlinear regression function (refer to Eqn (4.87a))

f (x) = wT e(x) + w0 = ( ) [ ( )] ( )* ( )
l l
i i

i T

i svindex

w- +
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Â f fx x 0

                                      = ( ) ( , )* ( )
l l
i i
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i svindex

K w- +

Œ

Â x x 0                              (4.89)

The parameter w0 for this nonlinear regression solution may be obtained from either of the 

equations in (4.86). If the former one is used for which i Œ set of instances that correspond to 

support vectors on the upper boundary (li Œ (0, C)) of the e-tube (let us denote these points as 

belonging to the set svm1index), then we have (refer to Eqn (4.87b))
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Regression problems when solved using SVM algorithm presented in this section, are basically 

quadratic optimization problems. Attempting standard quadratic programming routines (e.g., 

MATLAB) will be a rich learning experience for the readers. To help the readers use the standard 

routine, we give matrix formulation of SVM regression in the example that follows.

    Example 4.5

In this example, we illustrate the SVM nonlinear regressor formulation; the formulation will be 

described in matrix form so as to help use of a standard quadratic optimization software. 

As with nonlinear classification, input vector x Œ ¬n are mapped into vectors z of a higher-

dimensional feature space: z = e(x), where e represents a mapping ¬n Æ ¬m. The linear regression 

problem is then solved in this feature space. The solution for a regression hypersurface, which is 

linear in a feature space, will create a nonlinear regressing hypersurface in the original input space. 

It can easily be shown that ŷ  = wTz + w0 is a regression expression, and with the e-insensitive 

loss function, the formulation leads to the solution equations of the form (refer to (4.82))

Minimize 
1

2
l l lT

Q g+
T

                                                                                      

(4.91)

subject to [eT  – eT] l  = 0, and 0 £ li, l i
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   K as given in Eqn (4.71),

                       k = [l1 l2 … lN]T

                 e – y = [e – y(1)   e – y(2) … e – y(N)]T
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After computing Lagrange multipliers li and li
* using a quadratic optimization routine, we find 

optimal desired nonlinear regression function as (Eqns (4.89–4.90))
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There are a number of learning parameters that can be utilized for constructing SV machines for 

regression. The two most relevant are insensitivity parameter e and penalty parameter C. Both the 

parameters are chosen by the user. An increase in e has smoothing effects on modeling highly noisy 

polluted data. An increase in e means a reduction in requirements for the accuracy of approximation. 

We have already commented on the selection of parameter C. More on it will appear later.

The SV training works almost perfectly for not too large datasets. However, when the number 

of data points is large, the quadratic programming problem becomes extremely difficult to solve 

with standard methods. Some approaches to resolve the quadratic programming problem for large 

datasets have been developed. We will talk about this aspect of SV training in a later section. 

4.9  DECOMPOSING MULTICLASS CLASSIFICATION PROBLEM INTO BINARY 

CLASSIFICATION TASKS

Support vector machines were originally designed for binary classification. Initial research attempts 

were directed towards making several two-class SVMs to do multiclass classification. Recently, 

several single-shot multiclass classification algorithms appeared in the literature. 

At present, there are two types of approaches for multiclass classification. In the first approach 

called ‘indirect methods’, we construct several binary SVMs and combine the outputs for predicting 

the class. In the second approach called ‘direct methods’, we consider all in a single optimization 

problem. Because of computational complexity of training in the direct methods, indirect methods 

so far are most widely used as they do not pose any numerical difficulties while training. We limit 

our discussion to indirect methods.

There are two popular methods in the category of indirect methods: One-Against-All (OAA), 

and One-Against-One (OAO). In the general case, both OAA and OAO are special cases of error-

correcting-output codes that decompose a multiclass problem to a set of two-class problems [59].
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4.9.1  One-Against-All (OAA)

Consider the training set 

D: {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}

where the label y(i) for each observation can take on any value {yq}; q = 1, …, M. The precise 

nature of the label set is not important as long as there exists a unique label for each class in the 

classification problem.

The task is to design M linear discirminant functions:

                                         gq(x) = wq
T

x + wq0; q = 1, 2, …, M                                          (4.93a)

The decision function is given by gk(x), where 

                                                         k = arg max
1£ £q M

(gq(x)) 

                                                           = arg max
1£ £q M

(wq
T

x + wq0)                (4.93b)

New point x is assigned to class k. 

Geometrically, this is equivalent to associating a hyperplane to each class and to assigning a 

new point x to the class whose hyperplane is farthest from it. The design of M linear discreminants 

(4.93a) follows the following procedure. 

In the OAA technique [53, 60], given M classes, we construct M linear decision surfaces g1, g2, 

…, gM. Each decision surface is trained to separate one class from the others. In other words, the 

decision surface g1 is trained to separate Class 1 from all other classes; the decision surface g2 is 

trained to separate Class 2 from all other classes, and so on. For the classification of an unknown 

point, a voting scheme based on which of the M decision surfaces return the largest value for this 

unknown point, is used. We then use the decision surface that returns the largest value for the 

unknown point to assign this point to the class:

                                                                Class = arg max
q MŒ º{ , , }1

gq(x)                 (4.94)

This approach is called the winner-takes-all approach. 

Let us examine this construction in more detail. To train M decision surfaces, we construct M 

binary training sets:

                                                          Dq = D+
q » D–

q ; q = 1, …, M

where 

D+
q: the set of all observations in D that are members of the class q 

and 

D
–

q: the set of all remaining observations in D, i.e., the set of all observations in D that are not 

members of the class q.

For convenience, we label the training set Dq with the class labels {+1, –1}; the label +1 is used 

for observations in class q, and the label –1 is used for observations that are not in class q. 

We train decision surface gq on the corresponding dataset Dq, which gives rise to 

gq(x) = wq
T

x + wq0
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The decision surface gq: ¬
n Æ ¬ returns a signed real value, which  can be interpreted as the 

distance of the point x Œ ¬n to the decision surface. If the value returned is +ve, the point x is 

above the decision surface and is taken as a member of the class +1 with respect to the decision 

surface, and if the value returned is –ve, the point is below the decision surface and is considered 

to be a member of the class –1 with respect to the decision surface. The value returned can also be 

interpreted as a confidence value: If our decision surface returns a large +ve value for a specific 

point, we are quite confident that the point belongs to class +1; on the contrary, if our decision 

surface returns a large –ve value for a point, we can confidently say that the point does not belong 

to Class +1. Since our training set D q for the decision surface gq was laid out in such a way that 

all observations in class q are considered +ve examples, it follows that a decision surface gk that 

returns the largest positive value for some point x among all other decision surfaces g1, …, gM, 

assigns the point to class k with k Œ{1, 2, …, M} 

Although the OAA classification technique has shown to be robust in real-world applications, 

the fact that the individual training sets for each decision surface are highly unbalanced could be 

a potential source of problems. The pairwise classification technique (One-Against-One (OAO) 

classification technique) avoids this situation by constructing decision surface for each pair of 

classes [53, 60].

4.9.2  One-Against-One (OAO)

In pairwise classification, we train a classifier for each pair of classes. For M classes, this results in 

M(M – 1)/2 binary classifiers.

We let gq,k denote the decision surface that separates the pair of classes q Œ{1, …, M} and k 

Œ{1, …, M} with q π k. We label class q samples by +1 and class k samples by –1, and train each 

decision surface

                                                                gq,k (x) = wq k
T

, x + wq,k0  (4.95)

on the data set 

D
q,k = Dq » Dk

where

D
q : the set of all observations in D with the label q

and

D
k : the set of all observations in D with the label k

Once we have constructed all the pairwise decision surfaces gq,k using the corresponding training 

sets Dq,k, we can classify an unseen point by applying each of the M(M – 1)/2 decision surfaces to 

this point, keeping track of how many times the point was assigned to what class label. The class 

label with the highest count is then considered the label for the unseen point. 

Voting Scheme 

cq = the frequency of ‘wins’ for class q computed by applying gq,k for all k π q.
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This results in a vector 

c = [c1, …, cM]

of frequencies of ‘wins’ of each class. The final decision is made by the most frequent class:

                                             Class q c
q M

q=

= º

arg max
1,

                                                (4.96)

Frequencies of ‘wins’ = number of votes.

There is a likelihood of a tie in the voting scheme of OAO classification. We can breakdown 

the tie through the interpretation of the actual values returned by decision surfaces as confidence 

values. On adding up absolute values of the confidence values assigned to each of the tied labels, 

we take the winner to be the tied label possessing the maximum sum of confidence values. 

It seems that OAO classification solves our problem of unbalanced datasets. However, it solves 

the problem at the expense of introducing a new complication: the fact that for M classes, we have 

to construct M(M –1)/2 decision surfaces. For small M, the difference between the number of 

decision surfaces we have to build for the OAA and OAO techniques, is not that drastic. (For M = 

4, OAA requires 4 binary classifiers and OAO requires 6). However, for large M, the difference can 

be quite drastic (For M = 10, OAA requires 10 binary classifiers and OAO requires 45). 

The individual classifiers in OAO technique, however, are usually smaller in size (they have 

fewer support vectors) then they would be in the OAA approach. This is for two reasons: first, the 

training sets are smaller, and second, the problems to be learned are usually easier, since the classes 

have less overlap. Since the size of QP in each classifier is smaller, it is possible to train fast.

Nevertheless, if M is large, then the resulting OAO system may be slower than the corresponding 

OAA. Platt et al. [61] improved the OAO approach and proposed a method called Directed Acyclic 

Graph SVM (DAGSVM) that forms a tree-like structure to facilitate the testing phase. 

4.10  VARIANTS OF BASIC SVM TECHNIQUES

Basically, support vector machines form a learning algorithm family rather than a single algorithm. 

The basic concept of the SVM-based learning algorithm is pretty simple: find a good learning 

boundary while maximizing the margin (i.e., the distance between the closest learning samples that 

correspond to different classes). Each algorithm that optimizes an objective function in which the 

maximal margin heuristic is encoded, can be considered a variant of basic SVM.

In the variants, improvements are proposed by researchers to gain speed, accuracy, low computer-

memory requirement and ability to handle multiple classes. Every variant holds good in a particular 

field under particular circumstances.

Since the introduction of SVM, numerous variants have been developed. In this section, we 

highlight some of these which have earned popularity in their usage or are being actively researched.

Changing the Metric of Margin from L2-norm to L1-norm 

The standard L2-norm SVM is a widely used tool in machine learning. The L1-norm SVM is a 

variant of the standard L2-norm SVM. 
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The L1-norm formulation is given by (Eqns (4.48a)):

minimize 1

2

1

w w
T

i

i

N

C+

=

Âz  

subject to y(i)(wTx(i) + w0) ≥ 1 – zi ; i = 1, …, N

                                      zi ≥ 0;        i = 1, …, N

In L2-norm SVM, the sum of squares of error (slack) variables are minimized along with the 

reciprocal of the square of the margin between the boundary planes. The formulation of the problem 

is given by:

                         minimize 1
2
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w w
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N
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+

=

Â ( )z    

(4.97)
                         subject to y(i)(wTx(i) + w0) ≥ 1 – zi ; i = 1, …, N

                                                               zi ≥ 0; i = 1, …, N 

It has been argued that the L1-norm penalty has advantages over the L2-norm penalty under 

certain scenarios, especially when there are redundant noise variables. L1-norm SVM is able to 

delete many noise features by estimating their coefficients by zero, while L2-norm SVM will use all 

the features. When there are many noise variables, the L2-norm SVM suffers severe damage caused 

by the noise features. Thus, L1-norm SVM has inherent variable selection property, while this is not 

the case for L2-norm SVM. In this book, our focus has been on L1-norm SVM formulations. Refer 

to [56] for L2-norm SVM formulations.

Replacing Control Parameter C in Basic SVM (C-SVM); C ≥ 0, by Parameter n (n-SVM); n 

Œ [0, 1]

As we have seen in the formulations of basic SVM (C-SVM) presented in earlier sections, C is a 

user-specified penalty parameter. It is a trade-off between margin and mistakes. Proper choice of 

C is crucial for good generalization power of the classifier. Usually, the parameter is selected by 

trial-and-error with cross-validation.

Tuning of parameter C can be quite time-consuming for large datasets. In the scheme proposed 

by Schölkopf et al. [62], the parameter C ≥ 0 in the basic SVM is replaced by a parameter n Œ [0, 1]. 

n has been shown to be a lower bound on the fraction of support vectors and an upper bound on the 

fraction of instances having margin errors (instances that lie on the wrong side of the hyperplane). 

By playing with n, we can control the fraction of support vectors, and this is advocated to be 

more intuitive than playing with C. However, as compared to C-SVM, its formulations are more 

complicated.

A formulation of n-SVM is given by:

minimize 1
2

1

1
w w
T
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i

N

N
- +

=
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                 subject to y(i)(wTx(i) + w0) ≥ r – zi ; i = 1, …, N                                                   (4.98)

                                                       zi ≥ 0; i = 1, …, N; r ≥ 0

Note that parameter C does not appear in this formulation; instead there is parameter n. An 

additional parameter r also appears that is a variable of the optimization problem and scales the 

margin: the margin is now 2r/||w|| (refer to Eqn (4.25)). 

The formulation given by (4.98) represents modification of the basic SVM classification 

(C-SVM) given by (4.48a) to obtain n-SVM classification. With analogous modifications of the 

basic SVM regression (e-SVM regression), we obtain n-SVM regression. 

Sequential Minimization Algorithms

Support vector machines have attracted many researchers in the last two decades due to many 

interesting properties they enjoy: immunity to overfitting by means of regularization, guarantees on 

the generalization error, robust training algorithms that are based on well established mathematical 

programming techniques, and above all, their success in many real-world classification problems. 

Despite the many advantages, basic SVM suffers from a serious drawback; it requires Quadratic 

Programming (QP) solver to solve the problem. The amount of computer memory needed for a 

standard QP solver increases exponentially with the size of the data. Therefore, the issue is whether 

it is possible for us to scale up the SVM algorithm for huge datasets comprising thousands and 

millions of instances. Many decomposition techniques have been developed to scale up the SVM 

algorithm. 

Techniques based on decomposition, break down a large optimization problem into smaller 

problems, with each one involving merely some cautiously selected variables so that efficient 

optimization is possible. Platt’s SMO algorithm (Sequential Minimal Optimization) [63] is an 

extreme case of the decomposition techniques developed, which works on a set of two data points 

at a time. Owing to the fact that the solution for a working set of two data points can be arrived 

at analytically, the SMO algorithm does not invoke standard QP solvers. Due to its analytical 

foundation, the SMO and its improved versions [64, 65, 66] are particularly simple and at the 

moment in the widest use. Many free software packages are available, and the ones that are most 

popular are SVM light [67] and LIBSVM [68]. 

Variants based on Trade-off between Complexity and Accuracy

Decomposition techniques handle memory issue alone by dividing a problem into a series 

of smaller ones. However, these smaller problems are rather time consuming for big datasets. 

Number of techniques for reduction in the training time have been suggested at the cost of accuracy.

Many variants have been reported in the literature. Some of the popular ones are on follows.

LS-SVM (Least Squares Support Vector Machine): It is a Least Squares version of the classical 

SVM. LS-SVM classification formulation implicitly corresponds to a regression interpretation with 

binary targets y(i) = ±1. Proposed by Suykens and Vandewalla [69], its formulation has equality 

constraints; a set of linear equations has to be solved instead of a quadratic programming problem 

for classical SVMs.
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PSVM  (Proximal  Support  Vector  Machine):  Developed by Fung and Mangasarian [70], 

Proximal SVM leads to an extremely fast and simple algorithm for generating a classifier that is 

obtained by solving a set of linear equations. Proximal SVM is comparable with standard SVM in 

performance. 

The key idea of PSVM is that it classifies points by assigning them to the closer of the two 

parallel planes that are pushed apart as far as possible. These planes are pushed apart by introducing 

the term wTw + w0
2 in the objective function of classical L2-norm optimization problem. 

LSVM  (Lagrangian  Support  Vector  Machine):  A fast and simple algorithm, based on an 

implicit Lagrangian formulation of the dual of a simple reformulation of the standard quadratic 

program of a support vector machine, was proposed by Mangasarian [71]. This algorithm minimizes 

unconstrained differentiable convex function for classifying N points in a given n-dimensional input 

space. An iterative Lagrangian Support Vector Machine (LSVM) algorithm is given for solving the 

modified SVM. This algorithm can resolve problems accurately with millions of points, at a pace 

greater than SMO (if n is less than 100) without any optimization tools, like linear or quadratic 

programming solvers.

Multiclass based SVM Algorithms

Originally, the SVM was developed for binary classification; the basic idea to apply SVM technique 

to multiclass problems is to decompose the multiclass problem into several two-class problems that 

can be addressed directly using several SVMs (refer to Section 4.9). This decomposition approach 

gives ‘indirect methods’ for multiclass classification problems. 

Instead of creating several binary classifiers, a more natural way is to distinguish all classes in one 

single optimization processing. This approach gives ‘direct methods’ for multiclass classification 

problems [72]. 

Weston and Watkins’ Multiclass SVM: In the method (the idea is similar to OAA approach) 

proposed by Weston and Watkins [73], for an M-class problem, a single objective function is 

designed for training all M-binary classifiers simultaneously and maximizing the margin from each 

class to the remaining classes. The main disadvantage of this approach is that the computational 

time may be very high due to the enormous size of the resulting QP. The OAA approach is generally 

preferred over this method. 

Crammer  and  Singer’s  Multiclass  SVM:  Crammer and Singer [74] presented another 

‘all-together’ approach. This approach gives a compact set of constraints; however, the number of 

variables in its dual problem are high. This value may explode even for small datasets. 

Simplified Multiclass SVM (SimMSVM): A simplified method, named SimMSVM [75], relaxes 

the constraints of Crammer and Singer’s approach. 

The support vector machine is currently considered to be the best off-the-shelf learning algorithm 

and has been applied successfully in various domains. Scholkopf and Smola [53] is a classic book 

on the subject. 
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5.1  TOWARDS COGNITIVE MACHINE 

Human intelligence possesses robust attributes with complex sensory, control, affective (emotional 

processes), and cognitive (thought processes) aspects of information processing and decision 

making. There are over a hundred billion biological neurons in our central nervous system (CNS), 

playing a key role in these functions. CNS obtains information from the external environment via 

numerous natural sensory mechanisms—vision, hearing, touch, taste, and smell. With the help of 

cognitive computing, it assimilates the information and offers the right interpretation. The cognitive 

process then progresses towards some attributes, such as learning, recollection, and reasoning, 

which results in proper actions via muscular control.

The progress in technology based on information in recent times, has widened the capabilities 

and applications of computers. If we wish a machine (computer) to exhibit certain cognitive 

functions, such as learning, remembering, reasoning and perceiving, that humans are known 

to exhibit, we need to define ‘information’ in a general manner and develop new mathematical 

techniques and hardware with the ability to handle the simulation and processing of cognitive 

information. Mathematics, in its present form, was developed to comprehend physical processes, 

but cognition, as a process, does not essentially follow these mathematical laws. So what exactly is 

cognitive mathematics then? The question is rather difficult. However, scientists have converged to 

the understanding that if certain ‘mathematical aspects’ of our process of thinking are re-examined 

along with the ‘hardware aspects’ of ‘the neurons’—which is the primary component of the brain—

we may, to a certain level, be able to successfully emulate the process. 

Biological neuronal procedures are rather complex [76], and the advancement made in terms 

of  understanding the field with the help of experiments is raw and inadequate. However, with the 

help of this limited understanding of the biological processes, it has been possible to emulate some 

human learning behaviors, via the fields of mathematics and systems science. Neuronal information 

processing involves a range of complex mathematical processes and mapping functions. And they 

serve as a parallel-cascade computing structure in synergism. The aim of system scientists is to 
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create an intelligent cognitive system on the basis of this limited understanding of the brain—a 

system that can help human beings to perform all kinds of tasks requiring decision making. Various 

new computing theories of the neural networks field have been developing, which it is hoped 

will be capable of providing a thinking machine. Given that they are based on neural networks 

architecture, they should hopefully be able to create a low-level cognitive machine, which scientists 

have been trying to build for so long.       

The subject of cognitive machines is in an exciting state of research and we believe that we are 

slowly progressing towards the development of truly cognitive machines.  

5.1.1  From Perceptrons to deep Networks

Historically, research in neural networks was inspired by the desire to produce artificial systems 

capable of sophisticated ‘intelligent’ processing similar to the human brain. The perceptron is the 

earliest of the artificial neural networks paradigms. Frank Rosenblatt built this learning machine 

device in hardware in 1958. In 1959, Bernard Widrow and Marcian Hoff developed a learning 

rule, sometimes known as Widrow-Haff rule, for ADALINE (ADAptive LINear Elements). Their 

learning rule was simple and yet elegant.

Affected by the predominantly rosy outlook of the time, some people exaggerated the potential 

of neural networks. Biological comparisons were blown out of proportion. In 1969, significant 

limitations of perceptrons, a fundamental block for more powerful models, were highlighted by 

Marvin Minsky. It brought to a halt much of the activity in neural network research.

Nevertheless, a few dedicated scientists, such as Teuvo Kohonen and Stephen Grossberg, 

continued their efforts. In 1982, John Hopfield introduced a recurrent-type neural network that 

was based on the interaction of neurons through a feedback mechanism. The back-propagation 

learning rule arrived on the neural-network scene at approximately the same time from several 

independent sources (Werbos; Parker; Rumelhart, Hinton and Williams). Essentially a refinement 

of the Widrow-Hoff learning rule, the back-propagation learning rule provided a systematic means 

for training multilayer feedforward networks, thereby overcoming the limitations presented by 

Minsky. Research in the 1980s triggered a boom in the scientific community. New and better 

models have been proposed. A number of today’s technological problems are in the areas where 

neural-network technology has demonstrated potential.

As the research in neural networks is evolving, more and more types of networks are being 

introduced. For reasonably complex problems, neural networks with back-propagation learning 

have serious limitations. The learning speed of these feedforward neural networks is, in general, far 

slower than required and it has been a major bottleneck in their applications. Two reasons behind 

this limitation may be: (i) the slow gradient-based learning algorithms extensively used to train 

neural networks, and (ii) all the parameters of the network are tuned iteratively by using learning 

algorithms. A new learning algorithm was proposed in 2006 by Huang, Guang-Bin et. al. [77], 

called Extreme Learning Machine (ELM), for single hidden layer feedforward neural networks, in 

which the weights connecting input to hidden nodes are randomly chosen and never updated and 

weights connecting hidden nodes to output are analytically determined. Experimental results based 

on real-world benchmarking function approximation (regression) and classification problems show 

that ELM can produce best generalization in some cases and can be thousands of times faster than 

traditional popular learning algorithms for feedforward neural networks.
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Novel research investigations in ELM and related areas have produced a suite of machine 

learning techniques for (single and multi-) hidden layer feedforward networks in which hidden 

neurons need not be tuned. ELM theories argue that random hidden neurons capture the essence of 

some brain learning mechanisms. ELM has a great potential as a viable alternative technique for 

large-scale computing and AI (Artificial Intelligence). 

The ‘traditional’ neural networks are based on what we might interpret as ‘shallow’ learning; in 

fact, this learning methodology has very little resemblance to the brain, and one might argue that it 

would be more fair to regard them simply as a discipline under statistics. 

The subject of cognitive machines is in an exciting state of research and we believe that we are 

slowly progressing towards the development of truly intelligent systems. A step towards realizing 

strong AI has been taken through the recent research in ‘deep learning’. Considering the far-reaching 

applications of AI, coupled with the awareness that deep learning is evolving as one of its most 

powerful methods, today it is not possible for one to enter the machine learning community without 

any knowledge of deep networks.

Deep learning algorithms are in sharp contrast to shallow learning algorithms in terms of the 

number of parameterized transformations a signal comes across as it spreads from input layer to 

the output layer. A parameterized transformation refers to a processing unit containing trainable 

parameters—weights and thresholds. A chain of transformations from input to output is a Credit 

Assignment Path (CAP), which describes potentially causal connections from input to output and 

may have varied lengths. In case of a feedforward neural network, the depth of the CAPs, and 

therefore, the depth of the network, is a number of hidden layers plus one (the output layer is also 

parameterized).

Today, deep learning, based on learning representations of data, is a significant member of 

family of machine learning techniques. It is possible to  represent an observation, for instance 

an image, in various ways, such as a vector of intensity values per pixel or in a more abstract 

way as a set of edges, regions of particular shape, and so on. Some representations make learning 

tasks simpler. Deep learning aims to replace hand-crafted features with efficient algorithms for 

supervised or unsupervised feature learning, and hierarchical feature extraction. 

The field of deep learning has been characterized in several ways. These definitions have in 

common:

 (i) multiple layers of nonlinear processing units

 (ii) the supervised/unsupervised learning of feature representations in each layer, with the layers 

giving rise to a hierarchy from low-level to high-level characteristics. 

What a layer of nonlinear processing unit, employed in a deep learning algorithm, consists of is 

dependent on the problem that needs to be solved.

Deep learning is linked closely to a category of brain-development theories published by 

cognitive neuro scientists in the early 1990s. Some of the deep-learning representations are inspired 

by progresss in neuroscience and are roughly based on interpretation of information processing 

and communication patterns in a nervous system, such as neural coding which tries to describe the 

relationship between a range of stimuli and related neuronal responses in the brain.

The term ‘deep learning’ gained traction in the mid 2000s, after a publication by Geoffrey 

Hinton and Ruslan Salakhutdinov. They showed how many-layered feedforward network could 
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be effectively pre-trained one layer at a time. Since its resurgence, deep learning has become part 

of the many-of-the-art systems in various disciplines, particularly computer vision and speech 

recognition. The real impact of deep learning in industry began in large-scale speech recognition 

around 2010. Recent useful references on the subject are [78–82].

Our focus in this chapter will be on traditional neural networks [83, 84]. These networks are 

being used today for many real-world regression and classification problems. Also, a sound 

understanding of these networks is a prerequisite to learn ELM and deep learning algorithms. The 

two recent research developments are outside the scope of this book. 

The terms ‘Neural Networks (NN)’ and ‘Artificial Neural Networks (ANN)’ are both commonly 

used in the literature for the same field of study. We will use the term ‘Neural Networks’ in this 

book.

Broadly speaking, AI (Artificial Intelligence) is any computer program that does something 

smart [2, 5]. Machine learning is a subfield of AI. That is, all machine learning counts as AI, 

but not all AI counts as machine learning. For example, rule-based expert systems, frame-based 

expert systems, knowledge graphs, evolutionary algorithms could be described by AI but none of 

them is in machine learning. Deep learning may be considered as subfield of machine learning. 

Deep neural networks are a set of algorithms setting new records in accuracy for many important 

problems. Deep is a technical term; it refers to number of layers in a neural network. Multiple 

hidden layers allow deep neural networks to learn features of the data in a hierarchy. 

Deep learning may share elements of traditional machine learning, but some researchers feel that 

it will emerge as a class by itself, as a subfield of AI.

5.2  NEURON MODELS

A discussion of anthropomorphism to introduce neural network technology may be worthwhile—

as it helps explain the terminology of neural networks. However, anthropomorphism can lead to 

misunderstanding when the metaphor is carried too far. We give here a brief description of how 

the brain works; a lot of details of the complex electrical and chemical processes that go on in the 

brain, have been ignored. A pragmatic justification for such a simplification is that by starting with 

a simple model of the brain, scientists have been able to achieve very useful results. 

5.2.1  Biological Neuron

To the extent a human brain is understood today, it seems to operate as follows: bundles of neurons, 

or nerve fibers, form nerve structures. There are many different types of neurons in the nerve 

structure, each having a particular shape, size and length depending upon its function and utility 

in the nervous system. While each type of neuron has its own unique features needed for specific 

purposes, all neurons have two important structural components in common. These may be seen 

in the typical biological neuron shown in Fig. 5.1. At one end of the neuron are a multitude of tiny, 

filament-like appendages called dendrites, which come together to form larger branches and trunks 

where they attach to soma, the body of the nerve cell. At the other end of the neuron is a single 

filament leading out of the soma, called an axon, which has extensive branching on its far end. 

These two structures have special electrophysiological properties which are basic to the function of 

neurons as information processors, as we shall see next. 
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Figure 5.1  A typical biological neuron

Neurons are connected to each other via their axons and dendrites. Signals are sent through the 

axon of one neuron to the dendrites of other neurons. Hence, dendrites may be represented as the 

inputs to the neuron, and the axon as its output. Note that each neuron has many inputs through its 

multiple dendrites, whereas it has only one output through its single axon. The axon of each neuron 

forms connections with the dendrites of many other neurons, with each branch of the axon meeting 

exactly one dendrite of another cell at what is called a synapse. Actually, the axon terminals do not 

quite touch the dendrites of the other neurons, but are separated by a very small distance of between 

50 and 200 angstroms. This separation is called the synaptic gap.

A conventional computer is typically a single processor acting on explicitly programmed 

instructions. Programmers break tasks into tiny components, to be performed in sequence rapidly. 

On the other hand, the brain is composed of ten billion or so neurons. Each nerve cell can interact 

directly with up to 200,000 other neurons (though 1000 to 10,000 is typical). In place of explicit 

rules that are used by a conventional computer, it is the pattern of connections between the neurons 

in the human brain, that seems to embody the ‘knowledge’ required for carrying out various 

information-processing tasks. In human brain, there is no equivalent of a CPU that is in overall 

control of the actions of all the neurons.

The brain is organized into different regions, each responsible for different functions. The largest 

parts of the brain are the cerebral hemispheres, which occupy most of the interior of the skull.

They are layered structures; the most complex being the outer layer, known as the cerebral cortex, 

where the nerve cells are extremely densely packed to allow greater interconnectivity. Interaction 

with the environment is through the visual, auditory and motion control (muscles and glands) parts 

of the cortex. 

In essence, neurons are tiny electrophysiological information-processing units which 

communicate with each other through electrical signals. The synaptic activity produces a voltage 

pulse on the dendrite which is then conducted into the soma. Each dendrite may have many synapses 

acting on it, allowing massive interconnectivity to be achieved. In the soma, the dendrite potentials 

are added. Note that neurons are able to perform more complex functions than simple addition on 

the inputs they receive, but considering a simple summation is a reasonable approximation.
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When the soma potential rises above a critical threshold, the axon will fire an electrical signal. 

This sudden burst of electrical energy along the axon is called axon potential and has the form 

of an electrical impulse or spike that lasts about 1 msec. The magnitude of the axon potential is 

constant and is not related to the electrical stimulus (soma potential). However, neurons typically 

respond to a stimulus by firing not just one but a barrage of successive axon potentials. What varies 

is the frequency of axonal activity. Neurons can fire between 0 to 1500 times per second. Thus, 

information is encoded in the nerve signals as the instantaneous frequency of axon potentials and 

the mean frequency of the signal.

A synapse pairs the axon with another cell’s dendrite. It discharges chemicals known as 

neurotransmitters, when its potential is increased enough by the axon potential. The triggering of 

the synapse may require the arrival of more than one spike. The neurotransmitters emitted by the 

synapse diffuse across the gap, chemically activating gates on the dendrites, which, on opening, 

permit the flow of charged ions. This flow of ions, changes the dendritic potential and generates 

voltage pulse on the dendrite, which is then conducted into the neuron body. At the synaptic junction, 

the number of gates that open on the dendrite is dependent on the number of neurotransmitters 

emitted. It seems that some synapses excite the dendrites they impact, while others act in a way that 

inhibits them. This results in changing the local potential of the dendrite in a positive or negative 

direction. 

Synaptic junctions alter the effectiveness with which the signal is transmitted; some synapses 

are good junctions and pass a large signal across, whilst others are very poor, and allow very little 

through. 

Essentially, each neuron receives signals from a large number of other neurons. These are the 

inputs to the neuron which are ‘weighted’. That is, some signals are stronger than others. Some 

signals excite (are positive), and others inhibit (are negative). The effects of all weighted inputs are 

summed. If the sum is equal to or greater than the threshold for the neuron, the neuron fires (gives 

output). This is an ‘all-or-nothing’ situation. Because the neuron either fires or does not fire, the rate 

of firing, not the amplitude, conveys the magnitude of information.

The ease of transmission of signals is altered by activity in the nervous system. The neural pathway 

between two neurons is susceptible to fatigue, oxygen deficiency, and agents like anesthetics. These 

events create a resistance to the passage of impulses. Other events may increase the rate of firing. 

This ability to adjust signals is a mechanism for learning.

After carrying a pulse, an axon fiber is in a condition of complete non-excitability for a specific 

time period known as the refractory period. During this interval, the nerve conducts no signals, 

irrespective of how intense the excitation is. Therefore, we could segregate the time scale into 

successive intervals, each equal to the length of the refractory period. This will permit a discrete-time 

description of the neurons’ performance in terms of their states at discrete-time instances.

5.2.2  Artificial Neuron 

Artificial neurons bear only a modest resemblance to real things. They model approximately three 

of the processes that biological neurons perform (there are at least 150 processes performed by 

neurons in the human brain). 
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An artificial neuron

 (i) evaluates the input signals, determining the strength of each one;

 (ii) calculates a total for the combined input signals and compares that total to some threshold 

level; and 

 (iii) determines what the output should be. 

Input and Outputs 

Just as there are many inputs (stimulation levels) to a biological neuron, there should be many 

input signals to our artificial neuron (AN). All of them should come to our AN simultaneously. In 

response, a biological neuron either ‘fires’ or ‘doesn’t fire’ depending upon some threshold level. 

Our AN will be allowed a single output signal, just as is present in a biological neuron: many inputs, 

one output (Fig. 5.2).

Output

Inputs

Figure 5.2  Many inputs, one output model of a neuron

Weighting Factors

Each input will be given a relative weighting, which will affect the impact of that input (Fig. 

5.3). This is something like varying synaptic strengths of the biological neurons—some inputs 

are more important than others in the way they combine to produce an impulse. Weights are 

adaptive coefficients within the network, that determine the intensity of the input signal. In fact, 

this adaptability of connection strength is precisely what provides neural networks their ability to 

learn and store information, and, consequently, is an essential element of all neuron models.
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Figure 5.3  A neuron with weighted inputs
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Excitatory and inhibitory inputs are represented simply by positive or negative connection 

weights, respectively. Positive inputs promote the firing of the neuron, while negative inputs tend 

to keep the neuron from firing. 

Mathematically, we could look at the inputs and the weights on the inputs as vectors.

The input vector 
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and the connection weight vector 

                                                                wT = [w1 w2 … wn]                           (5.1b)

The total input signal is the product of these vectors. The result is a scalar

                                                                 w xj j
T

j

N

=

=

Â w x

1

                                      (5.1c)

Activation Functions

Although most neuron models sum their input signals in basically the same manner, as described 

above, they are not all identical in terms of how they produce an output response from this input. 

Artificial neurons use an activation function, often called a transfer function, to compute their 

activation as a function of total input stimulus. Several different functions may be used as activation 

functions, and, in fact, the most distinguishing feature between existing neuron models is precisely 

which function they employ.

We will, shortly, take a closer look at the activation functions. We first build a neuron model, 

assuming that the transfer function has a threshold behavior, which is, in fact, the type of response 

exhibited by biological neurons: when the total stimulus exceeds a certain threshold value q, a 

constant output is produced, while no output is generated for input levels below the threshold. 

Figure 5.4a shows this neuron model. In this diagram, the neuron has been represented in such a 

way that the correspondence of each element with its biological counterpart may be easily seen. 

Equivalently, the threshold value can be subtracted from the weighted sum and the resulting 

value compared to zero; if the result is positive, then output a 1, else output a 0. This is shown 

in Fig. 5.4b; note that the shape of the function is the same but now the jump occurs at zero. The 

threshold effectively adds an offset to the weighted sum. 

An alternative way of achieving the same effect is to take the threshold out of the body of the 

model neuron, and connect it to an extra input value that is fixed to be ‘on’ all the time. In this 

case, rather than subtracting the threshold value from the weighted sum, the extra input of +1 is 

multiplied by a weight and added in a manner similar to other inputs—this is known as biasing the 

neuron. Figure 5.4c shows a neuron model with a bias term. Note that we have taken constant input 

‘1’ with an adaptive weight ‘w0’ in our model.
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The first formal definition of a synthetic neuron model, based on the highly simplified 

considerations of the biological neuron, was formulated by McCulloch and Pitts (1943). The 

two-port model (inputs—activation value—output mapping) of Fig. 5.4 is essentially the MP 

neuron model. It is important to look at the features of this unit—which is an important and popular 

neural network building block. 
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ŷ

ŷ
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Figure 5.4  The MP neuron model

It is a basic unit, thresholding a weighted sum of its inputs to get an output. It does not particularly 

consider the complex patterns and timings of the real nervous activity in real neural systems. It 
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does not have any of the complex characteristics existing in the body of biological neurons. It is, 

therefore, a model, and not a copy of a real neuron. 

The MP artificial neuron model involves two important processes:

 (i) Forming net activation by combining inputs. The input values are amalgamated by a weighted 

additive process to achieve the neuron activation value a (refer to Fig. 5.4c). 

 (ii) Mapping this activation value a into the neuron output ŷ . This mapping from activation to 

output may be characterized by an ‘activation’ or ‘squashing’ function.

For the activation functions that implement input-to-output compression or squashing, the range 

of the function is less than that of the domain. There is some physical basis for this desirable 

characteristic. Recall that in a biological neuron, there is a limited range of output (spiking 

frequencies). In the MP model, where DC levels replace frequencies, the squashing function serves 

to limit the output range. The squashing function shown in Fig. 5.5a limits the output values to {0, 

1}, while that in Fig. 5.5b limits the output values to {–1, 1}. The activation function of Fig. 5.5a 

is called unipolar, while that in Fig. 5.5b is called bipolar (both positive and negative responses of 

neurons are produced).

1

0 a

ŷ

1

a

ŷ

–1

(a) Unipolar squashing function (b) Bipolar squashing function

Figure 5.5

5.2.3  Mathmatical Model

From the earlier discussion, it is evident that the artificial neuron is really nothing more than a 

simple mathematical equation for calculating an output value from a set of input values. From now 

onwards, we will be more on a mathematical footing; the reference to biological similarities will 

be reduced. Therefore, names like a processing element, a unit, a node, a cell, etc., may be used for 

the neuron. A neuron model (a processing element/a unit/a node/a cell of our neural network), will 

be represented as follows:

The input vector

  x = [x1 x2 … xn]
T;

the connection weight vector

wT = [w1 w2 … wn];

the unity-input weight w0 (bias term), and the output ŷ  of the neuron are related by the following 

equation:
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where s(◊) is the activation function (transfer function) of the neuron.

The weights are always adaptive. We can simplify our diagram as in Fig. 5.6a; adaptation need 

not be specifically shown in the diagram.
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Figure 5.6  Mathematical model of a neuron (perceptron)

The bias term may be absorbed in the input vector itself as shown in Fig. 5.6b.
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In the literature, this model of an artificial neuron is also referred to as a perceptron (the name 

was given by Rosenblatt in 1958). 

The expressions for the neuron output ŷ  are referred to as the cell recall mechanism. They 

describe how the output is reconstructed from the input signals and the values of the cell parameters. 

The artificial neural systems under investigation and experimentation today, employ a variety of 

activation functions that have more diversified features than the one presented in Fig. 5.5. Below, 

we introduce the main activation functions that will be used later in this chapter.

The MP neuron model shown in Fig. 5.4 used the hard-limiting activation function. When 

artificial neurons are cascaded together in layers (discussed in the next section), it is more common 

to use a soft-limiting activation function. Figure 5.7a shows a possible bipolar soft-limiting 

semilinear activation function. This function is, more or less, the ON-OFF type, as before, but has a 

sloping region in the middle. With this smooth thresholding function, the value of the output will be 

practically 1 if the weighted sum exceeds the threshold by a huge margin and, conversely, it will be 

practically –1 if the weighted sum is much less than the threshold value. However, if the threshold 

and the weighted sum are almost the same, the output from the neuron will have a value somewhere 

between the two extremes. This means that the output from the neuron can be related to its inputs in 

a more useful and informative way. Figure 5.7b shows a unipolar soft-limiting function. 
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Figure 5.7  Soft-limiting activation functions.

For many training algorithms (discussed in later sections), the derivative of the activation 

function is needed; therefore, the activation function selected must be differentiable. The logistic 

or sigmoid function, which satisfies this requirement, is the most commonly used soft-limiting 

activation function. The sigmoid function (Fig. 5.8a):
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is continuous and varies monotonically from 0 to 1 as a varies from –• to •. The gain of the 

sigmoid, l, determines the steepness of the transition region. Note that as the gain approaches 

infinity, the sigmoid approaches a hard-limiting nonlinearity. One of the advantages of the sigmoid 

is that it is differentiable. This property had a significant impact historically, because it made it 

possible to derive a gradient search learning algorithm for networks with multiple layers (discussed 

in later sections).
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Figure 5.8

The sigmoid function is unipolar. A bipolar function with similar characteristics is a hyperbolic 

tangent (Fig. 5.8b): 
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The biological basis of these activation functions can easily be established. It is known that 

neurons located in different parts of the nervous system have different characteristics. The neurons 

of the ocular motor system have a sigmoid characteristic, while those located in the visual area 
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have a Gaussian characteristic. As we said earlier, anthropomorphism can lead to misunderstanding 

when the metaphor is carried too far. It is now a well-known result in neural network theory that a 

two-layer neural network is capable of solving any classification problem. It has also been shown 

that a two-layer network is capable of solving any nonlinear function approximation problem [3, 

83]. This result does not require the use of sigmoid nonlinearity. The proof assumes only that 

nonlinearity is a continuous, smooth, monotonically increasing function that is bounded above and 

below. Thus, numerous alternatives to sigmoid could be used, without a biological justification. In 

addition, the above result does not require that the nonlinearity be present in the second (output) 

layer. It is quite common to use linear output nodes since this tends to make learning easier. In other 

words,

                                                                     s(a) = la; l > 0      (5.6)

is used as an activation function in the output layer. Note that this function does not ‘squash’ 

(compress) the range of output.

Our focus in this chapter will be on two-layer perceptron networks with the first (hidden) layer 

having log-sigmoid 
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activation function, and the second (output) layer having linear activation function 

                                                                    s (a) = a                                          (5.8)

The log-sigmoid function has historically been a very popular choice, but since it is related to the 

tan-sigmoid by the simple transformation 

                                                          slog-sigmoid = (stan-sigmoid +1)/2                  (5.9)

both of these functions are in use in neural network models. 

We have so far described two classical neuron models:

 • perceptron—a neuron with sigmoidal activation function (sigmoidal function is a softer 

version of the original perceptron’s hard limiting or threshold activation function); and 

 • linear neuron—a neuron with linear activation function. 

5.3  NETWORK ARCHITECTURES

In the biological brain, a huge number of neurons are interconnected to form the network and 

perform advanced intelligent activities. The artificial neural network is built by neuron models. 

Many different types of artificial neural networks have been proposed, just as there are many 

theories on how biological neural processing works. We may classify the organization of the neural 

networks largely into two types: a feedforward net and a recurrent net. The feedforward net has a 

hierarchical structure that consists of several layers, without interconnection between neurons in 

each layer, and signals flow from input to output layer in one direction. In the recurrent net, multiple 
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neurons in a layer are interconnected to organize the network. In the following, we give typical 

characteristics of the feedforward net and the recurrent net, respectively.

5.3.1  Feedforward Networks

A feedforward network consists of a set of input terminals which feed the input patterns to a layer 

or subgroup of neurons. The layer of neurons makes independent computations on data that it 

receives, and passes the results to another layer. The next layer may, in turn, make its independent 

computations and pass on the results to yet another layer. Finally, a subgroup of one or more 

neurons determines the output from the network. This last layer of the network is the output layer. 

The layers that are placed between the input terminals and the output layer are called hidden layers.

Some authors refer to the input terminals as the input layer of the network. We do not use 

that convention since we wish to avoid ambiguity. Note that each neuron in a network makes its 

computation based on the weighted sum of its inputs. There is one exception to this rule: the role of 

the ‘input layer’ is somewhat different as units in this layer are used only to hold input data, and to 

distribute the data to units in the next layer. Thus, the ‘input layer’ units perform no function—other 

than serving as a buffer, fanning out the inputs to the next layer. These units do not perform any 

computation on the input data, and their weights, strictly speaking, do not exist.

The network outputs are generated from the output layer units. The output layer makes the 

network information available to the outside world. The hidden layers are internal to the network 

and have no direct contact with the external environment. There may be from zero to several hidden 

layers. The network is said to be fully connected if every output from a single node is channeled to 

every node in the next layer. 

The number of input and output nodes needed for a network will depend on the nature of the 

data presented to the network, and the type of the output desired from it, respectively. The number 

of neurons to use in a hidden layer, and the number of hidden layers required for processing a task, 

is less obvious. Further comments on this question will appear later.

A Layer of Neurons 

A one-layer network with n inputs and M neurons is shown if Fig. 5.9. In the network, each input xj; 

j = 1, 2, …, n is connected to the qth neuron input through the weight wqj; q = 1, 2, …, M. The qth 

neuron has a summer that gathers its weighted inputs to form its own scalar output 
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wqj xj + wq0; q = 1, 2, …, M

Finally, the qth neuron outputs ŷq  through its activation function s (◊): 

                                       ŷ w x wq qj j q

j

n

= +
Ê

Ë
Á

ˆ

¯
˜

=
Âs

0

1

; q = 1, 2, …, M              (5.10a)

                                           = s (wT
q x + wq0); q = 1, 2, …, M              (5.10b)

where weight vector wq is defined as, 

                                                             wT
q = [wq1 wq2 … wqn]                          (5.10c)
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Figure 5.9  A one-layer network

Note that it is common for the number of inputs to be different from the number of neurons 

(i.e., n π M). A layer is not constrained to have the number of its inputs equal to the number of its 

neurons. 

The layer shown in Fig. 5.9 has M ¥ 1 output vector
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n ¥ 1 input vector 
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                          (5.11b)
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M ¥ n weight matrix
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and M ¥ 1 bias vector 
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Note that the row indices on the elements of matrix W indicate the destination neuron for the 

weight, and the column indices indicate which source is the input for that weight. Thus, the index 

wqj says that the signal from jth input is connected to the qth neuron. 

The activation vector is, 

                                                   Wx + w0 = 

w x

w x
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The outputs are, 

                                                            ˆ ( )y w
T

1 1 10= +s w x

                                                            ˆ ( )y w
T

2 2 20= +s w x                            (5.11f)

                                                                   �

                                                           ˆ ( )y wM M
T

M= +s w x 0

The input-output mapping is of the feedforward and instantaneous type since it involves no time 

delay between the input x and the output ŷ.

Consider a neural network with a single output node. For a dataset with n attributes, the output 

node receives x1, x2, …, xn, takes a weighted sum of these and applies the s (◊) function. The output 

of the neural network is therefore s w x wj j

j

n

+
Ê

Ë
Á

ˆ

¯
˜

=
Â 0

1

. 

First consider a numerical output y (i.e., y Œ¬). If s (◊) is a linear activation function (Eqn (5.8)), 

the output is simply
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ŷ w x wj j

j

n

= +

=

Â 0

1

This is exactly equivalent to the formulation of linear regression given earlier in Section 3.6 

(refer to Eqn (3.70)). 

Now consider binary output variable y. If s (◊) is log-sigmoid function (Eqn (5.7a)), the output 

is simply

ˆ

exp

y

w x wj j
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1 0

1

                                                         = 
1

1 1 1 2 2 0
+

- + + + +

e
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n n
( )�

which is equivalent to logistic regression formulation given in Section 3.7 (refer to Eqn (3.84)). 

Note that here ŷ  takes continuous values in the interval {0, 1} and represents the probability of 

belonging to Class q, i.e., ŷ  = P(Class 1|x), and P(Class 2|x) = 1 – ŷ . 

In both cases, although the neural network models are equivalent to the linear and logistic 

regression models, the resulting estimates for the weights in neural network models will be different 

from those in linear and logistic regression. This is because the estimation methods are different. As 

we will shortly see, the neural network estimation method is different from maximum likelihood 

method used in logistic regression, and may be different from least-squares method used in linear 

regression.

We will use multiple output nodes ŷq ; q = 1, …, M, for multiclass discrimination problems 

(detailed in Section 5.8). For regression (function approximation) problems, multiple output nodes 

correspond to multiple response variables we are interested in for numeric prediction. In this case, 

a number of regression problems are learned at the same time. An alternative is to train separate 

networks for separate regression problems (with one output node). In this chapter, we will focus on 

this alternative approach. Our focus is justified on the ground that in many real-life applications, we 

are interested in only one response variable, i.e., scalar output variable. 

Multi-Layer Perceptrons

Neural networks normally have at least two layers of neurons, with the first layer neurons having 

nonlinear and differentiable activation functions. Such networks, as we will see, can approximate 

any nonlinear function. In real life, we are faced with nonlinear problems, and multilayer neural 

network structures have the capability of providing solutions to these problems. 

Figure 5.10 shows a two-layer NN, with n inputs and two layers of neurons. The first of these 

layers has m neurons feeding into the second layer possessing M neurons. The first layer or the hidden 

layer, has m hidden-layer neurons; the second or the output layer, has M output-layer neurons. It is 

not uncommon for different layers to have different numbers of neurons. The outputs of the hidden 

layer are inputs to the following layer (output layer); and the network is fully connected. Neural 
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networks possessing several layers are known as Multi-Layer Perceptrons (MLP); their computing 

power is meaningfully improved over the one-layer NN.

All continuous functions, which display certain smoothness, can be approximated to any desired 

accuracy with a network of one hidden layer of sigmoidal hidden units, and a layer of linear output 

units [83]. Does this mean that it is not required to employ more than one hidden layer and/or mix 

different kinds of activation functions? In fact, the accuracy may be enhanced with the help of 

network architectures with more hidden layers/mixing activation functions. Especially when the 

mapping to be learned is highly complicated, there is a likelihood of performance improvement. 

However, as the implementation and training of the network become increasingly complex with 

sophisticated network architectures, it is normal to apply only a single hidden layer of similar 

activation functions, and an output layer of linear units. We will focus on two-layer feedforward 

neural networks with sigmoidal/hyperbolic tangent hidden units and linear output units for function 

approximation problems. For classification problems, the linear output units will be replaced with 

sigmoidal units. These are widely used network architectures, and work very well in many practical 

applications. 
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Figure 5.10  A two-layer network

Defining the input terminals as xj; j = 1, …, n; and the hidder-layer outputs as zl, allows one to 

write 

                                             zl = s w x wlj j l

j

n

+
Ê

Ë
Á

ˆ

¯
˜

=
Â 0

1

; l = 1, 2, …, m              

(5.12a)

                                                = s (wl
Tx + wl0)

where 

                                          wl
T � [wl1 wl2 … wln] 

are the weights connecting input terminals to hidden layer. 
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Defining the output-layer nodes as ŷq , one may write the NN output as, 

                                             ŷ v vq ql l q

l

m

= +
Ê

Ë
Á

ˆ

¯
˜

=
Â z 0

1

; q = 1, …, M             

(5.12b)

                                                  = vT
q z + vq0

where 

                                            vT
q  � [vq1 vq2 … vqm] 

are the weights connecting hidden layer to output layer.

For the multiclass discrimination problems, our focus will be on two-layer feedforward neural 

networks with sigmoidal/hyperbolic tangent hidden units (outputs of hidden units given by (5.12a)), 

and sigmoidal output units. The NN output of this multilayer structure may be written as, 

                                                    ŷ v vq ql l q

l

m

= +
Ê

Ë
Á

ˆ

¯
˜

=
Âs z

0

1

; q = 1, …, M                         (5.12c)

The inputs to the output-layer units (refer to Eqns (5.12b)-(5.12c)) are the nonlinear basis 

function values zl; l = 1, …, m, computed by the hidden units. It can be said that the hidden units 

make a nonlinear transformation from the n-dimensional input space to the m-dimensional space 

spanned by the hidden units and in this space, the output layer implements a linear/logistic function. 

5.3.2  Recurrent Networks 

The feedforward networks (Figs 5.9–5.10) implement fixed-weight mappings from the input 

space to the output space. Because the networks have fixed weights, the state of any neuron is 

solely determined by the input to the unit, and not the initial and past states of the neurons. This 

independence of initial and past states of the network neurons limits the use of such networks 

because no dynamics are involved. The maps implemented by the feedforward networks of the type 

shown in Figs 5.9–5.10, are static maps. 

To allow initial and past state involvement along with serial processing, recurrent neural 

networks utilize feedback. Recurrent neural networks are also characterized by use of nonlinear 

processing units; thus, such networks are nonlinear dynamic systems (Networks of the form shown 

in Figs 5.9–5.10 are nonlinear static systems).

The architectural layout of a recurrent network takes diverse forms. Feedback may come from 

the output neurons of a feedforward network to the input terminals. Feedback may also come from 

the hidden neurons of the network to the input terminals. In case the feedforward network possesses 

two or more hidden layers, the likely forms of feedback expand further. Recurrent networks possess 

a rich collection of architectural layouts. 

It often turns out that several real-world problems, which are thought to be solvable only through 

recurrent architectures, are solvable with feedforward architectures also. A multilayer feedforward 

network, which realizes a static map, is capable of representing the input/output behavior of a 

dynamic system. To make this possible, the neural network has to be provided with information 
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regarding the system history—delayed inputs and outputs (refer to Section 1.4.1). The amount 

of history required is dependent on the level of accuracy sought, and the resulting computational 

complexity. Large number of inputs increase the number of weights in the network that may result 

in higher accuracy, but then it may significantly increase the training time. Trial-and-error on the 

number of inputs, as well as the network structures, is the search process as in other machine 

learning systems (Later sections will give more details).

From several practical applications published over the past decade, there seems to be considerable 

evidence that multilayer feedforward networks have an extraordinary capability to do quite well in 

most cases. 

We will focus on two-layer feedforward neural networks with sigmoidal or hyperbolic tangent 

hidden units and linear/sigmoidal output units. This, in all likelihood,  is the most popular network 

architecture as it works well in many practical applications.

The rest of this chapter is organized as follows: We first consider principles of design for the 

primitive units that make up artificial neural networks (perceptrons, linear units, and sigmoid units), 

along with learning algorithms for training single units. We then present the BACKPROPAGATION 

algorithm for training multilayer networks of such units, and several general issues related to the 

algorithm. We conclude the chapter with our discussion on RBF networks.  

5.4  PERCEPTRONS 

Classical NN systems are based on units called PERCEPTRON and ADALINE (ADAptive 

Linear Element). Perceptron was developed in 1958 by Frank Rosenblatt, a researcher in neuro-

physiology, to perform a kind of pattern recognition tasks. In mathematical terms, it resulted from 

the solution of classification problem. ADALINE was developed by Bernard Widrow and Marcian 

Hoff; it originated from the field of signal processing, or more specifically from the adaptive noise 

cancellation problem. It resulted from the solution of the regression problem; the regressor having 

the properties of noise canceller (linear filter). 

The perceptron takes a vector of real-valued inputs, calculates a linear combination of these 

inputs; then outputs +1 if the result is greater than the threshold and –1 otherwise (refer to Fig. 4.2). 

The ADALINE in its early stage consisted of a neuron with a linear activation function (Eqn 

5.8), a hard limiter (a thresholding device with a signum activation function) and the Least Mean 

Square (LMS) learning algorithm. We focus on the two most important parts of ADALINE—its 

linear activation function and the LMS learning rule. The hard limiter is omitted, not because it is 

irrelevant, but for being of lesser importance to the problems to be solved. The words ADALINE 

and linear neuron are both used here for a neural processing unit with a linear activation function 

and a corresponding learning rule (not necessarily LMS). 

The roots of both the perceptron and the ADALINE were in the linear domain. However, in real 

life, we are faced with nonlinear problems, and the perceptron was superseded by more sophisticated 

and powerful neuron and neural network structures (multilayer neural networks). What is the type 

of unit to be used to construct multilayer networks? Firstly, we may be encouraged to select the 

linear units. But, multiple layers of cascaded linear units still produce only linear functions, and 

we prefer networks capable of representing highly nonlinear functions. Another likely selection 
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could be perceptron unit. However, because of its discontinuous threshold, it is not differentiable, 

and therefore, not suited to the gradient descent approach for optimizing the performance criterion. 

What is required  is a unit with output , which is a nonlinear function of its inputs—an output 

which is also a differentiable function of its inputs. One solution is the sigmoid unit, a unit similar 

to perceptron, but based on a smoothened, differentiable threshold function (Fig. 5.8; Eqns (5.7)). 

These activation functions are nothing but softer versions of original perceptron’s hard-limiting 

threshold functions. In literature, these softer versions are also referred to as perceptrons, and the 

multilayer neural networks are also referred to as Multi-Layer Perceptron (MLP) Networks.  

In the following, we discuss principles of perceptron learning for classification tasks. The next 

section gives the principles for linear-neuron learning. There after principles of ‘soft’ perceptron 

(sigmoid unit) learning will be presented. 

5.4.1  Limitations of Perceptron Algorithm for Linear Classification Tasks 

The roots of the Rosenblatt’s perceptron were in the linear domain. It was developed as the simplest 

yet powerful classifier providing the linear separability of class patterns or examples. In Section 

4.3, we have presented a detailed account of perceptron algorithm. It was observed that there is a 

major problem associated with this algorithm for real-world solutions: datasets are almost certainly 

not linearly separable, while the algorithm finds a separating hyperplane only for linearly separable 

data. When the dataset is linearly inseparable, the test of the decision surface will always fail 

for some subset of training points regardless of the adjustments we make to the free parameters, 

and the algorithm will loop forever. So, an upperbound needs to be imposed on the number of 

iterations. Thus, when perceptron algorithm is applied in practice, we have to live with the errors—

true outputs will not always be equal to the desired ones. 

History has proved that limitations of Rosenblatt’s perceptron can be overcome by neural 

networks. The perceptron criterion function is based on misclassification error (number of samples 

misclassified) and the gradient procedures for minimization are not applicable. The neural networks 

primarily solve the regression problems, are based on minimum squared-error criterion (Eqn 

(3.71)) and employ gradient procedures for minimization. The algorithms for separable—as well 

as inseparable—data classification are first developed in the context of regression problems and 

then adapted for classification problems. Some methods for minimization of squared-error criterion 

were discussed in Section 3.6; the gradient procedures will be discussed in the present chapter. 

5.4.2  Linear Classification using Regression Techniques 

In the following, we present basic concepts of linear classification using regression techniques 

employing classical hard-limiting perceptrons.

In real-life, we are faced with nonlinear classification problems. The perceptron was superseded 

by more sophisticated and powerful neuron and neural network structures. A popular network 

used today—the multilayer network, has hidden layers of neurons with sigmoidal activations 

(discussed in later sections). These activation functions are nothing but softer versions of original 

perceptron’s hard-limiting threshold functions. In literature, these softer versions are also referred 

to as perceptrons. Using a Multi-Layer Perceptron (MLP) network for nonlinear classification is not 

radically different; it directly follows from the concepts for linear classification discussed below.
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The regression techniques discussed in Section 3.6, and also later in this chapter, can be used for 

linear classification with a careful choice of the target values associated with classes. Let the set of 

training (data) examples D be 

                                          D = {xj
(i), y(i)}; i = 1, …, N; j = 1, …, n                

(5.13)

                                              = {x(i), y(i)} 

where x(i) = [x1
(i) x2

(i) … xn
(i)]T is an n-dimensional input vector (pattern with n-features) for the ith 

example in a real-valued space; y(i) is its class label (output value), and y(i) Œ [+1, –1], +1 denotes 

Class 1 and –1 denotes Class 2. To build a linear classifier, we need a linear function of the form

                                                             g(x) = wTx + w0                (5.14)

so that the input vector x(i) is assigned to Class 1 if g(x(i)) > 0, and to Class 2 if g(x(i)) < 0, i.e., 
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w = [w1 w2 …wn]
T is the weight vector and w0 is the bias. In terms of regression, we can view this 

classification problem as follows.

Given a vector x(i), the output of the summing unit (linear combiner) will be wTx(i) + w0 (decision 

hyperplane) and thresholding the output through a sgn function gives us perceptron output ˆ( )
y

i
 = 

± 1 (refer to Fig. 5.11).
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Figure 5.11  Linear classification using regression technique

The sum of error squares for the classifier becomes (Eqns (3.71))

                                           E = ( )( )
e
i

i

N

i

N

2

11

=

==

ÂÂ ( y(i) – ˆ( )
y

i )2               (5.16)

We require E to be a function of (w, w0) to design the linear function g(x) = wTx + w0 that 

minimizes E. To obtain E(w, w0), we replace the perceptron outputs ˆ
( )

y
i

 by the linear combiner 

outputs wTx(i) + w0; this gives us the error function 

                                             E(w, w0) = 
i

N

=

Â
1

(y(i) – (wTx(i) + w0))
2                (5.17)
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Consider pattern i. If x(i) Œ Class 1, the desired output y(i) = +1 with summing unit output wTx(i) 

+ w0 > 0 ( ˆ( )
y

i
 = +1, refer to Fig. 5.11), the contribution of correctly classified pattern i to E(w, w0) 

is small when compared with wrongly classified pattern (wTx(i) + w0 < 0; ˆ( )
y

i
 = –1).

The error function E(w, w0) in Eqn (5.17), is a continuous, differentiable function; therefore, 

gradient descent approach (discussed later in this sub-section) for minimization of E(w, w0) will be 

applicable. The training algorithm based on this E(w, w0) can be seen as the training algorithm of 

a linear neuron without the nonlinear (signum) activation function. Nonlinearity is ignored during 

training; after training and once the weights have been fixed, the model is the perceptron model 

with the hard limiter following the linear combiner.

 • If the unthresholded output wTx(i) + w0 can be trained to fit the desired values y(i) = ±1 in a 

perfect way, then the thresholded output will fit them as well (because sgn (1) = 1 and sgn 

(– 1) = –1). Even when the target values cannot fit perfectly in the unthresholded case, the 

thresholded value will correctly fit the ±1 target value whenever the unthresholded output has 

the correct sign. Note, however, that while gradient descent procedure will learn weights that 

minimize the error in the unthresholded output, these weights will not necessarily minimize 

the number of training examples misclassified by the thresholded output.

 • The perceptron training rule (Section 4.3) converges after a finite number of iterations to 

a weight vector that perfectly classifies the training data provided the training examples 

are linearly separable. The gradient descent rule converges only asymptotically toward the 

minimum-error weight vector, possibly requiring unbounded time, but converges regardless 

of whether the training data is linearly separable or not.

5.4.3  Standard Gradient Descent Optimization Scheme: Steepest Descent

Gradient descent serves as the basis for learning algorithms that search the hypothesis space 

of possible weight vectors to find the weights that best fit the training examples. The gradient 

descent training rule for a single neuron is important because it provides the basis for the 

BACKPROPAGATION algorithm, which can learn networks with many interconnected units. 

For linear classification using regression techniques, the task is to train unthresholed perceptron 

(it corresponds to the first stage of perceptron, without the threshold; Fig. 5.11) for which the output 

is given by 

                                                    g(x) = 
j

n

=

Â
1

wj xj + w0 = wTx + w0                (5.18)

Let us define a single weight vector w  for the weights (w, w0):

                                                           wT  = [w0 w1 w2 … wn]
T                (5.19)

In terms of the weight vector w , the output 

                                                            g(x) = w x
T

                           (5.20a)

where 

                                                        x
T

 = [x0 x1 x2 … xn]
T; x0 = 1              (5.20b)
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The unthresholded output w x
T i( )

 is to be trained to fit the desired values y(i) minimizing the error 

(Eqn (5.17)) 
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   (5.21)

This error function is a continuous, differentiable function; therefore, gradient descent approach 

for minimization of E ( )w  will be applicable (the constant 
1

2
 is used for computational convenience 

only; it gets cancelled out by the differentiation required in the error minimization process).

To understand the gradient descent algorithm, it is helpful to visualize the error space of possible 

weight vectors and the associated values of the performance criterion (cost function E). For the 

unthresholded unit (a linear weighted combination of inputs), the error surface is parabolic with 

a single global minimum. The specific parabola will depend, of course, on the particular set of 

training examples.

How can we calculate the direction of steepest descent along the error surface? This direction 

can be found by computing the derivative of E with respect to each component of the vector w. This 

vector-derivative is called the gradient of E with respect to w, written —E ( )w .
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When interpreted as a vector in weight space, the gradient specifies the direction that produces 

the steepest increase in E. The negative of this vector, therefore, gives the direction of steepest 

decrease. Therefore, the training rule for gradient descent is, 

                                                                   w w w¨ + D               (5.23a)

where

                                                                 Dw w= - —h E ( )                           (5.23b)

Here h is a positive constant (less than one), called the learning rate which determines the step 

size in the gradient descent search. This training rule can also be written in its component form: 

                                            wj ¨ wj + Dwj; j = 0, 1, 2, …, n                          (5.24a)

where 

                                           Dwj = -
∂

∂
h

E

wj

                          (5.24b)

which shows that steepest descent is achieved by altering each component wj of w  in proportion 

to 
∂

∂

E

wj

. 

Gradient descent search helps determine a weight vector that minimizes E by starting with an 

arbitrary initial weight vector and then altering it again and again in small steps. At each step, the 

weight vector is changed in the direction producing the steepest descent along the error surface. 

The process goes on till the global minimum error is attained.  

To build a practical algorithm for repeated updation of weight according to (5.24), we require an 

effective technique to calculate the gradient at each step. Luckily, this is quite easy. The gradient 

with respect to weight wj; j = 1, …, n, can be obtained by differentiating E from Eqn (5.21) as, 
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Therefore, the weight update rule for gradient descent becomes 

                             wj ¨ wj + h 
i

N
i

j j
i

j

n

j
i

y w x w x
= =
Â Â- +

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á

ˆ

¯
˜

1

0

1

( ) ( ) ( )   (5.25a) 

                            w0 ¨ w0 + h 
i

N
i

j j
i

j

n

y w x w
= =
Â Â- +

Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
Á

ˆ

¯
˜

1

0

1

( ) ( )
              (5.25b)

An epoch is a complete run through all the N associated pairs. Once an epoch is completed, the 

pair (x(1), y(1)) is presented again and a run is performed through all the pairs again. After several 

epochs, the ouput error is expected to be sufficiently small.

The iteration index k corresponds to the number of times the set of N pairs is presented and 

cumulative error is compounded. That is, k corresponds to the epoch number.
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In terms of iteration index k, the weight update equations are 
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5.5  LINEAR NEURON AND THE WIDROW-HOFF LEARNING RULE

The perceptron (‘softer’ version; sigmoid unit) has been a fundamental building block in the 

present-day neural models. Another important building block has been ADALINE (ADAptive 

LINear Element), developed by Bernard Widrow and Marcian Hoff in 1959. It originated from 

the field of signal processing, or more specifically, from the adaptive noise cancellation problem. 

It resulted from the solution of regression problem; the regressor having the properties of noise 

canceller (linear filter). All its power in linear domain is still in full service, and despite being a 

simple neuron, it is present (without a thresholding device) in almost all the neural models for 

regression functions. The words ADALINE and linear neuron are both used here for a neural 

processing unit with a linear activation function shown in Fig. 5.12a. The neuron labeled with 

summation sign only (Fig. 5.12b) is equivalent to linear neuron of Fig. 5.12a. 
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Figure 5.12  Neural processing unit with a linear activation function

In the last section, we have discussed gradient descent optimization scheme to determine the 

optimum setting of the weights (w, w0) that minimize the criterion function given by Eqn (5.21). 

Note that this ‘sum of error squares’ criterion function is deterministic and the gradient descent 
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scheme gives a deterministic algorithm for minimization of this function. Now we explore a digress 

from this criterion function. Consider the problem of computing weights (w, w0) so as to minimize 

Mean Square Error (MSE) between desired and true outputs, defined as follows.

                                           E(w, w0) =  E 
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where E is the statistical expectation operator. 

The solution to this problem requires the computation of autocorrelation matrix E[x xT] of the 

set of feature vectors, and cross-correlation matrix E[xy] between the desired response and the 

feature vector. This presupposes knowledge of the underlying distributions, which, in general, is 

not known. Thus, our major goal becomes to see if it is possible to solve this optimization problem 

without having this statistical information. 

The Least Mean Square (LMS) algorithm, originally formulated by Widrow and Hoff, is a 

stochastic gradient algorithm that iterates weights (w, w0) in the regressor after each presentation 

of data sample, unlike the standard gradient descent that iterates weights after presentation of the 

whole training dataset. That is, the kth iteration in standard gradient descent means the kth epoch, or 

the kth presentation of the whole training dataset, while kth iteration in stochastic gradient descent 

means the presentation of kth single training data pair (drawn in sequence or randomly). Thus, the 

calculation of the weight change Dw  or the gradient needed for this, is pattern-based, not epoch-

based (Dw = –h —E( )w ; Eqn (5.23b)).

LMS is called a stochastic gradient algorithm because the gradient vector is chosen at ‘random’ 

and not, as in steepest descent case, precisely derived from the shape of the total error surface. 

Random means here the instantaneous value of the gradient. This is then used as the estimator of 

the true quantity.

The design of the LMS algorithm is very simple, yet a detailed analysis of its convergence 

behavior is a challenging mathematical task. It turns out that under mild conditions, the solution 

provided by the LMS algorithm converges in probability to the solution of the sum-of-error-squares 

optimization problem. 

5.5.1  Stochastic Gradient Descent 

While the standard gradient descent training rule of Eqn (5.26) calculates weight updates after 

summing errors over all the training examples in the given dataset D ; the concept behind stochastic 

gradient descent is to approximate this gradient descent search by updating weights incrementally, 

following the calculation of the error for each individual example. This modified training rule is 

like the training rule given by Eqns (5.26) except that as we iterate through each training example, 

we update the weights according to the gradient with respect to the distinct error function,

                                                  E(k) = 
1

2
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2
[e (k)]2 (5.28a)
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where k is the iteration index. Note that the input components xj
(i) and the desired output y(i) are 

not functions of the iteration index. Training pairs (x(i), y(i)), drawn in sequence or randomly, are 

presented to the network at each iteration. The gradients with respect to weights and bias are 

computed as follows:
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The stochastic gradient descent algorithm becomes,

                                         wj(k + 1) = wj(k) + h e(k) xj
(i)                          (5.29a)

                                        w0(k + 1) = w0(k) + h e(k)                                      (5.29b)

In terms of vectors, this algorithm may be expressed as,

                                         w(k + 1) = w(k) + h e(k) x(i)                          (5.30a)

                                        w0(k + 1) = w0(k) + h e(k)                                      (5.30b)

Stochastic gradient training algorithm iterates over the training examples i = 1, 2, …, N (drawn 

in sequence or randomly); at each iteration, altering weights as per the above equations. The 

sequence of these weight updates, iterated over all the training examples, gives rise to reasonable 

approximation to the gradient with respect to the entire set of training data. By making the values of 

h small enough, stochastic gradient descent can be made to approximate standard gradient descent 

(steepest descent) arbitrarily closely. 

At each presentation of data (x(i), y(i)), one step of training algorithm is performed which updates 

both the weights and the bias. Note that teaching the network one fact at a time from one data pair, 

does not work. All the weights and the bias set so meticulously for one fact, could be drastically 

altered in learning the next fact. The network has to learn everything together, finding the best 

weights and bias settings for the total set of facts. Therefore, with incremental learning, the training 

should stop only after an epoch has been completed. 

5.6  THE ERROR-CORRECTION DELTA RULE 

In this section, gradient descent strategy for adapting weights for a single neuron having 

differentiable activation function is demonstrated. This will just be a small (nonlinear) deviation 

from the derivation of adaptive rule for the linear activation function, given in the previous section. 

Including this small deviation will be a natural step for deriving gradient-descent based algorithm 

for multilayer neural networks (in the next section, we will derive this algorithm). 

A neural unit with any differentiable function s (a) is shown in Fig. 5.13. It first computes a 

linear combination of its inputs (activation value a); then applies nonlinear activation function s (a) 
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to the result. The output ŷ  of nonlinear unit is a continuous function of its input a. More precisely, 

the nonlinear unit computes its output as, 

                                                            ŷ  = s (a)                          (5.31a)
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Figure 5.13  Neural unit with any differentiable activation function

The problem is to find the expression for the learning rule for adapting weights using a training 

set of pairs of input and output patterns; the learning is in stochastic gradient descent mode, as in 

the last section. We begin by defining error function E(k):

                                                   E(k) = 1
2
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2
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i

j

n

( ) ( )( ) +
Ê

Ë
Á

ˆ

¯
˜

=
Â 0

1

                  (5.32c)

For each training example i, weights wj; j = 1, …, n (and bias w0) are updated by adding to it Dwj 

(and Dw0). 
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Note that E(k) is a nonlinear function of the weights now, and the gradient cannot be calculated 

following the equations derived in the last section for a linear neuron. Fortunately, the calculation 

of the gradient is straight forward in the nonlinear case as well. For this purpose, the chain rule is, 
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where the first term on the right-hand side is a measure of an error change due to the activation 

value a(k) at the kth iteration, and the second term shows the influence of the weights on that 

particular activation value a(k). Applying the chain rule again, we get, 
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The learning rule can be written as, 

                                        wj(k + 1) = wj(k) + h e(k) s ¢(a(k)) xj
(i)              (5.36a)

                                       w0(k + 1) = w0(k) + h e(k) s ¢(a(k))                          (5.36b)

This is the most general learning rule that is valid for a single neuron having any nonlinear and 

differentiable activation function and whose input is formed as a product of the pattern and weight 

vectors. It follows the LMS algorithm for a linear neuron presented in the last section, which was 

an early powerful strategy for adapting weights using data pairs only.

This rule is also known as delta learning rule with delta defined as, 

                                                           d(k) = e(k) s ¢(a(k)) 

                                                                  = (y(i) – ŷ(k)) s ¢(a(k))                           (5.37)

In terms of d (k), the weights-update equations become 

                                                   wj(k + 1) = wj(k) + h d (k) xj
(i)              (5.38a)

                                                  w0(k + 1) = w0(k) + h d(k)                          (5.38b)

It should be carefully noted that the d(k) in these equations is not the error but the error change 
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Thus, d(k) will generally not be equal to the error e(k). We will use the term error signal for d(k), 

keeping in mind that, in fact, it represents the error change.

In the world of neural computing, the error signal d(k) is of highest importance. After a hiatus 

in the development of learning rules for multilayer networks for about 20 years, the adaptation rule 

based on delta rule made a breakthrough in 1986 and was named the generalized delta learning 

rule. Today, the rule is also known as the error backpropagation learning rule (discussed in the 

next section). 
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Interestingly, for a linear activation function (Fig. 5.12),

s (a(k)) = a(k)

Therefore,

                                                            s ¢(a(k)) = 1

and 

                                                                  d (k) = e(k) s ¢(a(k)) = e(k)                (5.40)

That is, delta represents the error itself. Therefore, the delta rule for a linear neuron is same as 

the LMS learning rule presented in the previous section.

5.6.1  Sigmoid Unit: Soft-Limiting Perceptron

In the neural unit of Fig. 5.13, any nonlinear, smooth, differentiable, and preferably nondecreasing 

function can be used. The requirement for the activation function to be differentiable is basic for 

the error backpropagation algorithm. On the other hand, the requirement that a nonlinear activation 

function should monotonically increase is not so strong, and it is connected with the desirable 

property that its derivative does not change the sign. 

The activation functions that are most commonly used in multilayer neural networks are the 

squashing sigmoidal functions. The sigmoidal unit is very much like a perceptron, but is based on 

smoothed differentiable threshold function.

The neural unit shown in Fig. 5.13 becomes a sigmoidal unit when s (◊) represents the sigmoidal 

nonlinearity illustrated in Fig. 5.8. The sigmoidal unit first computes a linear combination of its 

inputs (activation value a), and then applies a threshold to the result. The thresholded output ŷ  = 

s (a) is a continuous function of its input. More precisely, the sigmoid unit computes its output as, 

 ŷ  = s (a)                          (5.41a)
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Because a sigmoid unit maps a very large input down to a small range outputs, it is often referred 

to as squashing function. 

The most common squashing sigmoidal functions are unipolar logistic function (Fig. 5.8a, Eqn 

(5.7a)) and the bipolar sigmoidal function (related to a tangent hyperbolic; Fig. 5.8b, Eqn (5.7b)). 

The unipolar logistic function, henceforth referred to as log-sigmoid, squashes the inputs to outputs 

between 0 and 1, while the bipolar function, henceforth referred to as tan-sigmoid, squashes the 

inputs to the outputs between –1 and +1.
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Sigmoidal unit has the useful property that its derivative is easily expressed in terms of its output:
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Tan-sigmoid
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As we shall see, the gradient descent learning makes use of these derivatives.

The most general learning rule that is valid for a single neuron having any nonlinear and 

differentiable activation function is given by Eqns(5.37–5.38). For the specific case of sigmoidal 

(log-sigmoid) nonlinearity, we have, 

                                           s¢(a(k)) = 
d

da k( )
s(a(k)) = s(a(k)) [1 – s(a(k))]

                                                        = ŷ(k)[1 – ŷ(k)]

Therefore, 

                                                 d(k) = e(k) s¢(a(k)) = (y(i) – ŷ(k)) ŷ(k) [1 – ŷ(k)] 

The weight-update equations become, 

                                       wj(k + 1) = wj(k) + h d(k) xj
(i)                         (5.45a)

                                      w0(k + 1) = w0(k) + h d(k)                                     (5.45b)

                                              d(k) = [y(i) – ŷ(k)] ŷ(k) [1 – ŷ(k)]                         (5.45c)

We construct multilayer networks using sigmoid units (next section will describe commonly used 

structures). Initially we may be tempted to select the linear units discussed earlier. But, multiple 

layers of cascaded linear units continue to produce only linear functions and we favor networks 

possessing the ability to represent highly nonlinear functions. The (hard-limiting) perceptron unit 

is another likely selection, but its discontinuous threshold makes it undifferentiable and therefore, 
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not suited for gradient descent. We require a unit whose output is a nonlinear function of its inputs, 

but whose output is also a differentiable function of its inputs. There are many possible choices 

satisfying these requirements; sigmoid unit is the most popular choice. 

5.7  MULTI-LAYER PERCEPTRON (MLP) NETWORKS AND THE 

ERROR-BACKPROPAGATION ALGORITHM

As noted in previous sections, single (hard-limiting) perceptron can only express linear decision 

surfaces, and single linear neuron can only approximate linear functions. In contrast, MLP networks 

trained by the backpropagation algorithm are capable of expressing a rich variety of nonlinear 

decision surfaces/approximating nonlinear functions. This section discusses how to learn such MLP 

networks using gradient descent algorithms similar to the ones described in previous sections. The 

backpropagation algorithm learns the weights for an MLP network, given a network with a fixed set 

of units and interconnections. It employs gradient descent to attempt to minimize the squared error 

between the network outputs and the target values for these outputs. 

A typical feedforward neural network is made up of a hierarchy of layers, and the neurons in 

the network are arranged along these layers. The external environment is connected to the network 

through input terminals, and the output-layer neurons. To build an artificial neural network, we 

must first decide how many layers of neurons are to be used and how many neurons in each layer. In 

other words, we must first choose the network architecture. The number of input terminals, and the 

number of output nodes in output layer depend on the nature of the data presented to the network, 

and the type of the output desired from it, respectively. For scalar-output applications, the network 

has a single output unit, while for vector-output applications, it has multiple output units. 

A multi-layer perceptron (MLP) network is a feedforward neural network with one or more 

hidden layers. Each hidden layer has its own specific function. Input terminals accept input signals 

from the outside world and redistribute these signals to all neurons in a hidden layer. The output 

layer accepts a stimulus pattern from a hidden layer and establishes the output pattern of the entire 

network. Neurons in the hidden layers perform transformation of input attributes; the weights of 

the neurons represent the features in the transformed domain. These features are then used by 

the output layer in determining the output pattern. A hidden layer ‘hides’ its desired output. The 

training data provides the desired output of the network; that is, the desired outputs of output layer. 

There is no obvious way to know what the desired outputs of the hidden layers should be.

The derivation of error-backpropagation algorithm will be given here for two MLP structures 

shown in Figs 5.14 and 5.15. The functions so(◊)/soq(◊) are the linear/log-sigmoid activation 

functions of the output layer, and the functions shl(◊) are the activation functions of the hidden 

layer (log-sigmoid or tan-sigmoid). These structures have one hidden layer only. Though more than 

one hidden layer in the network may provide some advantage for approximating some complex 

nonlinear functions (more on this in a later section), most of the practical MLP networks use one 

hidden layer of sigmoidal units.

We begin by considering network structure of Fig. 5.15 with log-sigmoid activation functions in 

the output layer. The results for structure of Fig. 5.14 with one linear output node will then easily 

follow. 
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1ŷ

2ŷ
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When x is fed to the input terminals (including the bias), the activation spreads in the feedforward 

direction, and the values zl of the hidden units are computed (Each hidden unit is a perceptron on 

its own and applies the nonlinear sigmoid function to its weighted sum of inputs). The outputs ŷq  

in the output layer are computed taking the hidden-layer outputs zl as their inputs. Each output unit 

applies the log-sigmoid function to its weighted sum of inputs. It can be said that the hidden units 

make a nonlinear transformation from the n-dimensional input space to the m-dimensional space 

spanned by the hidden units, and in this space the output layer implements a log-sigmoid function.

Training Protocols 

In the previous sections, we have presented two useful gradient descent optimization schemes for a 

single neuron: the standard gradient descent (steepest descent), and the stochastic gradient descent. 

In the steepest descent mode, the error function E is given by, 

                                         E(k) = 1
2

2 1
2

2

11

( ( )) [ ( )]( )y y k e ki

i

N

i

N
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                                        y k
j

n

� ( ) =
=

Â
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wj(k) xj
(i) + w0(k)                          (5.46b)

All the patterns are presented to the network before a step of weight-update takes place.

In the stochastic gradient descent, the error function is given by,

                                                 E k y y k e ki( ) ( ( )) [ ( )]( )
= - =

1
2

2 1
2

2�             (5.47a)

                                                  y k
j

n

�( ) =
=

Â
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wj(k) xj
(i) + w0(k)                                    (5.47b)

The weights are updated for each of the training pairs. 

From now onwards, the two schemes will be referred to as two protocols of training: batch 

training, and incremental training1. Whereas the batch training rule computes the weight updates 

after summing errors over all the training examples (batch of training data), the idea behind 

incremental training rule is to update weights incrementally, following the calculation of error for 

each individual example (incremental training rule gives stochastic approximation of batch training 

which implements standard gradient descent (steepest descent)). 

The gradient descent weight-update rules for MLP networks are similar to the delta training rule 

described in the previous section for a single neuron. The training data supplies target values yq
(i); q 

= 1, …, M, of the outputs. Given the initial values of the weights wlj; l = 1, …, m; j = 1, …, n, with 

bias weights wl0 between input terminals and hidden layer, and the weights vql with bias weights vq0 

between hidden layer and output layer, the network outputs ˆ
( )

yq
i

 are calculated by propagating input 

signals xj
(i) in the forward direction, computing hidden-layer outputs zl

(i), and therefrom the outputs 

ˆ( )
yq

i
. Using delta training rule, the weights vql and vq0 are updated with zl

(i) as inputs to the output 

neurons. The variable (or signal) d designates an error signal, but not the error itself as defined 

in Eqn (5.45), that is, d will generally not be equal to the error eq
(i) = yq

(i) – ˆ( )
yq

i
(Interestingly, the 

equality does hold for linear activation function).

1 In on-line training, each pattern is presented once and only once; there is no use of memory for storing the 
patterns. This explains the difference between incremental training and on-line training.
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There is, however, a problem in updating the weights wlj and wl0 between input terminals and 

the hidden layer. The weight updates of wlj and wl0 should ideally reduce the network output error 

( )( ) ( )
y yq
i

q

i

q

M

-

=

Â �

1

. The delta training rule requires the target values for the outputs of hidden-layer 

neurons, which are unknown. Hidden layer affects the network output error indirectly through its 

weights.

Since we do not know the desired values of hidden-layer outputs, the weights wlj and wl0 could 

not be updated using delta training rule. After a hiatus in the development of learning rules for 

multilayer networks for about 20 years, the delta training rule made a breakthrough in 1986 and 

was named the generalized delta rule (today, it is more popularly known as error-backpropagation 

learning rule). The error is calculated at the output nodes, and then propagated backwards through 

the network from the output layer to the input terminals. This error backpropagation gives error 

terms (and not the errors  themselves) for hidden units outputs. Using these error terms, the weights 

wlj and wl0 between input terminals and hidden units are updated in a usual incremental/batch 

training mode.

Thus, in a backpropatation network, the learning algorithm has two phases: the forward 

propagation to compute MLP outputs, and the back propagation to compute backpropagated 

errors. In the forward propagation phase, the input signals x are propagated through the network 

from input terminals to output layer, while in the backpropagation phase, the errors at the output 

nodes are propagated backwards from output layer to input terminals (see Fig. 5.14). This is an 

indirect way in which the weights wlj and wl0 can influence the network outputs and hence the cost 

function E.

The error-backpropagation algorithm (as we shall see shortly) begins by constructing a network 

with the desired number of hidden units and initializing the network weights to small random 

values. Typically, in a backpropagation network, the layers are fully connected, that is, every input 

terminal and every neuron in each layer is connected to every other neuron in the adjacent forward 

layer. Given this fixed network structure, the main loop of the algorithm repeatedly iterates over 

the training examples. For each training example, it applies the network to the example, computes 

the gradient with respect to the error on this example, then updates all weights in the network to 

implement incremental training protocol. Similar procedure is followed for implementing batch 

training rule.

The weight-update rule for an MLP network may be repeated thousands of times in a typical 

application. A range of termination conditions can be employed to stop the process. One may opt to 

stop after a fixed number of iterations through the loop, or once the error on the training examples 

drops below some threshold, or once error on a separate validation set of examples fulfills a specific 

criterion. The selection of proper termination criterion is important as very few iterations can be 

unsuccessful in reducing error sufficiently, and too many can cause overfitting of data.

5.7.1  The Generalized Delta Rule

We develop the learning rule for the case when there are multiple neurons in the output layer (Fig. 

5.15). The derivation here is of learning rule for the adaptation of weights in an incremental mode.
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Update Rule for Output-Units Weights 

As before, we begin by defining cost function (sum-of-error-squares) for this neural network having 

M output-layer neurons. At each iteration step k, 

                                                 E(k) = 1
2
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                                                        = soq(aoq(k))                                     (5.48c)

From forward propagation phase, we have, 

                                                  zl(k) = shl(ahl(k))                                     (5.49a)
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We have used subscript ‘o’ for the output layer and subscript ‘h’ for the hidden layer. This 

is necessary because the error signal terms (the delta values) for output layer neurons must be 

distinguished from those for hidden layer processing units. 

The input aoq to the qth output unit (Eqn (5.48b)) is given as, 

aoq(k) = 
l

m

=

Â
1

(vql(k) zl(k)) + vq0(k)

The error signal term for the qth neuron is defined as (Eqn (5.39)),

                                                      doq(k) = – 
∂

∂

E k

a koq

( )

( )

Applying the chain rule, the gradient of the cost function with respect to the weight vql is, 
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                                                                  = – doq(k) zl(k)

The weight change from Eqns (5.33) can now be written as, 

                                                     Dvql(k) = – h 
∂

∂

E k

v kql

( )

( )
 = h doq(k) zl(k)
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Applying the chain rule, the expression for error signal is, 
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                                                             = eq(k) s ¢oq(aoq(k))

where the term s ¢oq(aoq(k)) represents the slope ∂ ∂ˆ ( ) / ( )y k a kq oq  of the qth output neuron’s activation 

function, assumed in general, to be any nonlinear differentiable function. For our specific case of 

log-sigmoid output units (Eqn (5.43)), 

s ¢oq(aoq(k)) = 
∂

∂
= -

soq oq

oq
q q

a k

a k
y k y k

( ( ))

( )
( ) [ ( )]� �1

resulting in a simple expression of the error signal term:

doq(k) = eq(k) ˆ ( ) [ ˆ ( )]y k y kq q1-

Finally, the weight adjustments can be calculated from 

                                         vql (k + 1) = vql(k) + h doq(k) zl(k)              (5.50a)

                                        vq0(k + 1) = vq0(k) + h doq(k)                          (5.50b)

Update-Rule for Hidden-Units Weights

The problem at this point is to calculate the error signal terms dhl for the hidden-layer neurons, to 

update the weights wlj between input terminals and hidden layer. The derivation of the expression 

for dhl was a major breakthrough in the learning procedure for multilayer neural networks. Unlike 

the output nodes, the desired outputs of the hidden nodes (and hence the errors at the hidden nodes) 

are unknown. If the ‘target’ outputs for hidden nodes were known for any input, the input terminals 

to hidden layer weights could be adjusted by a procedure similar to the one used for output nodes. 

However, there is no explicit ‘supervisor’ to state what the hidden units’ outputs should be.

Training examples provide only the target values for the network outputs. The error signal terms 

doq for the output nodes are easily calculated as we have seen. 

The generalized delta rule provides a wayout for the computation of error signal terms for hidden 

units. An intuitive understanding of the procedure will be helpful in the derivation that follows.

To begin, notice that input terminals to hidden layer weights wlj can influence the rest of the 

network and hence the output error only through ahl (refer to Figs 5.14–5.15). The generalized delta 

rule computes the error signal terms dhl for hidden layer units by summing the output error signal 

terms doq for each output unit influenced by ahl (from Fig. 5.15, we see that ahl contributes to errors 

at all output layer neurons), weighting each of the doq’s by vql—the weights from the hidden unit 

to output units. Thus, by error backpropagation from output layer to the hidden layer, we take into 

account the indirect ways in which wlj can influence the network outputs, and hence the error E. The 

power of backpropagation is that it allows us to calculate an ‘effective’ error for each hidden node 

and, thus, derive the learning rule for input terminals to hidden layer weights.
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The derivation of the learning rule or of the equations for the weight change Dwlj of any hidden-

layer neuron follows the gradient procedure used earlier for output-layer neurons:

                                                 Dwlj(k) = – h 
∂
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w klj

( )

( )
                          (5.51a)

                                            wlj(k + 1) = wlj(k) – h 
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                                     (5.51b)

Similar equations hold for bias weights wl0. 

Applying the chain rule, the gradient of the cost function with respect to the weight wlj is, 
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where input ahl to each hidden-layer activation function is given as, 

ahl(k) = 
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The error signal term for lth neuron is given as, 
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The weight-update equation (Eqn (5.51b)) takes the form: 

                                               wlj(k + 1) = wlj(k) + h dhl(k) xj
(i)              (5.52a)

For the bias weights,

                                             wl0(k + 1) = wl0(k) + h dhl(k)              (5.52b)

Now the problem in hand is to calculate the error signal term dhl for hidden-layer neuron in terms 

of error signal terms doq of the output-layer neurons employing error backpropagation.

The activation ahl of lth hidden-layer neuron is given as, 

ahl(k) = 
j

n

=

Â
1

wlj(k) xj
(i) + wl0(k)
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The error signal term for lth neuron, 

dhl(k) = – 
∂

∂

E k

a k
hl

( )

( )

Since ahl contributes to errors at all output-layer neurons, we have the chain rule
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Assuming unipolar sigmoid activation functions in hidden-layer neurons, we have, 

                                      s¢hl(ahl(k)) = zl(k) [1 – zl(k)]

This gives, 

                                              dhl(k) = zl(k) [1 – zl(k)] 
q

M

=

Â
1

doq(k) vql(k)

We now use the equations derived above and give the final form (to be used in algorithms) of 

weights update rules for the two-layer MLP networks shown in Figs (5.14 and 5.15) with unipolar 

sigmoidal units in the hidden layer and unipolar sigmoid/linear units in the output layer. 

Weights-update equations employing incremental training for the multi-output structure 

(log-sigmoid output units): Our actual aim lies in learning from all the data pairs known to us. 

We teach the neural network with the help of one data pair at a time; weights and biases are updated 

after each presentation of data pair. The iteration index k corresponds to presentation of each data 

pair. But since the network is supposed to be learning from all the data pairs together, the stopping 

criterion is applied after completion of each epoch (presentation of all the N data pairs).

 Forward Recursion to Compute MLP Output 

Present the input x(i) to the MLP network, and compute the output using 
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with initial weights wlj, wl0, vql, vq0, randomly chosen.

Backward Recursion for Backpropagated Errors

                            doq(k) = [ ( )] ( ) [ ( )]( )y y k y k y kq
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q q q- -

� � �1                          (5.53c)

                            dhl(k) = zl(k) [1 – zl(k)] 
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Computation of MLP Weights and Bias Updates

                                                vql(k + 1) = vql(k) + h doq(k) zl(k)                          (5.53e)

                                               vq0(k + 1) = vq0(k) + h doq(k)                          (5.53f)

                                               wlj(k + 1) = wlj(k) + h dhl(k) xj
(i)                          (5.53g)

                                              wl0(k + 1) = wl0(k) + h dhl(k)                                      (5.53h) 

Weights-update  equations  employing  batch  training  for  the  multi-output  structure 

(log-sigmoid  output  units): Our interest lies in learning to minimize the total error over the 

entire batch of training examples. All N pairs are presented to the network (one at a time) and a 

cumulative error is computed after all pairs have been presented. At the end of this procedure, the 

neuron weights and biases are updated once. In batch training, the iteration index corresponds to 

the number of times the set of N pairs is presented and cumulative error is compounded. That is, k 

corresponds to epoch number. 

The initial weights are randomly chosen, and iteration index k is set to 0. All the training data 

pairs; i = 1, …, N, are presented to the network before the algorithm moves to iteration index k + 1 

to update the weights. The weights-update is done using the following equations:
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                                vql(k + 1) = vql(k) + Dvql(k)            (5.54g)

                                wlj(k + 1) = wlj(k) + Dwlj(k)            (5.54h)

Weights-update equations for the multi-output structure (linear output units): Equations 

for multi-output structure with linear output nodes directly follow from the above equations with 

appropriate changes in soq(◊) and doq. 

Incremental Training
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              vql(k + 1) = vql(k) + h doq(k) zl(k)                         (5.55e)

              vq0(k + 1) = vq0(k) + h doq(k) (5.55f)

              wlj(k + 1) = wlj(k) + h dhl(k) xj
(i) (5.55g)

              wl0(k + 1) = wl0(k) + h dhl(k) (5.55h)

Batch Training
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Weights-update equations for single-output structure: Equations for single-output structure 

directly follow from the above equations with M = 1.

A summary of the error-propagation algorithm is given in Table 5.1 for the vector-output network 

structure, employing incremental learning.

Table 5.1  Summary of error backpropagation algorithm 

Given a set of N data pairs {x(i), y(i)}; i = 1, 2, …, N, that are used for training:

x = [x1 x2 … xn]
T = {xj}; j = 1, 2, …, n

                                              y = [y1 y2 … yM]T = {yq}; q = 1, 2, …, M 

Forward Recursion

Step 1: Choose the number of units m in the hidden layer, the learning rate h, and predefine the 

maximally allowed (desired) error Edes.

Step 2: Initialize weights wlj, wl0, vql, vq0; l = 1, …, m.

Step 3: Present the input x(i) (drawn in sequence or randomly) to the network.

Step 4: Consequently, compute the output from the hidden and output layer neurons using Eqns 

(5.53a–5.53b).

Step 5: Find the value of the sum of error-squares cost function E(k) at the kth iteration for the data 

pair applied and given weights (in the first step of an epoch, initialize E(k) = 0):

E k y y k E k
q

M

q
i

q( ) ( ( )) ( )( )
¨ - +

=

Â1
2

1

2�

Note that the value of the cost function is accumulated over all the data pairs.

Backward Recursion 

Step 6: Calculate the error signals doq and dhl for the output layer neurons and hidden layer 

neurons, respectively, using Eqns (5.53c–5.53d).

Update Weights

Step 7: Calculate the updated output layer weights vql(k + 1), vq0(k + 1) and updated hidden layer 

weights wlj(k + 1), wl0(k + 1) using Eqns (5.53e–5.53h). 

Contd.
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Step 8: If i < N, go to step 3; otherwise go to step 9. 

Step 9: The learning epoch (sweep through all data pairs) completed: i = N. For EN < Edes, 

terminate training. Otherwise go to step 3 and start a new learning epoch.

    Example 5.1

For sample calculations on learning by backpropagation algorithm, we consider a multilayer 

feedforward network shown in Fig. 5.16. Let the learning rate h be 0.9. The initial weight and bias 

values are given in Table 5.2. We will update the weight and bias values for one step with input 

vector x = [1 0 1]T and desired output y = 1. Activation function for hidden nodes is a unipolar 

sigmoidal function, and for output-layer node is the linear function:

shl(ahl) = 
1

1+
-

e
ahl

                                                               so(ao) = ao  

Â sh1( )◊

Â sh2( )◊
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w
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w
22

w
23
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ah1

ah2
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v2

z2

z1

v1 v0

1

ao ŷ

Figure 5.16  Example of a multilayer feedforward network

Table 5.2  Initial weight and bias values 

Weight/Bias w11 w21 w12 w22 w13 w23 w10 w20 v1 v2 v0

Initial value 0.2 –0.3 0.4 0.1 –0.5 0.2 –0.4 0.2 –0.3 –0.2 0.1

Initial tuple x = [1 0 1]T = [x1 x2 x3]
T is presented to the network, and outputs from each hidden 

and output layer neurons are computed using Eqns (5.53a–5.53b):

                                  ahl(k) = 
j =

Â
1

3

(wlj(k) xj
(i)) + wl0(k); l = 1, 2

                                   zl(k) = shl(ahl)

                                  ao(k) = v1(k) z1(k) + v2(k) z2(k) + v0(k)

                                  ŷ(k) = 
l =

Â
1

2

(vl(k) zl(k)) + v0(k) = ao(k)
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Outputs of hidden and output layer neurons are shown in Table 5.3.

The error of output unit is computed and propagated backward. The error terms are shown in 

Table 5.3 (Eqns (5.53c–5.53d)). 

                                                   do(k) = y(i) – ŷ(k)

dhl(k) = zl(k) [1 – zl(k)] do(k) vl(k)

The weight and bias updates are shown in Table 5.4 (Eqns (5.53e–5.53h)).

                           vl(k + 1) = vl(k) + h(y(i) – ŷ(k)) zl(k)

                          v0(k + 1) = v0(k) + h(y(i) – ŷ (k)) 

                         wlj(k + 1) = wlj(k) + h zl(k) [1 – zl(k)] xj
(i)(y(i) – ŷ(k)) vl(k)

                        wl0(k + 1) = wl0(k) + h zl(k) [1 – zl(k)] (y(i) – ŷ(k)) vl(k)

Table 5.3  Input, output and error-term calculations for hidden and output nodes

Node Input Output Error-term

Hidden 1 ah1 = –0.7  z1 = 0.3348 dh1 = – 0.0735

Hidden 2 ah2 = 0.1  z2 = 0.5250 dh2 = – 0.0511

Output  ao = –0.1045 ŷ  = – 0.1045 do  = 1.1045

Table 5.4  Calculations for weight and bias updates

Weight/Bias w11 w21 w12 w22 w13 w23 w10 w20

New value 0.1339 –0.3496 0.4 0.1 –0.5661 0.1504 –0.46661 0.1504

Weight/Bias v1 v2 v0

New value 0.0298 0.3219 1.0941

Consider now that the activation function for hidden nodes is a unipolar sigmoid function, and 

for output node also, it is unipolar sigmoid. In this case, 

 ahl(k) = 
j =

Â
1

3

(wlj(k) xj
(i)) + wl0(k); l = 1, 2

                                               zl(k) = shl(ahl)

                                              ao(k) = v1(k) z1(k) + v2(k) z2(k) + v0(k)

                                              ŷ(k) = so(ao)

 do(k) = (y(i) – ŷ(k)) ŷ(k) (1 – ŷ(k))
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 dhl(k) = zl(k) [1 – zl(k)] do(k) vl(k)

 vl(k + 1) = vl(k) + h do(k) zl(k)

 v0(k + 1) = v0(k) + h do(k)

 wlj(k + 1) = wlj(k) + h dhl(k) xj
(i)

 wl0(k + 1) = wl0(k) + h dhl(k)

Sample calculations are left as an exercise for the reader. 

5.7.2  Convergence and Local Minima

As discussed earlier, the back propagation algorithm implements a gradient descent search through 

the space of possible network weights, reducing the error E between the target values and the 

network outputs. As the error surface for MLP networks may comprise various local minima, 

gradient descent could get trapped in any of these. Due to this, error back propagation over MLP 

networks is only assured to converge toward a local minima in E and not essentially to the global 

minimum error.

Let us consider, as an illustrative example, minimization of the following nonlinear function 

[85]:

                                                  E(w) = 0.5 w2 – 8 sin w + 7

where w is a scalar weight parameter. This function has two local minima and a global minimum 

(Fig. 5.17). 
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Figure 5.17  Convergence of gradient-descent algorithm
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The gradient-descent update law for parameter w is obtained as, 

                                              Dw = –h
∂

∂

E

w
 = –h (w – 8 cos w)

Figure 5.17 shows the convergence of cost function E(w) with respect to the weight w. It can be 

seen from the figure that when h = 0.01 and w0 = – 8, the final weight w = – 4 corresponds to a local 

minimum (descent indicated by ‘ ’ in the figure). When h = 0.4 and w0 = –8, the local minimum can 

be avoided and the final weight ultimately settles down at the global minimum (descent indicated 

by ‘ ’ in the figure). It shows that for a small step size, error backpropagation algorithm may get 

stuck at a local minimum. For a larger step size, it may come out of local minima and get into global 

minimum. (However, the algorithm may not converge for a large step size). Moreover, when the 

step size is large, it zigzags its way about the true direction to the global minimum, thus leading to 

a slow convergence. There is no comprehensive method to select the initial weight w0 and learning 

rate h for a given problem so that the global minimum can be reached. When trapped in a local 

minima, the whole learning procedure must be repeated starting from some other initial weights 

vector; a costly exercise in terms of computing time.

Despite the  lack of assured convergence to the global minimum, error-backpropagation algorithm 

is a highly effective function approximation method is practice. In many practical applications, the 

problem of local minima has not been found to be as severe as one might fear. Intuitively, more 

weights in the network correspond to high dimensional error surfaces (one dimension per weight) 

that might provide ‘escape routes’ for gradient descent to fall away from the local minimum.

Despite these comments, gradient descent over the complex error surfaces represented by MLP 

networks is still poorly understood, and no methods are known to predict with certainty when local 

minima will cause difficulties. Common heuristics to attempt to alleviate the problem of local 

minima include:

 • Add a momentum term to the weight-update rule (described in the next sub-section).

 • Use incremental training rather than batch training. Incremental training effectively descends 

a different error surface for each training example, relying on the average of these to 

approximate the gradient with respect to the full training set. 

5.7.3   Adding Momentum to Gradient Descent 

Despite the fact that error-backpropagation algorithm triggered a revival of the whole neural 

networks field, it was clear from the beginning that the standard error-backpropagation algorithm 

is not a serious candidate for finding the optimal weights (the global minimum of the cost function) 

for large-scale nonlinear problems. Many improved algorithms have been proposed in order to find 

a reliable and fast strategy for optimizing the learning rate in a reasonable amount of computing 

time. One of the first, simple yet powerful, improvements of the standard error-backpropagation 

algorithm is given here—the momentum gradient descent.

A general weight-update equation for gradient descent algorithms is given by,            

                                                wj(k + 1) = wj(k) – h 
∂

∂

E k

w kj

( )

( )
                                       (5.57a)
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Weights wj are updated at each iteration number k so that the prescribed cost function E(k) 

decreases; h is the learning rate with 0 < h < 1. 

In momentum gradient descent rule, the weight-update equation is altered by making the update 

on kth iteration depend partially on the update that occurred during the (k – 1)th iteration:

                                     wj(k + 1) = wj(k) – h 
∂

∂

E k

w kj

( )

( )
 + a [wj(k) – wj(k – 1)]          (5.57b)

Here, 0 £ a < 1 is a constant called the momentum rate.

Momentum term a [wj(k) – wj(k – 1)] allows a network to respond, not only to the local gradient, 

but also to recent trends in error surface. Without momentum, a network may get stuck in a shallow 

local minimum; adding momentum may help the NN ‘ride through’ local minima. Also, with 

momentum term, the flat regions in the error surface can be crossed at a much faster rate.

The choice of both the learning rate h and momentum rate a is highly problem-dependent and 

usually a trial-and-error procedure. There have been many proposals on how to improve learning 

by calculating and using adaptive learning rate and adaptive momentum rate, which follow and 

adjust to changes in the nonlinear error surface. 

5.7.4  Heuristic Aspects of the Error-backpropagation Algorithm

Multi-Layer Perceptron (MLP) networks are of great interest because they have a sound theoretical 

basis, meaning that they have universal function approximation property with atleast two layers 

(one layer NNs do not generally have universal function approximation property). According 

to the basic universal approximation result [86], it is possible for any smooth function f(x); x 

= [x1 x2 … xn]
T, f(◊) = [f1(◊) f2(◊) … fq(◊)]

T, to be approximated randomly closely on a compact 

set in n-dimensional state space for certain (large enough) number m of hidden-layer neurons. In 

this result, the activation functions are not required on the NN output layer (i.e., the output layer 

activation functions may be linear). Also, the bias terms on the output layer are not required, even 

though the hidden layer bias terms are needed.

Despite this sound theoretical foundation concerning the representational capabilities of NNs, 

and the success of error-backpropagation learning algorithm, there are many practical problems. 

The most troublesome is the usually long training process, which does not ensure that the best 

performance of the network (the absolute minimum of the cost function) will be achieved. The 

algorithm may get stuck at some local minimum, and such a termination with a suboptimal solution 

will require repetition of the whole training process by changing the structure or some of the 

learning parameters that influence the iteration scheme.

Further note that, though the universal function approximation property says ‘there exists an 

NN that approximates f(x)’, it does not show how to determine such a network. Many practical 

questions still remain open, and for a broad range of applications, the design of neural networks, 

their learning procedures and the corresponding training parameters is still an empirical art.

The discussion that follows in this section regarding the structure of a network and learning 

parameters does not yield conclusive answers, but it does represent a useful aggregate of experience 

of extensive application of error-backpropagation algorithm and many related learning techniques 

[3].
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Number of Hidden Layers 

Theoretical results and many simulations in different fields support the result that there is no need 

to have more than one hidden layer. But, at times, the performance of the network can be enhanced 

with the help of a more complex architecture, particularly, when the mapping to be learned is 

highly complicated—there is a likelihood of the performance being made better by placing more 

hidden layers with their own weights, after the first layer, with sigmoid hidden units. When the 

number of hidden layer units in a single hidden-layer network is too large, it may be practical to 

employ multiple hidden layers, choosing ‘long and narrow’ networks over ‘short and flat’ networks. 

Experimental evidence tends to show that using a two hidden-layer network for continuous functions 

has sometimes advantages over a one hidden-layer network, as the former requires shorter training 

times.

A rule of thumb that might be useful is to try solving the problem at hand using an NN with one 

hidden layer first.

Type of Activation Functions in a Hidden Layer

It has been shown that a two-layer network is capable of solving any nonlinear function 

approximation problem. This theoretical result does not require the use of sigmoidal nonlinearity. 

The proof assumes only that nonlinearity is a continuous, smooth, monotonically increasing 

function that is bounded above and below. Thus, numerous alternatives to sigmoid could be used 

without a biological justification.

The most serious competitor to MLP networks are the networks that use radial basis functions 

(RBFs) in hidden layer neurons. The most representative and popular RBF is a Guassian function. 

Whether a sigmoidal or Gaussian activation function is preferable is difficult to say. Both types 

have certain advantages and disadvantages, and final choice depends mostly on the problem (data 

set). 

A fundamental difference between these two types of NNs is that feedforward MLP NNs are 

representative of global approximation schemes, whereas NNs with RBFs (typically the Gaussian 

activation functions) are representative of local approximation schemes. The adjectives global and 

local are connected with the region of input space of the network for which the NN has nonzero 

output (RBF networks will be discussed in a later section).

Is it possible to use a mix of different types of activation functions in a layer of a network? 

The answer is ‘theoretically yes’. It is possible to improve the accuracy with the help of a more 

sophisticated network architecture with mixed activation functions in a layer. When the mapping to 

be learned is highly complicated, there is a likelihood that the performance may be improved. But, 

because the implementation and training of the network becomes more complex, it is the practice 

to apply only one hidden layer of sigmoidal activation functions and an output layer of linear/

sigmoidal units.  

Number of Neurons in a Hidden Layer

The number of neurons in a hidden layer is the most important design parameter with respect to 

approximation capabilities of a neural network. Recall that both the  number of input components 

(attributes/features) and the number of output neurons is, in general, determined by the nature of 
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the problem. Thus, the real representational power of an NN and its generalization capability are 

primarily determined by the number of hidden-layer neurons. In the case of general nonlinear 

regression, the main task is to model the underlying function between the given inputs and outputs 

by filtering out the disturbances embedded in the noisy training dataset. Similar statements can 

be made for pattern recognition (classification) problems. By changing the number of hidden-

layer nodes, two extreme solutions should be avoided: filtering out the underlying function (not 

enough hidden-layer neurons) and modeling of noise or overfitting the data (too many hidden-layer 

neurons). These problems have been discussed earlier in Sections 2.4, and 2.2.

The guidelines to select the appropriate number of hidden neurons are rather empirical at the 

moment. To avoid large number of neurons and the corresponding inhibitively large training times, 

the smaller number of hidden layer units are used in the first trial. One increases accuracy by adding 

in steps more hidden neurons. 

Variants of Gradient-Descent Procedure

Two main issues in selecting a training algorithm are fast convergence and accuracy of function 

approximation. The widely used technique to train a feedforward network has been the 

backpropagation algorithm with gradient descent optimization. The primary drawbacks of this 

algorithm are its slow rate of convergence, and its inability to ensure global convergence. Several 

variants have been proposed to improve the speed of response, and also to account for generalization 

ability and avoidance of local minimum. Standard optimization techniques that use quasi-Newton 

techniques have been suggested. The issues with quasi-Newton techniques are that the storage 

and memory need increase as the square of the size of the network. The nonlinear optimization 

techniques such as Newton-Raphson method or the conjugate gradient method may be adopted for 

training the feedforward networks. Though these algorithms converge in fewer iterations than the 

backpropagation algorithm with gradient descent, too much computations per pattern are required. 

These variants may converge faster in some cases and slower in others. Other algorithms for faster 

convergence include extended Kalman filtering, and Levenberg-Marquardt. However, all these 

variants do not come closer to backpropagation algorithm with gradient descent as far as simplicity 

and ease of implementation is concerned.

The most popular variant used in backpropagation algorithm is probably altering the weight-

update rule in the algorithm by ensuring that at least partly the weight update on the kth iteration 

relies on the update that took place during the (k – 1)th iteration. This augmented learning process 

has been presented in the earlier sub-section. To handle the overfitting issue for backpropagation 

learning, the weight decay approach may be used. That is, bring down each weight by a certain 

small factor during each iteration. This can be achieved by altering the definition of E so that it 

includes a penalty term which corresponds to the total magnitude of the network weights. The 

approach keeps weight values small to bias learning against complex decision surfaces/functions 

(Eqn (2.22)).

Genetic Algorithm (Appendix A) based optimization in neural networks is capable of global 

search and is not easily fooled by local minima. Genetic algorithms do not use the derivative for 

the fitness function. Therefore, they are possibly the best tool when the activation functions are not 

differentiable. Note that genetic algorithm can take an unrealistically huge processing time to find 

the best solution. Details are given in Section 5.10 on Genetic-Neural systems.
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Learning Rate 

In the weight-update rule of gradient descent procedures, the term h, called the learning rate, appears. 

It determines the magnitude of the change Dw  but not its direction. The learning rate controls the 

stability and rate of adaptation. The general approach to choosing h is to decrease the learning 

rate as soon as it is observed that adaptation does not converge. The smaller h is, the smoother the 

convergence of search but the higher the number of iteration steps needed. Descending by small 

h will lead to the nearest minimum when the error E(w ) is a nonlinear function of the weights. If 

Emin(w ) is larger than the predefined maximally allowed error, the whole learning procedure must 

be repeated starting from some other initial weights vector. Therefore, working with small h may 

be rather costly in terms of computing time.

A typical rule of thumb is to start with some larger learning rate and reduce it during optimization. 

Clearly, what is considered a small or large learning rate is highly problem-dependent, and proper 

h should be established in the first few runs for a given problem.

In a recent work [87], two novel algorithms have been proposed on adaptive learning rate using 

the Lyapunov stability theory. It is observed that this adaptive learning rate increases the speed of 

convergence. 

Weights Initialization

The learning procedure using the error-backpropagation algorithm begins with some initial set of 

weights which is usually randomly chosen. However, the initialization is a controlled process. This 

first step in choosing weights is important because with ‘bad’ initial choice, the training may get 

lost forever without any significant learning, or it may stop soon at some local minima (Note that 

the problems with local minima are not related only to initialization). Initialization by using random 

numbers is very important in avoiding the effects of symmetry in the network. In other words, all 

the hidden-layer neurons should start with guaranteed different weights. 

A first guess, and a good one, is to start learning with small initial weights. How small the 

weights must be depends on the training dataset (very small hidden-layer weights must also be 

avoided). Learning is often a kind of empirical art, and there are many rules of thumb about how 

small the weights should be. One is that the practical range of hidden-layer initial weights should 

be [–2/n, 2/n]. Another similar rule of thumb is that the weights should be uniformly distributed 

inside the range [–2.4/n, 2.4/n] (MATLAB uses the techniques proposed by Nguyan and Widrow).

The initialization of output-layer weights should not result in small weights. If the output-

layer weights are small, then so is the contribution of hidden-layer neurons to the output error, 

and consequently the effect of the hidden-layer weights is not visible enough. Also recall that the 

output-layer weights are used in calculating the error signal terms for hidden-layer neurons. If the 

output-layer weights are too small, these terms also become very small, which in turn leads to small 

initial changes in hidden-layer weights; learning in the initial phase will, therefore, be too slow.

Stopping Criterion at Training 

The error-backpropagation algorithm resulted from a combination of sum-of-error-squares (Eqn 

(5.21)) as a cost function to be optimized and the gradient descent method for weights adaptation. 
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If the training patterns are colored by noise, the minimization of sum-of-error-squares criterion by 

incremental learning is equivalent to LMS criterion (Eqn (5.27)). The learning process is controlled 

by the prescribed maximally allowed or desired error Edes. More precisely, one should have an 

expectation about the magnitude of the error at the end of the learning process. 

After a learning epoch (the sweep through all the training pairs) is completed in incremental 

learning process, the sum of error-squares over all the training pairs is accumulated and the total 

error EN is compared with the acceptable (desired) value Edes. Learning is terminated if EN < Edes; 

otherwise a new learning epoch is started. In the batch mode, weight updating is performed after 

the presentation of all the training examples that constitute an epoch. The error EN is compared with 

Edes after each iteration of a learning epoch.

The sum-of-error-squares is not good as stopping criterion because EN increases with the 

increase of number of data pairs. The more data, the larger is EN. Scaling of error function gives 

a better stopping criterion. The Root Mean Square Error (RMSE) is widely used scalar function 

(Eqn (2.26)):

                                                     ERMS = 
1 2

1N
e

i

i

N

( )( )

=

Â                                                 (5.58)

There will be no need to change the learning algorithm derived earlier. Training is performed using 

sum-of-error-squares as the cost function (performance criterion), and RMSE is used as a stopping 

criterion at training. However, if desired, for the batch mode, the learning algorithm with Mean 

Square Error (MSE) (refer to Eqn (2.25)) 

                                                     Eav = 
1 2

1N
e

i

i

N

( )( )

=

Â                              (5.59)

may be used as the cost function for training the network. 

The condition for termination on the basis of EN  < Edes is, in fact, a weak strategy as backprop-

agation is vulnerable to overfitting the training examples at the cost of reducing generalization 

accuracy over other unseen examples. One of the most successful techniques for overcoming the 

overfitting issue is to merely provide a validation dataset. The algorithm supervises the error with 

regard to this validation set, while making use of the training set to drive the gradient descent search 

(refer to Section 2.6).

5.8  MULTI-CLASS DISCRIMINATION WITH MLP NETWORKS

In Section 5.2, we discussed the linear classification problem using regression techniques. We 

found that a single perceptron can be used to realize binary classification.

Multi-Layer Perceptron (MLP) networks can be used to realize nonlinear classifier. Most of the 

real-world problems require nonlinear classification. 

Consider the network of Fig. 5.14 with a single log-sigmoid neuron in the output layer. For 

a binary classification problem, the network is trained to fit the desired values of y(i) Œ [0, 1] 
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representing Classes 1 and 2, respectively. The network output ŷ  approximates P(Class 1|x); 

P(Class 2|x) = 1 – ŷ.

When training results in perfect fitting, then the classification outcome is obvious. Even when 

target values cannot fit perfectly, we put some thresholds on the network output ŷ. For [0, 1] target 

values:

                                                   Class = 
1 0 0 5

2 0 5

if

if

< £

>

Ï
Ì
Ó

ˆ .

ˆ .

y

y
                (5.60)

What about an example that is very close to the boundary ŷ  = 0.5? Ambiguous classification 

may result in near or exact ties.

Instead of ‘0’ and ‘1’ values for classification, we may use values of 0.1 and 0.9. 0 and 1 is 

avoided because it is not possible for the sigmoidal units to produce these values, considering finite 

weights. If we try to train the network to fit target values of precisely 0 and 1, gradient descent will 

make the weights grow without limits. On the other hand, values of 0.1 and 0.9 are attainable with 

the use of the  sigmoid unit with finite weights. 

Consider now a multi-class discrimination problem. The inputs to the MLP network are just the 

values of the feature measurements (suitably normalized). We may use a single log-sigmoid node 

for the output. For the M-class discrimination problem, the network is trained to fit the desired 

values of y(i) = {0.1, 0.2, …, 0.9} for Classes 1, 2, …, 9 (for M = 9), respectively. We put some 

thresholds on the network output ŷ . For {0.1, …, 0.9} desired values:

                                                        Class = 

1 0 0 1

2 0 1 0 2

9 0 8

if

if

if

< £
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>
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Ì

Ô
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�
                (5.61)

Note that the difference between the desired network output for various classes is small; 

ambiguous classification may result in near or exact ties. The approach may work satisfactorily 

if the classes are well separated. This gets impractical as the number of classes gets large and the 

boundaries are artificial. 

A more realistic approach is 1–of–M encoding. A separate node is used to represent each possible 

class and the target vectors consist of 0s everywhere except for the element that corresponds to the 

correct class. For a four-class (M = 4) discrimination problem, the target vector 

                                                          y(i) = [y1
(i) y2

(i) y3
(i) y4

(i)]T

To encode four possible classes, we use 

                                                          y(i) = [1 0 0 0]T to encode Class 1

                                                          y(i) = [0 1 0 0]T to encode Class 2

                                                          y(i) = [0 0 1 0]T to encode Class 3
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and

                                                          y(i) = [0 0 0 1]T to encode Class 4                                  

We are therefore using four log-sigmoid nodes in the output layer of the MLP network (Fig. 

5.15), and binary output values (we want each output to be 0 or 1; instead of 0 and 1 values, we use 

values of 0.1 and 0.9). 

Once the network has been trained, performing the classification is easy: simply choose 

the element ŷk  of the output vector that is the largest element of y, i.e., pick the ŷk  for which

ˆ ˆy yl q>  q π k; q = 1, …, M. 

This generates an unambiguous decision, since it is very unlikely that two output neurons will 

have identical largest output values. 

The 1-of-M encoding approach is, in fact, equivalent to designing M binary classifiers. 

Neural networks perform best when the features and response variables are on a scale of [0, 

1]. For this reason, all variables should be scaled to a {0, 1} interval before feeding them into the 

network. For a numerical variable x that takes values in the range {xmin, xmax}, we normalize the 

measurements as follows:

xnorm = 
x x

x x

-

-

min

max min

Even if new data exceed this range by a small amount, this will not affect the results much. 

For more details on multiclass classification using neural networks, refer to [59, 88–90].

    Example 5.2

Consider the toy dataset shown in Table 5.5, for a certain processed cheese [20]. The two attributes 

x1 and x2 are scores for fat and salt, indicating the relative presence of fat and salt in the particular 

cheese sample. The output variable y is the cheese sample’s acceptance by a taste-test panel. 

Table 5.5  A toy dataset

Sample

i

x1

(Fat score)

x2

(Salt score)

y

(Acceptance)

y = [y1 y2]
T

(Target vector)

1

2

3

4

5

6

0.2

0.1

0.2

0.2

0.4

0.3

0.9

0.1

0.4

0.5

0.5

0.8

yes 

no

no

no

yes

yes

[0.9   0.1]T

[0.1   0.9]T

[0.1   0.9]T

[0.1   0.9]T

[0.9   0.1]T

[0.9   0.1]T

Figure 5.18 describes an example of a typical neural net that could be used for predicting 

the acceptance for the given scores on fat and salt. 1-of-M encoding scheme has been used for 

classification. Two separate nodes have been used to represent two possible classes: ‘yes’ and ‘no’. 
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The target vector y = [0.9 0.1]T encodes Class ‘yes’; and y = [0.1 0.9]T encodes Class ‘no’. The 

encoded desired output for each sample is shown in Table 5.5.

We choose the following initial weight and bias values: w11 = 0.05, w21 = –0.01, w31 = 0.02, w12 

= 0.01, w22 = 0.03, w32 = –0.01, w10 = –0.3, w20 = 0.2, w30 = 0.05, v11 = 0.01, v21 = –0.01, v12 = 0.05, 

v22 = 0.03, v13 = 0.015, v23 = 0.02, v10 = –0.015, v20 = 0.05.

We use a learning rate h = 0.5 to update weight and bias values. The activation function for 

hidden and output nodes is unipolar sigmoid. 
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Figure 5.18  A typical neural net for Example 5.2

Sample calculations may be carried out in a way similar to that used in Example 5.1. The reader 

is encouraged to do this practice on the first sample of the training data.

5.9  RADIAL BASIS FUNCTIONS (RBF) NETWORKS

Let us consider our feature vectors x to be in the n-dimensional space ¬n. Let f1(◊),f2(◊),…,fm(◊) 

be m nonlinear functions

                                                            fl: ¬
n Æ ¬; l = 1, …, m              (5.62a)

which define the mapping 
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Our goal now is to investigate whether there is an appropriate value for m and functions fl(◊) so 

that a nonlinear function f (x) can be approximated as a linear combination of fl(x), that is, 
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where the weights wl; l = 1, …, m, are the parameters of the linear approximation. This is equivalent 

to representing nonlinear function f (x, w) in terms of interpolation functions, also called basis 

functions, fl(◊).

Once the basis functions fl(◊) have been selected, the problem becomes a typical design problem 

of linear regression, that is, to estimate the weights wl in the m-dimensional space (In case of 

classification, we need to resort to procedures described earlier in this chapter). Figure 5.19 shows 

the corresponding block diagram. The first layer of computations performs the mapping from 

the x-space to the z-space; the second layer performs the computations of the linear regressor. 

The computational structure corresponds to a two-layer neural network where the nodes of the 

hidden layer have different activation functions fl(◊); l = 1, …, m. When these activation functions 

are radial basis functions, the corresponding neural network in Fig. 5.19 is called Radial Basis 

Function (RBF) network.
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Figure 5.19  Computational structure for function approximation using interpolation (basis) functions fl(◊)

RBF neuron uses radially symmetric activation function fl(|| x – cl||); the argument of the function 

is the Euclidean distance of the input vector x from a center cl. This justifies the name Radial Basis 

Function (RBF). The RBF function fl(◊) can take various forms; the Gaussian form is more widely 

used (This is not a Gaussian density, but we use the same name anyway). A Gaussian basis function 

is typically parameterized by two parameters: the center cl which defines its position, and a spread 

parameter that determines its shape. The spread parameter is equal to the standard deviation sl in 

case of a one-dimensional Gaussian function (do not confuse the standard deviation parameter s 

of Gaussian function with the sigmoidal activation function s (◊)). A one-dimensional Gaussian 

function is depicted in Fig. 5.20.

In the case of multivariate input vector x, the parameters that define the shape of the hyper-

Gaussian function, are elements of a covariance matrix S (refer to Section 3.2). With the selection 

of the same spread parameter s for all components of the input vector, the covariance matrix S = 

diag (s 2).
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Figure 5.20  Gaussian function in RBF neuron model 

With the assumption of same spread parameter for the components of the input vector, a Gaussian 

function for the lth neuron in hidden layer; l = 1, …, m, is 
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where cl is the center and sl is the spread parameter of the function fl(◊). Dimension of each center 

cl for an x-input network is n ¥ 1, the same as the dimension of x. Each sl is a scalar. 

The idea behind using such local basis functions is that in the input data, there are groups or 

clusters of instances and for each such cluster, we define a basis function fl(◊) which becomes 

nonzero if instance x(i) belongs to cluster l. One can use K-means/Self-Organizing Maps (discussed 

in Chapter 7) to find the centers cl. Once we have the centers, there is a simple and effective 

heuristic to find the spreads: For each center, we find the most distant instant covered by that 

center and set sl to half or one-third of that value. We can also use the EM algorithm (discussed in 

Chapter 7) on Gaussian mixtures to find the cluster parameters. The parameter l is the complexity 

parameter (similar to K in K-means) like the number of hidden units in MLP network; it trades-off 

simplicity with accuracy; with more units, we approximate the training data better but we get a 

complex model and risk overfitting; too few may underfit. Again the optimal value is determined 

by cross-validation. 

The hidden-layer neuron receives the Euclidean distance || x – cl || and computes the scalar value 

of the basis function fl(x, cl, sl). Each hidden unit has its own receptive field in the input space, i.e., 

each center is representative of some of the input patterns. Consider, for instance, an input vector 

x which lies in the receptive field for center cl. This would activate the hidden unit with center cl. 

Suppose an input vector lies between two receptive field centers, then both of these hidden units 

will be appropriately activated. The output will be a weighted average of the basis function values. 

There are two sets of parameters governing the mapping properties of the RBF network: Weights 

wl; l = 1, …, m, in the output layer, and the parameters {cl, sl} of the radial basis functions. A 

popular scheme to learn the parameters of the RBF functions is to learn only the centers cl and 
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therefrom determine the spread parameters sl. We will follow this scheme wherein centers c1, c2, 

…, cm are the parameters of the hidden layer and the weights w1, w2, …, wm are the parameters of 

the output layer. This is illustrated in Fig. 5.21 wherein only one linear node in the output layer has 

been taken to approximate the nonlinear function f (x). For the vector function, f(x) = [ f1(x), …, 

fM(x)]T; the output layer will consist of M linear nodes. The extension of our presentation to this 

multivariate case is straightforward. 
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Figure 5.21  Architecture of an RBF network for ¬n Æ ¬ mapping

RBF networks have gained considerable attention as an alternative to MLP networks trained by 

the backpropagation algorithm [3]. Both the MLP and RBF networks are the basic constituents of 

the feedforward neural networks. They are structurally equivalent. MLP network of Fig. 5.14 has 

one hidden layer with sigmoidal activation functions (more than one hidden layer may be taken, 

in general) and an output layer containing one or more neurons with linear activation functions 

(sigmoidal units may be used in the output layer for classification tasks). RBF network of Fig. 5.21 

has RBF functions in the hidden layer’s neurons and linear units in the output layer. Unlike MLP 

networks, there is only one hidden layer in all RBF networks, and output layer units are strictly 

linear. Also unlike MLP networks, one does not augment the n-dimensional input vector x with a 

bias term +1; and usually hidden layer outgoing vector z is also not augmented with the bias term. 

In the MLP networks, the input signal to the neuron’s activation functions is equal to wT x; w 

is the weight vector and x is the n-dimensional input vector. The input signal to the radial basis 

functions is equal to the distance between the input vector x and a center cl of a specific function. 

In an MLP network, the input to the sigmoidal activation functions of the (first) hidden layer are 

linear combinations of input features w xlj j

j

ÂÊ
Ë

ˆ
¯

, and the output of each sigmoidal unit saturates to 

the same value with increasing w xlj j

j

Â . In contrast, in the RBF networks, output of each RBF node 

is the same for all input points x having the same Euclidean distance from the respective center 

cl, and decreases exponentially with the distance. In other words, the activation responses of the 

nodes are of a local nature in the RBF, and of a global nature in the MLP networks. This intrinsic 

difference has important repercursions for both the convergence speed and the generalization 
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performance. In general, multilayer perceptrons learn slower than RBF counterparts. In contrast, 

MLP exhibit improved generalization performance, especially for regions that are not sufficiently 

represented in the training set.

To attain performance similar to MLP networks, an RBF network must have much higher order 

(big value of m). This is because of the local nature of the RBF activation functions, which make 

it mandatory to employ a huge number of centers to fill the space where f (x) is defined, and this 

number displays an exponential dependence on the dimension n of the input space.

The advantages of RBF networks, such as linearity in the parameters, and the availability of fast 

and efficient training methods, have been observed in many publications. Like an MLP network, an 

RBF network has universal function approximation ability. 

5.9.1  Training the RBF Network

Training of an RBF network requires optimal selection of the centers cl, and weights wl; l = 1, …, 

m. This is a two-fold problem, unlike in an MLP network. As the two layers of the network perform 

different tasks, both the layers are optimized using different techniques and in different time scales. 

Trial-and-error nature of training an RBF network follows the heuristic guidelines given earlier for 

MLP networks. We will present here those features of RBF-network training that are different from 

training MLP networks. 

Several strategies are applicable for training RBF networks; some of these strategies are 

discussed below. 

Fixed Centers

What we can do for training RBF networks is a two-stage process; we use an unsupervised 

technique to determine the centers, and then construct a supervised layer. This is referred to as 

hybrid learning. Because Gaussians are local, ideally several more units will be required than what 

would be required in case an MLP network were to be used.

Once the centers cjl; j = 1, …, n; l = 1, …, m (and the spread parameters sl) of the RBFs are fixed 

employing unsupervised learning (for example, K-means, self-organizing map, Gaussian mixture 

model (Chapter 7 will give the details)), the training problem reduces to determination of output-

layer weights wl in the RBF model of Fig. 5.21. This is a linear regression problem and the best 

solution is the least-squares solution (a supervised learning problem (Sections 5.4–5.5)). 

Another method, known as the anchor technique, sets the centers to the arbitrarily selected 

patterns from the training set without any further update. Provided that the training set is distributed 

in a representative manner over the entire feature-vector space, this seems to be reasonable  way to 

choose the m centers. 

Moving Centers

In most real-life problems, during the learning phase, it may be practical to simultaneously adopt 

both the centers (and the shape parameters) and the output-layer weights in a supervised manner. 

The RBF function of Eqn (5.64) is differentiable and we can back propagate, just as we back 

propagated in MLP networks to update the first-layer weights. The structure is similar to an MLP 
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network with fl(◊) as the hidden units and cl (and sl) as the first-layer parameters; the Gaussian as 

the activation function in the hidden layer and wl as the second-layer weights (Fig. 5.21). Using 

gradient-descent update rules for the centers (if desired, for spread parameters as well; however, 

the spread parameters may be computed from the centers using some appropriate rule of thumb) 

in incremental mode (weight update after each input pattern is presented to the network), and 

the LMS algorithm (stochastic gradient descent (Section 5.5)) for computing output-layer weights 

(incremental  mode of learning), gives a simple and effective approach for simultaneously adopting 

all the parameters of an RBF network. 

The update rule for centers-learning is given below:

                                                                cjl ¨ cjl – h 
∂

∂

E

cjl

                            (5.65)

for j = 1, …, n; l = 1, …, m; and the cost function 
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where y is the desired output corresponding to input x, and ˆ ˆ( )y f= x is the actual output of the 

network. 

The actual response of the RBF network shown in Fig. 5.21, is computed as, 
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For the Gaussian radial basis function, 
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where rl = || x – cl || is the Euclidean distance of input vector x from the center cl.

Differentiating E with respect to cjl gives: 
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After simplication, the update rule for the centers becomes, 

                                      cjl ¨ cjl + h (y – ŷ) wl(xjl – cjl) fl/sl
2                (5.68)

The gradient ∂ ∂E cjl/  exhibits a clustering effect. 

Despite the fact that it is simple to implement gradient descent for hidden-layer weights, it suffers 

from more difficulties in RBF networks than in MLP networks. The derivative of RBF changes sign; 

this is not the case for sigmoidal functions. Also, unlike MLP networks with sigmoidal activation 

functions, obtaining gradient information in RBF networks is difficult or expensive (we may use 

genetic algorithm for the nonlinear optimization problem (refer to Appendix A)). 

One usually obtains faster convergence with the completely supervised scheme. Although 

computational requirement increases by adjusting the centers using gradient descent update rule, the 

number of centers can be substantially reduced by this approach. The generalization performance 

of such a network is much better as compared to hybrid learning with fixed centers. 

Training using completely supervised method is, however, slow. Hybrid learning trains one layer 

at a time, and is faster.

5.10  GENETIC-NEURAL SYSTEMS 

Neural-network learning is a search procedure to minimize a performance criterion (error function). 

To utilize existing learning algorithms, one requires to choose several parameters—the number of 

layers, the number of units in each layer, the activation functions, as well as learning paramenters. 

Learning procedure is generally performed using the error backpropagation for connection weights, 

and the trial-and-error model for the other parameters. These design steps often require much time 

and experience, but here genetic algorithms can be of help. The genetic algorithms are presented 

in Appendix A. 

Genetic algorithms can be introduced into neural networks at various levels [91]:

 • learning connection weights including biases;

 • determining optimal architecture; or

 • simultaneously determining architecture and weights. 

We will limit our presentation to the first task, i.e., the use of genetic algorithms to the problems 

of optimization of neural network weights.

Optimization of Neural Network Weights 

The gradient-based algorithms for learning weights of neural networks usually run multiple times 

to avoid local minima, and also gradient information must be available. Two of the important 

arguments for the use of genetic algorithms to the problems of optimization of neural network 

weights, are 

 • a global search of space of weights, avoiding local minima; and 

 • useful where getting gradient information is expensive and not easy.

It is to be noted that once gradient information is easily available, the techniques based on 

gradient may be more effective in terms of computation speed than the GA for weight optimization 



242  Applied Machine Learning

of neural networks. In fact, there is no best training algorithm, because the most suited technique 

is always dependent on problem. 

With a fixed topology, the weights of a neural network are coded in a chromosome. Each 

individual of the population is determined by an entire group of neural network weights. The 

sequence of placement of the weights in the chromosome is random, but can’t be altered once the 

procedure of learning starts.

The fitness of individuals will be assessed on the basis of the fitness function, defined as the 

sum of squares of errors, being the differences between the signal sought by the network and the 

network output signal for various input data. The genetic algorithm works on the population of 

individuals (chromosomes representative of neural networks with the same architecture but with 

varying weights values) as per the typical genetic cycle, which consists of the following steps:

 1. Decoding each individual of the present population to the set of weights and building the 

corresponding neural network with this set of weights; while the network architecture and the 

learning rule are predefined.

 2. Computing the total mean squared error of the difference between the desired signals and 

output signals for all the input data. This error determines the fitness of the individual (built 

network).  

 3. Choosing and applying genetic operators—for instance, crossover and mutation—and 

obtaining a new generation.

    Example 5.3

We are given the two-layer backpropagation network shown in Fig. 5.22. The activation function 

for all the nodes in the hidden layer is, 
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and the activation function for the node in the output layer is, 
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The problem is concerned with optimization of the connection weights of the neural network 

shown in Fig. 5.22. In the following, we describe how a binary-coded GA could be used (instead of 

gradient algorithm) to update the connection weights of this network. 

One of the GA-strings is given below, in which five bits (L = 5) are used to represent each 

connection weight (all the weights are assumed to vary in the range 0.0 to 1.0):

              {w11 w12 w21 w22 w31 w32 v1 v2 v3} =

              10110   01011    01101   11011   10001   00011   11001   11110   11101    (5.69)

The parameter w11 is represented by the binary substring 10110. Its decoded value is b = 22. It 

varies in the range of { , }min maxw w11 11  = {0.0, 1.0}. Using the mapping rule (refer to Eqn (A.10) in 

Appendix A), its real value can be determined as follows:

                   w w
b

L11 11
2 1

= +

-

min ( )max minw w11 11-  = 0.0 + 
22

2 1
5
-

 (1.0 – 0.0) = 0.709677

Similarly, the real values of all the parameters represented by the GA-string (5.69) can be calculated. 

The real values are:

{w11, w12, w21, w22, w31, w32, v1, v2, v3} = 

{0.709677, 0.354839, 0.419355, 0.870968, 0.548387, 0.096774, 0.806452, 0.967742, 

0.935484}   (5.70)

The first training pattern of the data {x(i), y(i); i = 1, 2, … , N} is assumed to be {x1 = 0.6, x2 = 0.7, 

y = 0.9}. The outputs of the hidden units for an input (x1 = 0.6, x2 = 0.7} and the connection weights 

given by (5.70), are found from Fig. 5.22 as follows:

a1 = 0.674194; a2 = 0.861291; a3 = 0.396774; z1 = 0.662442; z2 = 0.702930; z3 = 0.597912

The activation value a of the neuron in the output layer is obtained as follows:

                                             a = v1 z1 + v2 z2 + v3 z3 = 1.773820

and the predicted output of the network is, 

ŷ
e e

e e

a a

a a
=

-

+

-

-
 = 0.9440

Since the target output for this training pattern is equal to 0.9, the error in prediction is found to be 

equal to 0.0440.

A population of GA-strings represents a number of candidate neural networks. When the batch 

mode of training is adopted, the whole training data is passed through the neural network represented 

by a GA string. This gives Mean Square Error (MSE):

                                                     MSE = 
1 2

1N
y yi i

i

N
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Â �               (5.71)
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Since GA is a maximization algorithm, we may choose the fitness function

                                                           J = 
1

MSE + e

                                       (5.72)

where e is a small positive number.

The population of GA-strings is then modified using the selection, crossover, and mutation 

operators. The GA, through its search, is expected to evolve an optimal neural network (refer to 

Appendix A). 
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6.1  INTRODUCTION 

So far, we were mostly concerned with learning from experimental data (examples, samples, 

measurements, records, patterns or observations), expressed in the form of numerical data. In 

neural networks, for example, we used the following machine learning problem setting:

There is some unknown dependency (mapping, function) y = f (x) between some high-dimensional 

input vector x and a scalar output y (or vector output y). The only information available about the 

underlying dependency is a training dataset {x(i), y(i); i = 1, 2, …, N}. The number of neurons, their 

link structure and the corresponding synaptic weights w were the subjects of learning procedure:

ŷ  = h (x, w) represents the learning function.

It may be noted that it is hard to find any physical meaning of the neural-network weights w. 

One cannot select a single synaptic weight as a discrete piece of knowledge. Here, knowledge is 

embedded in the entire network, and any change in a synaptic weight may lead to unpredictable 

results. Neural network learning is thus a ‘black box’ design situation in which the process is 

entirely unknown. Knowledge (information) is available only in the form of data pairs {x(i), y(i)}; i 

= 1, 2, …, N. The network is required to be trained using this knowledge before the machine could 

be used for prediction.

Generally speaking, learning is most highly dependable when the training instances correspond 

to the probability distribution of a whole set of examples over which the final system performance 

has to be measured. The present theory of machine learning has its foundation in the critical  

assumption that the probability distribution of training examples is the same as (though not known) 

the distribution of novel examples—the data unseen by the machine during its training stage. In 

spite of our necessity to assume this in order to achieve theoretical results, it is essential to take into 

consideration that the assumption is frequently violated in practice. One of the common features 

of available information for machine learning is that the real-world data has the tendency to be 

incomplete, noisy and inconsistent, which contribute to data inaccuracy. Though procedures for 

cleaning data try to put in the missing values, smooth out noise while detecting outliers and data 

inconsistencies, inaccuracies do bring in an element of uncertainty.
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Since uncertainty models (probability distributions) for the available data are unknown, the 

uncertainty management in our applied machine learning procedures is approximately carried out 

by heuristic approach of finding the hypothesis function simplest in terms of complexity and best 

in terms of empirical error on the data.

Our focus in this chapter is on another machine learning problem setting where structured human 

knowledge expressed in the form of IF-THEN rules (and not data) serves as a model for knowledge 

representation. In this rules-based setting for machine learning, a set of IF-THEN rules constitutes 

the knowledge base.

How can humans reason about complex systems, when the complete description of such 

a system often requires more detailed information than a human could ever hope to recognize 

simultaneously and assimilate with understanding? The answer is that humans have the capacity to 

reason approximately about a complex system, thereby maintaining only a generic understanding 

about the problem.

Structured human knowledge is based on the basic premise—human solution to the problem 

exists and it is acceptable (it is a function of our tolerance for imprecision). Also, the mere existence 

of acceptable human solution in some linguistic form is not sufficient. One must be able to articulate 

to structure the human solution in the language of learning machine, for example, in the form of 

IF-THEN rules. The key idea is that the structured human knowledge describes the operation of 

the process of interest from the standpoint of some (human expert) operator/s of the process, and 

captures the empirical knowledge of the operation of that process that has been acquired through 

direct experience with the actual operation of the process. Today, after several thousands successful 

applications, there is more or less convergence on the trustworthiness of the premise.

The neural network and rule-based systems lie at the two extreme poles of system modeling. 

At the neural-network pole, there is a black box design situation in which the process is entirely 

unknown; there are only input-output data-pair examples (measurements, records, observations, 

samples). Also, no physical meaning can be attached to the individual parameters of the trained 

network. At the other pole, a solution to the problem is known, that is, structured human knowledge 

(expertise, experience, heuristics) about the process exists. Also, knowledge in the rule-based model 

can be divided into individual rules and the user can see and understand the piece of knowledge 

applied by the system. Rule-based system is, thus, a white box design approach; its interpretability 

feature is able to explain its reasoning and justify the conclusion.

In neural-network design, uncertainty creeps in through incomplete, noisy and inconsistent 

data. In rule-based systems, uncertainty creeps in through weak implications, imprecise language, 

combining views of different domain experts; in addition to other unknown sources. One of 

the common characteristics of the information available from domain experts is the use of 

imprecise natural language. We use different terms to describe the same linkage requirement. 

Knowledge engineers have the painful job of structuring domain knowledge. Also domain experts 

have, usually, contradictory opinions that lead to conflicting rules. Care has to be taken by the 

knowledge engineers to create a knowledge base from the available domain knowledge, establishing 

concrete correlations between IF (condition) and THEN (action) parts of the rules. Naturally, 

conflict resolutions at the level of design of knowledge base always give rise to uncertainties in the 

created model.
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The most serious problem in applying rule-based models is a rule-explosion phenomenon. 

The number of rules increases exponentially with the dimensions of the input and output spaces. 

An exhaustive search through all the rules in knowledge base is applied during each cycle of the 

inference mechanism. Systems based on knowledge embedded in a huge rule-base tend to be slow, 

and therefore, such systems are best avoided for real-time applications.

In this chapter, we will be concerned with the following three technologies for the design of 

intelligent machines.

 1. Construction of fuzzy rule-based models that have been successful in the development of 

intelligent machines. The word ‘fuzzy’ may sound to mean intrinsically imprecise, but there 

is nothing ‘fuzzy’ about fuzzy rule-based models. They are firmly based on multivalued logic 

(fuzzy logic) and do not violate any well-proven laws of logic. They are aimed at handling 

imprecise and approximate concepts of human-like solutions, that cannot be processed by 

any other modeling tool. Knowledge base for these models is created from the information 

available from domain experts, which is based on their experience and expertise.

 2. Can the fuzzy rule-based systems be used when the knowledge about the process is available 

only in the form of input-output data pairs or knowledge is available in the form of data with 

additional source of information from domain experts? The answer is ‘yes’; we will deal with 

the design of such systems.

 3. The goals of intelligent technologies—fuzzy rule-based systems and neural networks—are 

common. They both try to mimic human intelligence and ultimately build an intelligent 

machine. But, they use different means to achieve their goals (refer to Section 1.1). The 

theory of fuzzy logic offers mathematical power to emulate cognitive functions of thought 

and perception, and neural networks, through limited understanding of biological neuronal 

processes of human brain, provide emulation of certain human learning behaviors through 

mathematics and systems science. We will consider integration of the two technologies.

In neural information processing, there are a variety of complex mathematical operations and 

mapping functions involved, that, in synergism, act as a parallel computing machine that emulates 

the biological neuronal processes. Therefore, while a fuzzy rule-based system is dependent on 

logical inferences, and has its focus on modeling human reasoning, a neural network is dependent 

on parallel data processing, wherein the focus is on modeling a human brain, examining its structure 

and functions, in particular, its learning capability.

In fuzzy rule-based systems, knowledge is depicted in the form of IF-THEN rules suggested by 

domain experts. Once the storage of the rules in the knowledge base of the fuzzy system has taken 

place, no modification is possible. It is not possible for fuzzy models to learn from experience or take 

to new/unfamiliar environments. It is only possible for a human expert to alter the knowledge base 

manually through the addition, change or deletion of certain rules. In neural networks, knowledge 

is stored in synaptic weights between neurons. This knowledge is procured while learning, that is, 

when a set of training data is offered to the network.

Therefore, fuzzy rule-based systems are not capable of learning, but possess the ability to 

explain the manner in which a specific solution has been arrived at. A neural network is capable of 

learning, but serves as a ‘black box’ for the user. Through integration of the two technologies, we 

can combine the advantages of each and create a more powerful and effective intelligent machine. 
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We will see in this chapter that integrated neuro-fuzzy systems bring together the parallel computing 

and learning capabilities of neural networks along with human-like knowledge representation and 

explanation capabilities of fuzzy systems.

When pure fuzzy methods have unacceptable performance for classification (pattern recognition) 

tasks, hybridization with decision trees may result in acceptable performance. Fuzzy decision trees 

have received considerable attention of the researchers. We will discuss this hybrid method in 

Chapter 8.

6.2  COGNITIVE UNCERTAINTY AND FUZZY RULE-BASE 

The basic syntax of an IF-THEN rule is: 

 IF < antecedent > THEN < consequent > (6.1a)

The ‘IF’ part of a rule is a proposition known as the rule antecedent (premise or condition). The 

‘THEN’ part is called the rule consequent (conclusion or action). A rule with a single antecedent is 

said to have an atomic proposition.

Atomic propositions do not, usually, make a knowledge base in real-life situations. Many 

propositions connected by logical connectives may be needed. A set of such compound propositions, 

connected by IF-THEN rules, makes a knowledge base. A rule with compound propositions takes 

the form:

 IF < antecedent 1 >

 AND < antecedent 2 > (6.1b)

     

 THEN < consequent >

The rules are representative of the mapping of the inputs to the outputs for a rule-based system. 

It is possible to organize the IF-THEN rules in many different forms. Multi-input-multi-output 

(MIMO) and multi-input-single-output (MISO) are the two common forms. The MIMO rules have 

multiple antecedents and multiple consequents, while MISO rules have multiple antecedents and 

single consequent.

Keywords link several different antecedents in a rule— AND (conjunction), OR (disjunction) 

or both in combination. But, it is better to not mix conjunctions and disjunctions (defined later in 

Section 6.3) in the same rule.

All parts of the antecedent are calculated simultaneously and resolved in a single number, using 

fuzzy set operations (described later in Section 6.3). All parts of a consequent are affected equally 

by the antecedent. It is usually possible to implement an MIMO rule with q consequent parts by 

specifying q MISO rules.

The antecedent of a rule incorporates two parts: a feature/attribute (linguistic) and its value. The 

feature and its value are linked by operators, such as is, are, is not, are not. Mathematical operators 

can also be used.

Rule-based systems based on two-valued Boolean logic have the characteristic that they involve 

sharp cut-offs for continuous attributes. For example, consider the following rule for customer 

credit application approval. 
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IF (years employed ≥ 2) AND (income ≥ 50K) THEN credit = approved 

Basically, the rule states that applications of custometers who have held a job for two or more 

years and earn a minimum of $ 50,000, are approved. According to this rule, customers who have 

held a job for a minimum of two years will obtain credit if they earn, say, $ 50,000, but will not 

be eligible for credit if their income is $ 49,900. Rigid cut-offs such as this may appear unjust. 

Instead, dividing income into classes, such as low-income, medium-income or high-income, and 

then applying ‘multi-valued logic’ to permit ‘soft’ boundaries for each class, may appear to be 

more sensible for such an application. Our intelligent machine (computer) has to know computing 

with words, and also the multi-valued logic. The categories: low_income, medium_income, high_

income, are vague and ambiguous terms for the machine; it has to know interpretation of such 

terms. Can we make the machines learn how to solve such problems?

Problems involving vagueness and ambiguity have been successfully addressed consciously or 

subconsciously by humans. In process industry, for example, a process operator employs a set of 

IF-THEN rules to control a process. The operator estimates the important process variables, and 

based on this information, he/she manipulates the process through control variable. The estimation 

of the process variables is not done in numerical form; it is rather done in linguistic form. For 

example, he/she may select ‘error’ and ‘error-rate’ as important process variables, and manipulate 

the process through incremental ‘change-in-control’.

 error = e = desired output – actual (current) output (6.2a)

 error-rate = �e
de

dt

t
= =

-error at action time error at previous action

Time duratioon between two actions

                 = 
e t e t T

T

( ) ( )- -

 (6.2b)

 Change-in-control = Du = u(t) – u(t – T) (6.2c)

The process operator may categorize the variables: e, �e, Du, into following labels over their 

entire operating range.

 [Negative (N), Zero (Z), Positive (P)] (6.2d)

The categories (linguistic labels) of the process variables and control variable are, in general, 

vague and ambiguous. It is easy for process operators to understand and interpret these classes as 

they possess the background to deal with the problems and solutions so described.

A commonly used way of expressing the knowledge based on human experience and 

understanding is through IF-THEN rules. A typical rule for the selected variables and their 

categories, may be of the form:

                                IF e is positive AND �e  is positive THEN Du is positive (6.3) 

This ‘linguistic rule’ is formed exclusively using linguistic variables and values. As linguistic 

values do not precisely represent the underlying quantities described by them, the linguistic rules 

also lack precision. They remain merely abstract concepts pertaining to the manner in which good 

control can be achieved and could mean different things to various people. But, they are at an 
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abstraction level that process operators are familiar with in terms of the manner of controlling a 

process.

There is just a limited number of probable rules for a limited number of linguistic variables and 

values. With two inputs of three linguistic values for each input, there are maximum 32 = 9 likely 

rules (all possible combinations of linguistic values for two inputs). Thus, the set of rules (called 

the rule-base) employed by the process operator over the entire range of operation of the process 

consists of nine rules.

The following set of rules represents abstract knowledge that the domain expert has about how 

to control the process given the error and error-rate as inputs (Note that this rule-base is commonly 

employed in process industry; it, in fact, realizes the well-known PI control scheme [33]).

Rule 1 : IF e is positive AND �e  is positive THEN Du is Positive 

Rule 2 : IF e is positive AND �e  is Negative THEN Du is Zero

Rule 3 : IF e is positive AND �e  is Zero THEN Du is positive 

Rule 4 : IF e is Negative AND �e  is Positive THEN Du is Zero

Rule 5 : IF e is Negative AND �e  is Negative THEN Du is Negative  (6.4)

Rule 6 : If e is Negative AND �e  is Zero THEN Du is Negative 

Rule 7 : IF e is Zero AND �e  is Positive THEN Du is Positive 

Rule 8 : IF e is Zero AND �e  is Negative THEN Du is Negative 

Rule 9 : IF e is Zero AND �e  is Zero THEN Du is Zero 

Rule-base for a specific application is created by domain experts with deep knowledge of 

application and strong experience.

The rule-base can be represented in a table format for the cases where there are two or three 

inputs. Table 6.1 shows the rule-base given above in a tabular representation. Note that the body of 

the table lists the linguistic consequents of the rules, and the left column and top row of the table 

hold the linguistic values of the premise terms. For instance, the cell defined by the crossing of 

the third row and the third column depicts Rule 1 in the given rule set, and the cell demarcated 

by the third row and first column intersection depicts Rule 2.

Table 6.1  Rule table for process control 

‘Change-in-control

 Du’
‘error-rate’ �e

N Z P

‘error’

e

N N N Z

Z N Z P

P Z P P

Providing an intelligent machine (computer) with the level of understanding the expert operator 

possesses, is a difficult task. How can we represent ‘expert knowledge’ that uses vague and 
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ambiguous terms, in a computer? Can it be done at all? Now we know that the answer is ‘yes’ and 

the solution has been provided by fuzzy logic Theory.

As we will see later in this chapter that when an acceptable human solution to a problem exists 

(i.e., there is usable human knowledge), fuzzy logic provides the tools to transform it into an 

efficient algorithm. Fuzzy logic controllers are being extensively used (replacing human operators) 

for automation and control in process industry.

Let us consider another simple illustration of cognitive uncertainty—a Car-Following System. 

Assume that there are two vehicles on the highway; the driver of the following vehicle will regulate 

the intervehicle spacing. In this man-machine control system, a driver employs consciously or 

subconsciously a set of IF-THEN rules to regulate the intervehicle spacing.

Important variables describing the car-following system are intervehicle spacing (distance), the 

vehicle velocity (speed), and the braking force applied to the vehicle (braking-force). Based on 

the estimation of input variables distance and speed, the driver manipulates the braking-force. The 

estimation of the system variables is not done in numerical form; it is rather done in linguistic form. 

For example, the driver may categorize the variables ‘distance’ into the following labels.

[Very Small, Small, Moderate, Large, Very Large] (6.5a)

Analogously, categories of ‘speed’:

[Very Low, Low, Moderate, High, Very High] (6.5b)

and that of ‘braking-force’:

[Zero, One-Fourth, One-Half, Three-Fourths, Full] (6.5c)

We use our common knowledge in controlling the distance between our car and the vehicle in 

front of us while driving. Rule-Base comprises 25 rules of the following type:

IF distance is Very Small AND speed Very Low THEN braking-force One-Half (6.6)

This knowledge is imprecise. We all drive a car differently. Despite many involved uncertainty 

factors, the resulting knowledge model with regard to solution of the given problem is usually an 

acceptable one.

If there is a usable knowledge, fuzzy logic provides the tools to transfer it into an efficient 

algorithm. Using fuzzy logic, one tries to model structured human knowledge.

Fuzzy logic may play an important role in intelligent vehicle highway systems. Vehicles will 

be automatically driven with on-board lateral and longitudinal controllers. The lateral controllers 

help steer the vehicles around corners, change lanes, and also perform other steering tasks. If a 

vehicle is moving alone, it is possible to maintain a stable velocity with the help of the longitudinal 

controllers. These controllers are also used to follow a lead vehicle at a harmless distance, or 

execute other speed/tracking functions. On the present-day highways, human beings do this kind 

of driving and handle these tasks.

Fuzzy or multi-valued logic was introduced by Jan Lukasiewicz in the 1920s, scrutinized by 

Max Black in the 1930s, and rediscovered, extended to formal system of mathematical logic by 

Dr Lotfi Zadeh, a professor from University of California in Berkeley, in the 1960s. The seminal 

work: Fuzzy Sets (published in 1965) by Zadeh is considered to be the foundation of current theory 

in fuzzy logic.
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But, the technical community accepted the fuzzy set theory a little slowly and with some difficulty, 

partly because of the name ‘fuzzy’, which lacked seriousness. Ultimately, the fuzzy theory which 

was not given importance in the West, was seriously looked at in the East. The Japanese have used 

it for over four decades, with great success.

Since then, the subject has been the focus of many independent research investigations by 

mathematicians, scientists and engineers around the world. Fuzzy logic has advanced at a fast pace. 

It has grown to be one of the most successful technologies, used to develop sophisticated control 

systems.

Although most fuzzy technology applications continue to be reported in control systems, fuzzy 

decision-making systems are applied widely in several areas. For example, in engineering some 

potential application areas include robotics (path planning, task scheduling, navigation); computers 

(memory allocation, task scheduling); process industries (failure diagnosis performance, assessment 

monitoring); manufacturing (scheduling and planning material flow, resource allocation); power 

industry (power distribution, load estimation.); traffic systems (routing and signal switching).

In business and health sectors, fuzzy logic has been used for the following applications: finance, 

credit evaluation, stock market analysis; medical diagnostic systems, health monitoring.

The list is only representative of the range of possible applications for fuzzy logic. Others have 

been studied, while still others are yet to be identified.

Let us summarize the philosophical ideas behind fuzzy logic. Fuzzy logic does not mean  logic 

which is fuzzy but refers to logic used to describe fuzziness. According to Zadeh, the term fuzzy 

is concrete, immediate and descriptive. Fuzzy logic adds a range of logical values between 0 

(completely false) and 1 (completely true) to Boolean logic to address issues of vagueness and 

ambiguity in our thinking. Classical binary logic can be considered as a special case of multi-

valued fuzzy logic.

Fuzzy logic has often been perceived incorrectly as a direct competitor to probability theory, 

whereas, in fact, it addresses a different set of issues. Probability theory handles statistical 

uncertainty dealing with nature’s random behavior. All the methods described in earlier chapters 

address the uncertainty resulting from the natural world from statistical variations or randomness. 

While these methods may work well when used to measure the likelihood of a hypothesis; they do 

not reveal anything about the meaning of the hypothesis. Cognitive uncertainty, on the contrary, 

concerns human cognition. Cognitive uncertainty may be further categorized into two subclassess: 

vagueness and ambiguity. Ambiguity results from situations that have two or more options, such 

that the choice between them is left unspecified. Vagueness results from a challenge in precisely 

defining the concepts.

Our focus in this chapter is on the essential ideas and tools necessary for the construction of 

fuzzy-rules based systems. We start by introducing certain important ideas, terminology, notations, 

and arithmetic of fuzzy sets and fuzzy logic. We include just a minimum, though adequate, amount 

of fuzzy mathematics. To help easy reading, the background material is given in a very informal 

fashion, with basic and clear notation and explanation. Wherever possible, extremely rigorous 

mathematics is not used.
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Books on Computational Intelligence usually give a detailed account of Fuzzy Systems. We 

have listed some books of this kind in the references [26–29]. The books [3, 5, 92] give a good 

account of fuzzy logic, while [85, 93] are more oriented towards control applications. Integrated 

neural-fuzzy systems are dealt with in detail in [94].

6.3  FUZZY QUANTIFICATION OF KNOWLEDGE 

Till this point, we have only quantified in an abstract fashion, the knowledge that the human expert 

has about how to control the process. Next, we will show how to use fuzzy logic to fully quantify 

the meaning of linguistic descriptions so that we may automate in the fuzzy system, the rules 

specified by the expert.

6.3.1  Fuzzy Logic 

Knowledge is structured information and knowledge acquisition is done through learning and 

experience, which are forms of high-level processing of information. Representing and processing 

knowledge hold the keys to all intelligent systems. When it comes to logic, knowledge representation 

is done by propositions and its processing is performed using reasoning, by applying various laws 

of logic, including a suitable rule of inference. 

The focus of fuzzy logic is on linguistic variables in natural language, wherein the objective is to 

provide foundations for approximate reasoning with imprecise propositions. 

In classical logic, a proposition is either TRUE, denoted by 1, or FALSE, denoted by 0. Consider 

the following proposition p:

‘Team member is female’

Let X be a collection of 10 people: x1, x2, ..., x10, who form a project team. The entire object of 

discussion is, 

 X = {x1, x2, …, x10}

In general, the entire object of discussion is called a ‘universe of discourse’, and each constituent 

member x is called an ‘element’ of the universe (the fact that x is an element of X, is written as

x Œ X).

If x1, x2, x3 and x4 are female members in the project team, then the proposition p on the universe 

of discourse X is equally well represented by the crisp (nonfuzzy ) set A defined below:

 A = {x1, x2, x3, x4}

The fact that A is a subset of X is denoted as A Ã X.

The proposition can also be expressed by a mapping mA from X into the binary space {0, 1}.

 mA : X Æ {0, 1} (6.7a)

such that, 

 mA = 
0

1

5 6 7 8 9 10

1 2 3 4

; , , , , ,

; , , ,

x x x x x x x

x x x x x

=

=

Ï
Ì
Ó
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That is to say, the value mA(x) = 1 when the element x satisfies the attributes of set A; 0 when it 

does not. mA is called the characteristic function of A.

Next, supposing that, within A, only x1 and x2 are below age 20; we may call them ‘minors’. 

Then, 

 B = {x1, x2}

consists of minor team members. In this case

 mB(x) = 
1

0

1 2; ,

;

x x x=Ï
Ì
Ó otherwise

B is obviously a subset of A; we write B Ã A.

We have considered the ‘set of females A’, and the ‘set of minor females B’ in X. Is it also 

possible to consider a ‘set of young females C’? If, for convenience, we consider the attribute 

‘young’ to be same as ‘minor’, then C = B; but, in this case, we have created a sharp boundary under 

which x2 who is 19 is still young (mC(x2) = 1), but x3 who just turned 20 today is no longer young 

(mC(x3) = 0); in just one day, the value changed from yes (1) to no (0), and x3 is now an old maid.

However, is it not possible that a young woman becomes an old maid over a period of 10 to 15 

years, so that we ought to be patient with her? Prof Zadeh admitted values such as 0.8 and 0.9 that 

are intermediate between 0 and 1, thus creating the concept of a ‘fuzzy set’. Whereas, a crisp set 

is defined by the characteristic function that can assume only the two values {0, 1}, a fuzzy set is 

defined by a ‘membership function’ that can assume an infinite number of values; any real number 

in the closed interval [0, 1].

With this definition, the concept of ‘young woman’ in X can be expressed flexibly in terms of 

membership function (Fuzzy sets are denoted in this book by a set symbol with a tilde understrike):

 m
�
C : X Æ [0, 1] (6.7b)

such that, 

 m
�
C  = 

1

0 9

0 2

0

1 2

3

4

; ,
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;

x x x

x x

x x

=

=

=
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Ì

Ô
Ô

Ó

Ô
Ô otherwise

The significance of such terms as ‘patient’ and ‘flexibly’ in the above description may be 

explained as follows. For example, we have taken m
�
C (x3) = 0.9, but suppose that x3 objects that 

‘you are being unfair; I really ought to be a 1 but if you insist we can compromise on 0.95’. There is 

a good amount of subjectivity in the choice of membership values. A great deal of research is being 

done on the question of assignment of membership values. However, even with this restriction, it 

has become possible to deal with many problems that could not be handled with only crisp sets.

Since [0, 1] incorporates {0, 1}, the concept of fuzzy set can be considered as an extended 

concept, which incorporates the concept of crisp set. For example, the crisp set B of ‘minors’ can 

be regarded as a fuzzy set 
�
B  with the membership function:

m
�
B

x
x x x

( )
; ,

;
=

=Ï
Ì
Ó
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    Example 6.1

One of the widely used instances of a fuzzy set is the one that consists of tall people. In this case, 

the universe of discourse is potential heights (the real line), suppose, 3 feet to 9 feet tall. If the set 

of tall people is defined properly as a distinct set, we may consider people with  height beyond six 

feet as officially tall. The characteristic function of the set A = {tall men} then, is 

 mA(x) = 
1 6

0 3 6

for

for

£

£ <

Ï
Ì
Ó

x

x

Such a condition is expressed by a Venn diagram shown in Fig 6.1(a) and a characteristic function 

shown in Fig 6.2(a).
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Figure 6.2

For our example of universe X of heights of people, the crisp set A of all people with x ≥ 6 has a 

sharp boundary: individual, ‘a’ corresponding to x = 6 is a member of the crisp set A, and individual 

‘b’ corresponding to x = 5.9 is unambiguously not a member of set A. Is it not an absurd statement 
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for the situation under consideration? A 0.1≤ reduction in the height of a person has changed mA 

from 1 to 0, and the person is no more tall.

A crisp set of all real numbers greater than 6 may make sense as the numbers are part of an 

abstract plane, but when it comes to real people, it is not logical to consider one person short and 

another tall, when the difference in their height is only the width of a hair. However, if this type 

of distinction is not sensible, then how can the set of all tall men be rightly defined? Just like our 

example of ‘set of young women’, the word ‘tall’ is like a curve describing the level to which any 

person is tall. Figure 6.2(b) depicts a possible membership function of this fuzzy set.

Note that there is inherent subjectivity in fuzzy set description. Figure 6.3 shows a smoothly 

varying curve (S-shaped) for transition from not tall to tall. Compared to Fig. 6.2(b), the membership 

values are lower for heights close to 3¢ and are higher for heights close to 6¢. This looks more 

reasonable; however, the price paid is in terms of a more complex function, which is more difficult 

to handle.

1

0
3 6 9

x

A
m

�

Figure 6.3  A smoothly varying membership for fuzzy set
�
A  

Figure 6.1(b) shows the representation of a fuzzy set by a Venn diagram. In the central (unshaded) 

region of the fuzzy set, m
�
A(x) = 1. Outside the boundary region of fuzzy set, m

�
A(x) = 0. On the 

boundary region, m
�
A(x) assumes an intermediate value in the interval (0, 1). Presumably, the 

membership value of an x in fuzzy set 
�
A approaches a value of 1 as it moves closer to the central 

(unshaded) region; it approaches a value of 0 as it moves closer to leaving the boundary region of 

�
A.

So far we have discussed the representation of knowledge in logic. We have seen that the concept 

of fuzzy sets makes it possible to describe vague information (knowledge). But description alone 

will not lead to the development of any useful products. Indeed, a good deal of time passed after 

fuzzy sets were first proposed, until they were applied at the industrial level. However, eventually 

it became possible to apply them in the form of ‘fuzzy inference’, and fuzzy logic theory has now 

become legitimized as one component of applied high technology.

In fuzzy logic theory, nothing is done at random or haphazardly. Information containing a certain 

amount of vagueness is expressed as faithfully as possible, without the distortion produced by 

forcing it into a ‘crisp’ mould, and it is then processed by applying an appropriate rule of inference.

‘Approximate reasoning’ is the best known form of fuzzy logic processing and covers a variety 

of inference rules.
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Fuzziness is often confused with probability. The basic difference between them is that fuzziness 

handles deterministic plausibility, whereas probability deals with the possibility of nondeterministic 

(stochastic) events. Fuzziness is one facet of uncertainty—it is the vagueness found in definition 

of a concept (weak implications in rule-based systems, for example), and/or ambiguity in meaning 

of linguistic terms. However, the uncertainty of probability usually pertains to the occurrence of 

phenomena, not their ambiguity. For instance, ‘There is a 50 per cent chance that he will live’ is 

a very uncertain statement because of inherent randomness. On the other hand, ‘she is a young 

woman’ is a statement with uncertainty in definition of ‘young woman’. Therefore, fuzziness is the 

description of the vagueness and ambiguity of an event, while randomness describes the uncertainty 

in occurrence of an event.

We can now give a formal definition to fuzzy sets.

6.3.2  Fuzzy Sets 

A universe of discourse, X, is a collection of objects all having the same characteristics. The 

individual elements in the universe X will be denoted as x.

A universe of discourse and a membership function that spans the universe, completely define a 

fuzzy set. Consider a universe of discourse X with x representing its generic element. A fuzzy set 
�
A  

in X has the membership function m
�
A(x) which maps the elements of the universe onto numerical 

values in the interval [0, 1]:

 m
�
A(x) : X Æ [0, 1] (6.8a)

Every element x in X has a membership function m
�
A(x) Œ [0, 1]. 

�
A is then defined by the set of 

ordered pairs:

                                         
� � �

A x x x X x
A A

= Œ Œ{( , ( )) | , ( ) [ , ]}m m 0 1  (6.8b)

A membership value of zero implies that the corresponding element is definitely not an element of 

the fuzzy set
�
A. A membership function of unity means that the corresponding element is definitely 

an element of fuzzy set
�
A. A grade of membership greater than zero and less than unity, corresponds 

to a noncrisp (or fuzzy) membership of the fuzzy set 
�
A. Classical sets can be considered as special 

case of fuzzy sets with all membership grades equal to unity or zero.

A fuzzy set 
�
A  is formally given by its membership function m

�
A

x( ) . We will identify any fuzzy 

set with its membership function, and use these two terms interchangeably.

Membership functions characterize the fuzziness in a fuzzy set. However, the shape of the 

membership functions, used to describe the fuzziness, has very few restrictions indeed. It might be 

claimed that the rules used to describe fuzziness are also fuzzy. Just as there are an infinite number 

of ways to characterize fuzziness, there are an infinite number of ways to graphically depict the 

membership functions that describe fuzziness. Although the selection of membership functions is 

subjective, it cannot be arbitrary, it should be plausible.

To avoid unjustified complications, m
�
A
x( ) is usually constructed without a high degree of 

precision. It is advantageous to deal with membership functions involving a small number of 

parameters. Indeed, one of the key issues in the theory and practice of fuzzy sets is how to define 

the proper membership functions. Primary approaches include (1) asking the human expert to 

define them; (2) using data from the system to generate them; and (3) making them in a trial-and-
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error manner. In more than 25 years of practice, it has been found that the third approach, though 

ad hoc, works effectively and efficiently in many real-world applications.

Numerous applications have shown that only four types of membership functions are needed 

in most circumstances: trapezoidal, triangular (a special case of trapezoidal), Gaussian, and 

bell-shaped. Figure 6.4 shows an example of each type. Among the four, the first two are more 

widely used. All these fuzzy sets are continuous, normal and convex.

A fuzzy set is said to be continuous if its membership function is continuous.

A fuzzy set is said to be normal if its height is one (The largest membership value of a fuzzy set 

is called the height of the fuzzy set).

The convexity property of fuzzy sets is viewed as a generalization of the classical concept

of convexity of crisp sets. Consider the universe X to be a set of real numbers ¬. A subset A of 

¬ is said to be convex if, and only if, for all x1, x2, Œ A and for every real number l satisfying

0 £ l £ 1, we have 

 lx1 + (1 – l)x2 Œ A (6.9)

It can easily be established that any set defined by a single interval of real numbers is convex; 

any set defined by more than one interval, that does not contain some points between the intervals, 

is not convex.

0 x

m( )x

1

0 x

1

m( )x
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Figure 6.4  Examples of fuzzy sets: (a) Trapezoidal (b) Triangular (c) Gaussian (d) Bell-shaped

An alpha-cut of a fuzzy set 
�
A  is a crisp set Aa that contains all the elements of the universal set 

X that have a membership grade in 
�
A  greater than or equal to a (refer to Fig. 6.5). The convexity 

property of fuzzy sets, as said earlier, is viewed as a generalization of the classical concept of 

convexity of crisp sets. In order to make the generalized convexity consistent with the classical 

definition of convexity, it is required that a-cuts of a convex fuzzy set be convex for all a Œ (0, 1] 
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in the classical sense (0-cut is excluded here since it is always equal to ¬ in this sense and thus 

includes – • to + •). Figure 6.5(a) shows a fuzzy set that is convex. Two of the a-cuts shown in 

this figure are clearly convex in the classical sense, and it is easy to see that any other a-cuts for a 

> 0 are convex as well. Figure 6.5(b) illustrates a fuzzy set that is not convex. The lack of convexity 

of this fuzzy set can be demonstrated by identifying some of its a-cuts (a > 0) that are not convex.

1

a2

a1

x

Aa

1

a

x

( )
A
xm

�

(a) Convex fuzzy set (b) Nonconvex fuzzy set

( )
A
xm

�

2
A
a

1
A
a

Figure 6.5

The support of a fuzzy set 
�
A is the crisp set of all x ŒX such that m

�
A(x) > 0. That is, 

                                                      supp( ) { | ( ) }
� �

A x X x
A

= Œ >m 0  (6.10)

The element x Œ X at which m
�
A(x) = 0.5, is called the crosspoint.

A fuzzy set 
�
A whose support is a single point in X with m

�
A(x) = 1, is referred to as a fuzzy 

singleton.

    Example 6.2

Consider the fuzzy set described by membership function depicted in Fig 6.6, where the universe 

of discourse is 

 X = [32°F, 104°F]

This fuzzy set 
�
A is linguistic ‘warm’, with membership function 

m
�
A
x

x

x x

x

x x

( )

;
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32°F 64° 70° 74° 78° 104°
x

1

A
m

�

Figure 6.6  A fuzzy set: linguistic ‘warm’

The support of 
�
A is the crisp set

{x|64° < x < 78°}

    Example 6.3

Consider a natural language expression:

‘speed sensor output is very large’

The formal, symbolic translation of this natural language expression, in terms of linguistic 

variables, proceeds as follows:

 (i) An abbreviation ‘Speed’ may be chosen to denote the physical variable ‘speed sensor output’.

 (ii) An abbreviation ‘Xfast’ (i.e., extra fast) may be chosen to denote the particular value ‘very 

large’ of speed.

 (iii) The above natural language expression is rewritten as ‘Speed is Xfast’.

Such an expression is an atomic fuzzy proposition. The ‘meaning’ of the atomic proposition is 

then defined by a fuzzy set XFast
�

, or a membership function m
XFast

�

(x), defined on the physical 

domain X = [0 mph, 100 mph] of the physical variable ‘speed’.

Many atomic propositions may be associated with a linguistic variable, e.g.,

  ‘Speed is Fast’

  ‘Speed is Moderate’ 

  ‘Speed is Slow’

  ‘Speed is XSlow’

Thus, the set of linguistic values that the linguistic variable ‘Speed’ may take is 

{XFast, Fast, Moderate, Slow, XSlow}

These linguistic values are called terms of the linguistic variable. Each term is defined by an 

appropriate membership function.

It is usual in approximate reasoning to have the following frame associated with the notion of a 

linguistic variable:

  · Ò
� � �

A A X
A

, , ,L
L
m  (6.11)
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where 
�
A  denotes the symbolic name of a linguistic variable, e.g., speed, temperature, level, error, 

change-of-error, etc. L
�
A  is the set of linguistic values that 

�
A can take, i.e., L

�
A is the term set of 

�
A. X 

is the actual physical domain over which linguistic variable 
�
A takes its quantitative (crisp) values, 

and mL
�
A is a set of membership functions which gives a meaning to the linguistic values in terms of 

the quantitative elements of X.

    Example 6.4

Consider speed interpreted as a linguistic variable with X = [0 mph, 100 mph], i.e., x = ‘Speed’. Its 

term set could be 

{Slow, Moderate, Fast}

 Slow
�

 = the fuzzy set for ‘a speed below about 40 miles per hour (mph)’, with membership 

function m
Slow

�

,

 Moderate
�

 = the fuzzy set for ‘a speed close to 55 mph’, with membership function m
Moderate

�

,

 Fast
�

 = the fuzzy set for ‘a speed above about 70 mph’, with membership function m
Fast

�

.

The frame of speed is 

· ÒSpeed Speed X Speed
� � �

, , ,L
L
m

where 

L Speed Slow Moderate Fast
� � � �

= { , , }

                                                            X = [0, 100] mph

m m m
Slow Moderate Fast

� � �

, , are given in Fig. 6.7. 

The frame of speed helps us to decide the degree to which an atomic proposition associated with 

‘speed’ is satisfied, given a specific physical value of speed. For example, for crisp input

 Speed = 50 mph

 m
Slow

�

(50) = 1/3

 m
Moderate

�

(50) = 2/3

 m
Fast

�

(50) = 0

0

m

1

2/3

1/3

0.5

40 50 55

~
Slow

m
~

Moderate
m

~
Fast

m

70 x

Figure 6.7  Terms of linguistic variable ‘Speed’
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Therefore, the proposition ‘Speed is Slow’ is satisfied to a degree of 1/3, the proposition ‘Speed 

is Moderate’ is satisfied to a degree of 2/3, and the proposition ‘Speed is Fast’ is not satisfied.

An extension of ordinary fuzzy sets is to allow the membership values to be a fuzzy set—instead 

of a crisply defined degree. A fuzzy set whose membership function is itself a fuzzy set, is called 

a Type-2 fuzzy set [94]. A Type-1 fuzzy set is an ordinary fuzzy set. We will limit our discussion to 

Type-1 fuzzy sets. The reference to a fuzzy set in this chapter, implies a Type-1 fuzzy set.

We have observed that a fuzzy set is completely characterized by its membership function. 

Widely used continuous membership functions have been illustrated in Fig 6.4. In the following, we 

give most general form of these membership functions. Note that all membership functions given 

in Fig. 6.4 are specific cases of these analytical forms.

We also define here discrete and singleton functions that we will be using later in this chapter.

Continuous Membership Functions

Triangular: A triangular membership function is specified by three parameters (a, b, c) as follows:

 m(x) = 

0

0

if

if

if

if

x a

x a

b a
a x b

c x

c b
b x c

c x

£

-

-
£ £

-

-
£ £

£

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

  (6.12)

The parameters (a, b, c) with a < b < c determine the x-coordinates of the three corners of the 

triangle (Fig. 6.8(a)).
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Figure 6.8  Triangular membership functions
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The two membership functions shown in Figs 6.8(b) and 6.8(c), defined at the corners of universe 

of discourse, are special cases of Eqn (6.12). 

Trapezoidal: A trapezoidal membership function is specified by four parameters (a, b, c, d) as 

follows:

 m(x) = 

0

0

if

if

if

if

x a

x a

b a
a x b

d x

d c
c x d

d x

£

-

-
£ £

-

-
£ £

£

Ï

Ì

Ô
Ô
Ô

Ó

Ô
Ô
Ô

  (6.13)

The parameters (a, b, c, d) with a < b £ c < d determine the x-coordinates of the four corners of 

the trapezoid (Fig. 6.9(a)). Note that trapezoidal membership function with parameters (a, b, c, d) 

reduces to a triangular membership function when b is equal to c.

The two membership functions shown in Figs 6.9(b) and 6.9(c), are special cases of Eqn (6.13). 

These functions are inherently open right or left and thus are appropriate for representing concepts 

such as ‘very large’ or ‘very small’.
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Figure 6.9  Trapezoidal membership functions

Piecewise linear functions (generally either triangular or trapezoidal) constitute the simplest 

type of membership functions. As we have observed, these may be symmetrical or asymmetrical 

in shape.

Gaussian and bell-shaped membership functions display smoothness, due to which their use for 

specifying fuzzy sets is increasing.

Even though the Gaussian membership functions and bell-shaped membership functions are 

smooth, they do not have the ability to specify asymmetric membership functions, which are 
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significant in some applications. Sigmoidal membership functions are either open left or right, and 

are used for synthesizing asymmetric and closed membership functions.

In the following, we describe Gaussian, bell-shaped and sigmoidal membership functions.

Gaussian: A Gaussian membership function is specified by two parameters c and s ; c represents 

the center of the membership function and s determines the width. Figure 6.10(a) shows a plot of 

general Gaussian membership function, given by the expression:

 m(x) = e

x c

-
-Ê

ËÁ
ˆ
¯̃

1

2

2

s  (6.14)

Gaussian membership functions have the features that they are symmetrical, smooth, and 

non-zero at all points.
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Figure 6.10

Bell-shaped: A general bell-shaped membership function is specified via three parameters (a, b, 

c), where the parameter b is generally positive (IF b is negative, the shape of the function becomes 

a reverse bell). Parameter c seeks the center of the curve and parameter a depicts how wide the 

curve is. Figure 6.10(b) shows a plot of generalized bell-shaped membership function, given by the 

expression: 

 m(x) = 
1

1

2

+
-x c

a

b
 (6.15)

Bell-shaped function given by Eqn (6.15) is symmetrical, smooth, and non-zero at all points.

Sigmoidal: A sigmoidal type membership function can generally be open to the right or to the 

left. The former type is commonly used as activation function in neural networks. The general 

expression of sigmoidal membership function is given as, 
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 m(x) = 
1

1+ - -
e

a x c( )
 (6.16)

where c determines distance from the origin and a determines steepness of the function. If a is 

positive, the membership function is open to the right whereas if it is negative, it is open to the left. 

Figure 6.11(a) illustrates sigmoidal function open to the right. 

Symmetrical or asymmetrical but closed (not open to the right or left) membership functions can 

be constructed by using either the difference or product of the two sigmoidal membership functions 

described above. The membership function formed by the difference between two sigmoidal 

membership functions is defined as difference-sigmoidal, and the one formed by the product of two 

sigmoidal functions is defined as product-sigmoid. These are shown in Figs 6.11(b) and 6.11(c), 

respectively.
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A sigmoidal function depends upon two parameters a and c:

 f (x ; a, c) = 
1

1+ - -
e

a x c( )

Difference-sigmoid depends upon four parameters a1, c1, a2 and c2, and is the difference between 

two of these sigmoidal functions (Fig. 6.11(b)): f1(x ; a1, c1,) – f2(x ; a2, c2).

Product-sigmoid again depends upon four parameters a1, c1, a2 and c2, and is the product of two 

of these sigmoidal functions (Fig. 6.11(c)): f1(x ; a1, c1) ¥ f2(x ; a2, c2).

All the membership functions in sigmoid family are smooth and non-zero at all points.

The list of membership functions introduced above is by no means exhaustive; other specialized 

membership functions can be created for specific applications. Available software tools provide a 

wide selection to choose from when we are selecting a membership function for the application in 

hand. It may, however, be noted that exotic membership functions are by no means required for 

good fuzzy inference systems for most of the applications.

Discrete Membership Functions

A discrete fuzzy set 
�
A of a universe of discourse with finite number of elements x1, x2, …, xm, has 

membership function 

  m
�
A
x( ) ; x Œ{x1, x2, …, xm} (6.17a)

This fuzzy set may be expressed as, 

                                       
� � � �

A x x x x x x
A A m A m

= º{( , ( )), ( , ( )), , ( , ( ))}1 1 2 2m m m  (6.17b)

An alternative representation of fuzzy set 
�
A is, 

                                      
�

� � �A
x

x

x

x

x

x

A A A m

m

= º
Ï
Ì
ÓÔ

¸
˝
Ǫ̂

m m m( )
,

( )
, ,

( )1

1

2

2

 (6.17c)

where 
m

�
A i

i

x

x

( )
 represents a tuple, not a division.

Singleton Function 

Quite often we use a fuzzy set 
�
A in space X with the membership function defined by 

                                                 m
�
A
x

x x
( ) =

=Ï
Ì
Ó

1

0

0if

otherwise
 (6.18)

Any fuzzy set with this form for its membership function is called a ‘singleton’. Fuzzy singleton 

may be graphically represented as shown in Fig. 6.12.

Note that the discrete impulse function can be used to represent the singleton membership 

function. Basically, singleton is a fuzzy set representation of a crisp number x0.
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1

x0 x

m( )x

Figure 6.12  Fuzzy singleton 

6.3.3  Fuzzy Set Operations

There are different kinds of fuzzy set theories differing from one another on the basis of the set 

operations (complement, intersection, union) they use. The fuzzy complement, intersection and 

union are not unique operations, unlike their crisp counterparts; different functions may be suitable 

to represent these operations in various contexts. Not only membership functions of fuzzy sets, 

but also, operations on fuzzy sets rely on the context. The ability to establish suitable membership 

functions and meaningful fuzzy operations in the context of each specific application, is essential 

to make fuzzy set theory really useful.

The intersection and union operations on fuzzy sets are often called triangular norms (t-norms), 

and triangular conorms (t-conorms; also called s-norms), respectively. The reader is advised to 

refer to [94] for the axioms which t-norms, t-conorms, and the complements of fuzzy sets are 

required to satisfy.

In the following, we define standard fuzzy operations, which are generalizations of the 

corresponding crisp set operations.

Consider the fuzzy sets 
�
A and 

�
B in the universe X.

                                               
� � �

A x x x X x
A A

= Œ Œ{( , ( )) | ; ( ) [ , ]}m m 0 1  (6.19a)

                                               
� � �

B x x x X x
B B

= Œ Œ{( , ( )) | ; ( ) [ , ]}m m 0 1  (6.19b)

The operations with 
�
A and 

�
B are introduced via operations on their membership functions

m
�
A(x) and m

�
B(x) correspondingly.

Complement 

The standard complement, 
�
A, of fuzzy set 

�
A with respect to the universal set X, is defined for all x 

Œ X by the equation

                                               m m
� �

�
A A
x x x X( ) ( )1- " Œ  (6.20)

Intersection 

The standard intersection, 
� �
A B« , is defined for all x Œ X by the equation 

                         m m m m m
� � � � � �

�
A B A B A B

x x x x x x X
«

∫ Ÿ " Œ( ) [ ( ), ( )] ( ) ( )min  (6.21)

where Ÿ indicates the min operation.
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Union 

The standard union, 
� �
A B» ,  is defined for all x Œ X by the equation 

                      m m m m m
� � � � � �

�
A B A B A B

x x x x x x X
»

∫ ⁄ " Œ( ) [ ( ), ( )] ( ) ( )max  (6.22)

where ⁄ indicates the max operation.

The min and max operators are not the only operators that can be chosen to model, respectively, 

the intersection and union of fuzzy sets, but they are the most commonly used ones in engineering 

applications. Popular alternatives to min and max operators are algebraic product and algebraic 

sum:

Algebraic Product 

                                            m m m m
� � � �
A B A B
x x x x x X( ) ( ) ( ) ( )Ÿ = ◊ " Œ  (6.23)

Algebraic Sum

                           m m m m m m
� � � � � �
A B A B A B
x x x x x x x X( ) ( ) ( ) ( ) ( ) ( )⁄ = + - " Œ  (6.24)

There are many more classes of t-norms for intersection and t-conorms for union which have not 

been listed in this Chapter [3, 94].

6.3.4  Fuzzy Relations

Consider two universes (crisp sets) X and Y. The Cartesian product of two sets X and Y (in this 

order) is a set of all ordered pairs such that the first element in each pair is a member of X and the 

second element is a member of Y. Formally,

 X ¥ Y = {(x, y); x Œ X, y Œ Y} (6.25)

where X ¥ Y denotes the Cartesian product.

A fuzzy relation on X ¥ Y, denoted by 
� �
R R X Y, ( , )or , is defined as the set 

                         
� � �

R x y x y x y X Y x yR R= Œ ¥ Œ{(( , ), ( , )) | ( , ) , ( , ) [ , ]}m m 0 1  (6.26)

where m
�
R(x, y) is a function of two variables, called membership function of the fuzzy relation. The 

degree of membership of the ordered pair (x, y) in 
�
R, associated with each pair (x, y) in X ¥ Y, is a 

real number in the interval [0, 1]. The degree of membership indicates the degree to which x is in 

relation with y. It is clear that a fuzzy relation is basically a fuzzy set.

If X and Y are discrete universes of discourse, a relation 
�
R on X ¥ Y can be presented in the form 

of a relational matrix, or graphically as a discrete set of points in a three-dimensional space (x, y, 

m
�
R(x, y)). When the universes of discourse are continuous sets comprising an infinite number of 

elements, the membership function m
�
R(x, y) is a surface over the Cartesian product X ¥ Y, not a 

curve as in the case of one-dimensional fuzzy sets. A relation defined on the space X ¥ Y is a binary 

relation.

A Cartesian product can be generalized for m universes of discourse X1, X2, …, Xm. A relation 

defined on this space is given by 
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�

�

�

R x x x x x x x x x X X X
m R m m m

= º º º Œ ¥ ¥ ¥{(( , , , ), ( , , , )) | ( , , , )1 2 1 2 1 2 1 2m ,,

m
�
R m

x x x( , , , ) [ , ]}1 2 0 1º Œ (6.27)

    Example 6.5

Let X and Y be two given sets

X = {1, 2, 3}, Y = {2, 3, 4}

The relation 
�
R: ‘x is smaller than y’, may be presented in the form of a relational matrix as 

follows:

�
R

y

2 3 4

x

1 1 1 1

2 0 1 1

3 0 0 1

The elements of the relational matrix are the degrees of membership m
�
R(x, y), i.e., degrees of 

belonging of a specific pair (x, y) to the given relation 
�
R. For example, the pair (3, 2) belongs with 

a degree 0 to the relation ‘x is smaller than y’ or the possibility that 3 is smaller than 2 is zero. This 

relation is a typical example of a crisp relation. The condition involved is this relation is precise 

one that is either fulfilled or not fulfilled.

    Example 6.6

Let us now consider a typical example of an imprecise relation 
�
R : ‘x is approximately equal to y’. 

The degree of belonging m
�
R(x, y) of pairs (x, y) from the Cartesian product X ¥ Y to this relation 

�
R 

can be any number between 0 and 1.

For continuous universes X and Y, given by [3] 

X = {x Œ¬|1 £ x £ 3}, Y = {y Œ¬ |2 £ y £ 4},

the membership function m
�
R(x, y) of the relation ‘x  y’, is a surface over the Cartesian product

X ¥ Y, shown in Fig. 6.13.

The relational matrix after discretization by a step of 0.5, is as follows:

�
R

y

2 2.5 3 3.5 4

x

1 0.67 0.5 0.33 0.17 0

1.5 0.83 0.67 0.5 0.33 0.17

2 1 0.83 0.67 0.5 0.33

2.5 0.83 1 0.83 0.67 0.5

3 0.67 0.83 1 0.83 0.67



270  Applied Machine Learning

1

0.8

0.6

0.4

0.2

0
3

2.5
2

1.5
1 2

3
2.5

3.5
4

y
x

( , )R x ym
�

Figure 6.13  Membership function of the relation: “x is approximately equal to y”.

    Example 6.7

Consider an example of fuzzy set: the set of people with normal weight. In this case, the universe of 

discourse appears to be all potential weights (the real line). However, the knowledge representation 

in terms of this universe, is not useful. The normal weight of a person is a function of his/her height.

 Body Mass Index (BMI) = 
Weight, kg

Height m( , )2
 (6.28)

Males with BMI values that range from 20 to 25 are members of the healthy set. Males with BMI 

values greater than 27 or less than 18 are not members of the healthy set. BMI values in the range 

18–20 and 25–27 represent a fuzzy situation.

Suppose we wish to express fuzzy relation 
�
R: ‘healthy male adult’, in terms of height and wieght 

of a person. We consider the range of height (cm): {140, 145, 150, …, 180}, and range of weight 

(kg): {45, 50, …, 105}; denoted by x and y, respectively.

 x Œ X = {140, 145, …, 180}

 y Œ Y = {45, 50, …, 105} 
(6.29a)

Membership values for the set ‘healthy’ may be calculated from the following function:

 healthy (x) = 

0 18

18 2 18 20

1 20 25

27 2 25 27

0 27

;

( )/ ;

;

( )/ ;

;

x

x x

x

x x

x

<

- £ £

< <

- £ £

>

Ï

Ì

Ô
ÔÔ

ÓÓ

Ô
Ô
Ô

 (6.29b)

A membership value of 1 is healthy; a membership value of 0 is not healthy; a membership value 

between 0 and 1 is the degree of membership in the healthy set.
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A relational matrix 
�
R(X, Y), obtained using Eqns (6.28–6.29), is given below (relational matrix 

(6.30)).

�
R

y (kg)

45 50 55 60 65 70 75 80 85 90 95 100 105

x

(cm)

140 1.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

145 1.00 1.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

150 1.00 1.00 1.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

155 0.37 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

160 0.00 0.77 1.00 1.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

165 0.00 0.18 1.00 1.00 1.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00

170 0.00 0.00 0.52 1.00 1.00 1.00 0.52 0.00 0.00 0.00 0.00 0.00 0.00

175 0.00 0.00 0.00 0.80 1.00 1.00 1.00 0.44 0.00 0.00 0.00 0.00 0.00

180 0.00 0.00 0.00 0.26 1.00 1.00 1.00 1.00 0.38 0.00 0.00 0.00 0.00

(6.30)

Each entry in the matrix, m
�
R(x, y), indicates the degree a person with a corresponding height and 

weight is considered to be healthy. For instance, the entry corresponding to a height of 160 cm and a 

weight of 50 kg has a value 0.77, which is the degree to which a person will be considered a healthy 

person, i.e., m
�
R(x, y) = 0.77 for x = 160 cm and y = 50 kg.

The relational matrix in this example is actually a surface over the Cartesian product X ¥ Y

(Fig. 6.14).
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Figure 6.14  Membership functions m
�
R(x, y) of the relation 

�
R: ‘healthy male adult’; x is height in cm and y is 

weight in kg.
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Composition of Fuzzy Relations

Fuzzy relations in different product spaces can be combined with each other by composition. Note 

that fuzzy sets can also be combined with fuzzy relations in the same way as relations are also fuzzy 

sets. A composition is also a fuzzy set because relations are fuzzy sets.

Let 
�
R  and 

�
S  be two binary fuzzy relations in product spaces X ¥ Y and Y ¥ Z, respectively. The 

composition of the two relations 
�
R and 

�
S is a relation in product space X ¥ Z, denoted as 

� �
R S

(the description that follows can easily be extended to relations defined on Cartesian product of m 

universes; m > 2).

Composition of 
�
R and 

�
S is the result of three operations: 

 • Extending each relation so that their dimensions are identical 

 • Intersection of the two extended relations

 • Projecting the intersection to the dimensions not shared by the two original relations

The extension operation extends the dimensions of 
�
R and 

�
S to X ¥ Y ¥ Z. The projection operation 

projects the intersection of the two extended relations in product space X ¥ Y ¥ Z to X ¥ Z. Extension 

and projection are dual operations. The former extends the dimension of a fuzzy relation while the 

latter reduces the dimension of a fuzzy relation.

Typically, we apply cylindrical extension to the two fuzzy relations 
�
R  and 

�
S  so that they have the 

same dimensionality in order to apply set operation: intersection (in sub-section 6.3.3, we described 

set operations on fuzzy sets defined in the same universe of discourse). The projection operation, 

as the name implies, projects a fuzzy relation to a subset of selected dimensions. This operation is 

often used to extract the possibility distribution (membership functions) of a few selected variables 

from a given fuzzy relation.

A mathematically rigorous treatment of extension and projection requires extension principle of 

fuzzy set theory, which is beyond the scope of this book. We will instead give basic description of 

characterization of the principle in terms of cylindrical extension and projection, with respect to our 

focus on applied machine learning.

Later we will see that while making a fuzzy inference (obtaining new knowledge from existing 

knowledge) a composition of a (one-dimensional) fuzzy set and a fuzzy relation is of practical 

importance. Since our focus is on applied machine learning, we consider in our discussion the 

composition of a (one-dimensional) fuzzy set and a fuzzy relation. The concepts directly carry over 

to the general case of composition of two fuzzy relations.

Let us define 

 • X – universe of discourse for variable x

 • Y – universe of discourse for variable y

 • 
�
A  – fuzzy subset of X ; 

�
A XÕ

                                                     
� � �

A x x x X
A A

= Œ Œ{( , ( )) | , [ , ]}m m 0 1  (6.31a)

 • 
�
R – Fuzzy subset of X ¥ Y

                                                    
� � �

R x y x y x y X YR R= Œ ¥ Œ{(( , ), ( , )) | ( , ) , [ , ]}m m 0 1  (6.31b)
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�
A is a fuzzy set in space X, and 

�
R is a fuzzy relation in product space X ¥ Y. The composition of 

the fuzzy set 
�
A(X) and relation 

�
R(X, Y) is a fuzzy set in space Y. The composition operation can be 

viewed as a combination of cylindrical extension, intersection, and projection of fuzzy sets.

 • Cylindrical extension is a step for extending fuzzy set 
�
A(X) to the product space X ¥ Y. This 

step enables us to take the intersection of 
�
A and 

�
R (intersection operation requires both 

�
A  

and 
�
R to be defined on the same space; Section 6.3.3).

 • Intersection of the extended relation (fuzzy set) with 
�
R in the product space X ¥ Y, for 

matching 
�
A with 

�
R. 

 • Projection of the intersection on space Y ; this results in a fuzzy set 
�
B in space Y, induced by 

the composition. 

Cylindrical Extension: The cylindrical extension of 
�
A (a fuzzy set defined on X) in X ¥ Y, denoted 

ce
�
A, is the set of all tuples (x, y) ŒX ¥ Y, with membership function equal to m

�
A(x), i.e., 

 m
ceA

�

(x, y) = m
�
A(x) for every y ŒY (6.32)

Figure 6.15 shows graphically cylindrical extension of a fuzzy set 
�
A in X to a fuzzy relation ceA

�
 

in space X ¥ Y.

m

1

x

y

Figure 6.15  Illustration for cylindrical extension

Intersection: The intersection of the fuzzy sets (relations)

ceA
�

 and 
�
R in X ¥ Y is given by the following equations.

Min-Operator 

 m
ceA R

� �
«

(x, y) = m m m
� � �
T ceA Rx y x y x y( , ) ( , ) ( , )= Ÿ

  = min{ ( , ), ( , )}m mceA Rx y x y
� �

  = min{ ( ), ( , )} ,m m
� �
A Rx x y x X y Y" Œ " Œ  (6.33a)
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Product operator 

 m
ceA R

� �
«

(x, y) = m
�
T (x, y) = m mceA Rx y x y

� �

( , ) ( , )Ÿ

  = { ( , ) ( , )}m mceA Rx y x y
� �

  = { ( ) [ ( , )]} ,m m
� �
A Rx x y x X y Y" Œ " Œ  (6.33b)

Projection: The projection of 
�
T (a fuzzy set defined on (X ¥ Y)) on Y, denoted proj 

�
T, is a set of 

all y Œ Y with membership grade equal to max
x

T x y{ ( , )};m
�

‘max

x

’ represents maximum with respect 

to x while y is considered fixed, i.e., 

                                                       m mprojT
x

Ty x y
� �

( ) { ( , )}= max  (6.34)

Projection on Y means y0 is assigned the highest membership degree from the tuples (x1, y0), 

(x2, y0), …; x1, x2, … ŒX, and y0 ŒY. The rational for using the max operator on the membership 

functions of 
�
T comes from the extension principle (many-to-one mapping).

Figure 6.16 graphically illustrates the projection step.

( , )x y01 ( , )x y02 ( , )x y03

y0

y

x

m

( , )x y04

Figure 6.16  Illustration for projection 

Composition Operators: The three operations: cylindrical extension, intersection, and projection, 

involved in imposition of fuzzy relations lead to many different versions of compositional operator. 

The best known one is the MAX-MIN composition. The MAX-PRODUCT composition is often 

the best alternative.

Let 
�
A be a fuzzy set in space X, and 

�
R be a fuzzy relation in product space X ¥ Y. 

                                         
� � �

A x x x X x
A A

= Œ Œ{( , ( )) | , ( ) [ , ]}m m 0 1  (6.35a)

                                         
� � �

R x y x y x y X Y x yR R= Œ ¥ Œ{(( , ), ( , )) | ( , ) , ( , ) [ , ]}m m 0 1  (6.35b)

Max-Min Composition

The MAX-MIN composition 
� �
A R is given by the following equation.

                    
� � � �

A R y x x y x X y Y
x

A R = Œ Œ{ , [ ( ( ), ( , ))] | , }max min m m  (6.36a)
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Max-Product Composition

The MAX-PRODUCT composition is given by the following equation.

                                  
� � � �

A R y x x y x X y Y
x

A R = Œ Œ{( , [ ( ) ( , )]) | , }max m m  (6.36b)

    Example 6.8

This example will facilitate the understanding of three steps: cylindrical extension, intersection, 

and projection, involved in composition operation.

We wish to know the possible weight of a healthy person who is about 160 cm tall. In Example 

6.7, we obtained fuzzy relation 
�
R: ‘healthy male adult’, in terms of height x and weight y of a 

person. For the ranges, X and Y, of height and weight given in Eqn (6.29a), a relational matrix 
�
R(X, 

Y) was obtained, giving m
�
R x y x X y Y( , )" Œ " Œand . This relational matrix is given in Eqn (6.30). 

Assume ‘about 160 cm’ is a discrete fuzzy set 
�
A in X, defined as,

                             
0

140

0

145

0 4

150

0 8

155

1

160

0 8

165

0 4

170

0

175

0

180
, ,

.
,

.
, ,

.
,

.
, ,

È

ÎÍ
˘

˚̇
 (6.37a)

The ‘healthy male adult’ fuzzy relation 
�
R  on X ¥ Y product space is given by the matrix in (6.30).

Cylindrical extension ceA
�
 of 

�
A in X to the product space X ¥ Y (relational matrix (6.37b)):

x      
y

45 50 55 60 65 70 75 80 85 90 95 100 105

140 0 0 0 0 0 0 0 0 0 0 0 0 0

145 0 0 0 0 0 0 0 0 0 0 0 0 0

150 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

155 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

160 1 1 1 1 1 1 1 1 1 1 1 1 1

165 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

170 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

175 0 0 0 0 0 0 0 0 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

(6.37b)

The two fuzzy relations ceA
�

(x, y) and 
�
R(x, y) are defined on the same product space X ¥ Y. The 

intersection of the two relations gives 
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ceA R x y x yceA R
� � � �

« = Ÿm m( , ) ( , )

                                                                 = min [ ( , ), ( , )]m mceA Rx y x y
� �

The result is given in the matrix in (6.38a). We have used ‘min’ operator for the intersection of 

two fuzzy sets. As said earlier, a popular alternative is ‘product’ operator.

x    
y

45 50 55 60 65 70 75 80 85 90 95 100 105

140 0 0 0 0 0 0 0 0 0 0 0 0 0

145 0 0 0 0 0 0 0 0 0 0 0 0 0

150 0.4 0.4 0.4 0.17 0 0 0 0 0 0 0 0 0

155 0.37 0.8 0.8 0.8 0 0 0 0 0 0 0 0 0

160 0 0.77 1 1 0.8 0 0 0 0 0 0 0 0

165 0 0.18 0.8 0.8 0.8 0.64 0 0 0 0 0 0 0

170 0 0 0.4 0.4 0.4 0.4 0.4 0 0 0 0 0 0

175 0 0 0 0 0 0 0 0 0 0 0 0 0

180 0 0 0 0 0 0 0 0 0 0 0 0 0

(6.38a)

The projected fuzzy set gives the weight possibility distribution of a healthy male adult who is 

about 160 cm tall. The result is given in (6.38b).
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 (6.38b)

If we know the exact measured height of a male adult, say, it is 160 cm, then we should first 

transform the ‘crisp’ measurement of height into a discrete fuzzy set. It is a fuzzification process that 

converts a crisp value into a fuzzy set. 

Height x is a singleton at x0 = 160; therefore (Eqn (6.18), Fig. 6.12),

                                  m
�
A
x

x
( ) =

=Ï
Ì
Ó

1 160

0

if

otherwise
 (6.39a)

This gives 

                                         
�
A =

È

ÎÍ
˘

˚̇

0

140

0

145

0

150

0

155

1

160

0

165

0

170

0

175

0

180
, , , , , , , ,  (6.39b)

The possibility weight distribution for the male adult to be a ‘healthy male adult’, can now be 

calculated.
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6.4  FUZZY RULE-BASE AND APPROXIMATE REASONING

Problems featuring uncertainty and ambiguity have been successfully addressed subconsciously 

by humans. Humans can adapt to unfamiliar situations and they are able to gather information in 

an efficient manner and discard irrelevant details. The information gathered need not be complete 

and precise, and could be general, qualitative and vague, because humans can reason, infer and 

deduce new information and knowledge. They can learn, perceive and improve their skills through 

experience.

Is there a way for humans to reason about complex systems when the entire description of a 

system of this type frequently demands more thorough information than is possible for a human 

to recognize simultaneously, and assimilate with understanding? The answer is ‘yes’. Humans are 

capable of reasoning approximately. While reasoning about a complicated system, humans reason 

approximately about its behavior, thus preserving just a generic understanding of the problem.

The fuzzy set theory provides a mathematical power to capture the uncertainties related to 

human cognitive processes, for instance, thinking and reasoning. Fuzzy logic offers an inference 

morphology that enables approximate human reasoning capabilities to knowledge-based systems.

Knowledge representation and processing are the keys to any intelligent system. In logic, 

knowledge is represented by propositions and is processed through reasoning by the application of 

various laws of logic. Fuzzy logic focuses on linguistic variables in natural language, and aims to 

provide foundations for approximate reasoning with imprecise propositions.

In the previous sections, we provided an intuitive explanation of many of the concepts related to 

fuzzy logic. The objective set for this section is to provide a complete exposition on the details of the 

operation of fuzzy systems. We will see that the knowledge-base of a fuzzy system consists of fuzzy 

rule-base, and database—membership functions of the fuzzy sets used in fuzzy rules. Approximate 

reasoning, which can be viewed as a process by which a possible imprecise conclusion is deduced 

from the collection of imprecise rule-base, will be performed through an inference mechanism.

In this section, we will first describe the concepts in terms of general fuzzy systems, followed by 

examples as tutorial illustrations. 

Consider a fuzzy system with n inputs xj; j = 1, 2, …, n, and output y. The ordinary (‘crisp’) 

sets Xj and Y are universes of discourse for the crisp inputs xj and crisp output y, respectively. To 

specify rules for the rule-base, the expert uses ‘linguistic’ variables for inputs and output, and their 

characteristics. For our fuzzy systems, linguistic variables denoted by 
�
xj are used to describe the 

inputs xj. Similarly, linguistic variable denoted by 
�

y is used to describe output y.

Just as xj and y take on values over each universe of discourse Xj and Y, respectively, linguistic 

variables 
�
xj and 

�

y take on ‘linguistic values’ that are used to describe characteristics of the variables. 

We assume that there exist kj linguistic values for the linguistic variable 
�
xj ; kj = 1, 2, …, Kj. Then 

the linguistic variable 
�
xj takes on the elements from the set of linguistic values denoted by 

 
� �
A Aj jkj
= { ; j = 1, 2, …, n; kj = 1, 2, …, Kj} (6.40a)

Similarly, let 
�
B
k

denote the kth linguistic value of the linguistic variable
�

y ; then
�

y takes on elements 

from the set of linguistic values 
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�
B  = {

�
B
k
; k = 1, 2, …, K} (6.40b)

The mapping of the inputs to the output in a fuzzy system is characterized by fuzzy IF-THEN 

rules. The inputs 
�
xj of the fuzzy system are associated with the premise, and the output 

�

y is 

associated with the consequent. The form of a linguistic rule is 

               IF 
�
x1 is

�
A

k1 1
, AND 

�
x2 is

�
A

k2 2
AND … AND 

� �
x A
n nkn
is THEN 

� �
y Bkis ;  (6.41)

k1 = 1, …, K1; k2 = 1, …, K2, …, kn = 1, …, Kn; k = 1, …, K. 

This rule has n propositions connected by logical connectives. Quite often, in engineering 

applications, we come across logical connective AND (conjunction operation). Our rule example has 

been taken with AND connective; however, the underlying concepts are valid for OR connectives 

(disjunction operation) as well.

Note that we allow for the case where the expert does not use all the linguistic terms (and hence, 

the fuzzy sets that characterize them) to state some rules. Stated equivalently, some premise terms 

in (6.41) may be missing; there does not need to be a premise term for each input in each rule, 

although often there is.

Consider now a fuzzy system with one input 
�
x and one output 

�

y; X and Y are universes of 

discourse for x and y, respectively. We assume that there are K
A
�

 linguistic values (fuzzy subsets) for 

the linguistic variable 
�
x, and 

�
A represents an element from this set. Similarly, we assume that there 

are K
B
�

 linguistic values (fuzzy subsets) for the linguistic variable 
�

y, and 
�
B represents an element 

from this set. The form of the linguistic rule is 

                                                 IF
�
x is

�
A THEN

� �
y Bis  (6.42a) 

A fuzzy rule can be interpreted as a fuzzy implication 

                                                              
� �
A BÆ  (6.42b)

In rule (6.42a), the premise is an atomic proposition Atomic fuzzy propositions do not, usually 

make a knowledge-base in real-life situations. Many propositions connected by logical connectives 

may be needed. A set of such compound propositions connected by IF-THEN rules, makes a 

knowledge-base.

Rule (6.41) is a general form for compound propositions connected by logical AND connectives. 

Compound propositions connected by logical OR connectives, may be dealt with on similar lines.

In Section 6.3, we defined fuzzy operations; conjunction (AND), disjunction (OR) on fuzzy 

sets that lie in the same universe of discourse. In fuzzy rules of the form (6.41), these operations 

are to be performed on fuzzy sets that lie in different universes of discourse. The fuzzy Cartesian 

product is used to quantify operations on many universes of discourse. If 
� � �
A A A

k k nkn1 21 2
, , ,º are 

fuzzy sets defined on the universes of discourse X1, X2, …, Xn, respectively, their Cartesian product, 

denoted by
� �

�

�

A A A
k k nkn1 21 2
¥ ¥ ¥ , is a fuzzy set specified by relation 

�
R(X1, X2, …, Xn). The fuzzy 

implication is then

                                                   
� �

�

� �

A A A B
k k nk kn1 21 2
¥ ¥ ¥ Æ  (6.43)
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This represents a mapping from n-dimensional product space X1 ¥ X2 ¥ … ¥ Xn to a single universe Y.

It is an entire set of rules of the form (6.41) that the expert specifies for a fuzzy inference system. 

We assume that there are a total of R rules in the rule-base numbered r = 1, 2, …, R; and we 

naturally assume that the rules in the rule-base are distinct (i.e., there are no two rules exactly with 

the same premise and consequent).

We note that if all the premise terms are present in every rule and a rule is formed for each 

possible combination of premise elements, then there are 

 Kj

j

n

=

’
1

 = K1 ¥ K2 ¥ … ¥ Kn (6.44)

rules in the rule-base. Clearly, the number of rules increases exponentially with an increase in the 

number of fuzzy system inputs or membership functions.

Given a linguistic variable 
�
xj with a linguistic value 

�
Ajkj

 defined on the universe of discourse 

Xj. The function m(
�
xj) associated with 

�
Ajkj

 that maps Xj to [0, 1] is the membership function. This 

membership function describes the certainty that an element of Xj, denoted xj, with a linguistic 

variable 
�
xj may be classified linguistically as 

�
Ajkj

.

In humans reasoning, our rules express cause-effect relations; fuzzy logic is a tool for transferring 

such structured knowledge into workable algorithms. Figure 6.17 expresses the cause-effect 

relationship for fuzzy logic algorithms.

º

Fuzzy rule-base
and

approximate
reasoning

(Fuzzy input)

1x
�

2x
�

n
x
�

y

�

(Fuzzy output)

Figure 6.17  Cause-effect relationship 

A fuzzy logic algorithm works on the existing imprecise knowledge available in the form of 

fuzzy rule-base. The cause (input) is fuzzy, and matching of the fuzzy rule-base with fuzzy input 

yields the effect (output), which is also fuzzy. 

In real-world applications, we are usually given the crisp inputs and we require crisp outputs for 

decision-making. Therefore, the given crisp inputs are fuzzified to create knowledge in appropriate 

form for the fuzzy logic algorithm. Also the fuzzy outputs of the algorithm are defuzzified to create 

crisp output for the user.

From our discussion in Section 6.3, it follows that for the fuzzy logic algorithm to perform 

matching operation, the knowledge expressed by IF-THEN rules should first be quantified via fuzzy 

relations. Only after the appropriate fuzzy relation of the rules is calculated, can some inference 

(based on approximate reasoning) to obtain new knowledge (output) from the existing knowledge 

(rule-base and input), take place.
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In this section, we will describe the required operations: quantification of fuzzy rules via fuzzy 

relations, fuzzification of input, inference mechanism, and defuzzification of inferred fuzzy sets.

    Example 6.9

We examine here the rule-base of a simple (toy) two-input, one-output problem that has three 

rules. The objective is to use this problem in this section for the purpose of illustrating the concepts 

involved in design and basic mechanics of fuzzy decision-making systems [5].

Rule-Base 

Rule 1: IF project_ funding is adequate OR project_staffing is small THEN risk is low 

Rule 2: IF project_ funding is marginal AND project_staffing is large THEN risk is normal 

Rule 3: IF project_ funding is inadequate THEN risk is high  (6.45a)

Let us define 

 • X1 : Universe of discourse for linguisting variable ‘project funding’

 • X2 : Universe of discourse for linguistic variable ‘project staffing’

 •  Y : Universe of discourse for linguistic variable ‘risk’

 • x1 Œ X1, variable representing project funding

 • x2 Œ X2, variable representing project staffing

 • y ŒY variable representing risk

 • Denote linguistic values ‘inadequate’, ‘marginal’, and ‘adequate’ as fuzzy sets 
� �
A A11 12, , and 

�
A
13

, respectively 

 • Denote linguistic values ‘small’, and ‘large’ as fuzzy sets 
� �
A A
21 22
and , respectively

 • Denote linguistic values ‘low’, ‘normal’, and ‘high’ as fuzzy sets 
� � �
B B B1 2 3, , ,and  respectively

                            
� � �

A x x x X
k A Ak k1 1 1 1 11 1 1 1 1

0 1= Œ Œ{( , ( )) | , [ , ]};m m  k1 = 1, 2, 3

                           
� � �

A x x x X
k A Ak k2 2 2 2 22 2 2 2 2

0 1= Œ Œ{( , ( )) | , [ , ]}m m ; k2 = 1, 2 (6.45b)

                              
� � �

B y y y Yk B Bk k
= Œ Œ{( , ( )) | , [ , ]}m m 0 1 ; k = 1, 2, 3

The rule-base for the problem in terms of the defined variables and fuzzy sets, becomes:

Rule 1: IF
� � � � � �
x A x A y B
1 13 2 21 1
is OR is THEN is  

Rule 2: IF 
� � � � � �
x A x A y B
1 12 2 22 2
is AND is THEN is  (6.45c)

Rule 3: IF 
� � � �
x A y B
1 11 3
is THEN is

The membership functions for all the 8 linguistic values (three for input 
�
x1, two for input 

�
x2, and 

three for the output 
�

y) are shown in Fig. 6.18. The ranges of the universes of discourse X1, X2, and 

Y have been taken as 0% to 100%.
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Figure 6.18  Membership functions for the rule base (6.45c)

6.4.1  Quantification of Rules via Fuzzy Relations

A fuzzy logic algorithm based on approximate reasoning works on the existing imprecise knowledge 

available in the form of fuzzy rule-base. The algorithm obtains new knowledge (imprecise) from 

the existing knowledge through some inference mechanism. To perform inference, it requires 

quantification of fuzzy rules. To do this, we first quantify the meaning of the premises of the rules 

that are composed of several terms. This is followed by quantification of the fuzzy implications.

Premise Quantification: Here, we examine the ways of quantifying the logical ‘AND’ and ‘OR’ 

operations that combine the meaning of linguistic terms in the premise of a rule, i.e., we examine 

fuzzy conjunction and fuzzy disjunction functions defined on fuzzy sets that lie in different universes 

of discourse. The fuzzy Cartesian product is used to quantify operations on many universes of 

discourse.

The Cartesian product of two crisp sets X1 and X2 is denoted as,

 X1 ¥ X2 = {(x1, x2)| x1 Œ X1 and x2 Œ X2} (6.46)

The Cartesian product of two fuzzy sets 
�
A1 and 

�
A2 that lie in universes X1 and X2, respectively, 

with membership functions, m
�
A1

(x1) and m
�
A2

(x2), is denoted by
� �
A A
1 2
¥ . The conjunction or 

disjunction operation on these fuzzy sets results in a fuzzy relation 
�
R, which itself is a fuzzy set 

with membership function m
�
R(x1, x2).
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The conjunction fuzzy relation 
�
R between fuzzy sets 

� �
A A
1 2
and  may be obtained using the 

following triangular norms. 

 • Minimum: m
�
R(x1, x2) = min{ ( ), ( )}m m

� �
A A

x x
1 21 2 , that is, using the minimum of the two 

membership values. (6.47a)

 • Algebraic Product: m m m
� � �
R A A

x x x x( , ) ( ) ( ),1 2 1 21 2
=  that is, using the product of the two 

membership values. (6.47b)

Do these quantifications make sense? Note that both ways of quantifying the ‘AND’ operation 

indicate that we can be no more certain about the conjunction of the two statements than we are 

about the individual terms that make them up. If we are not very certain about the truth of one 

statement, how can we be any more certain about the truth of that statement ‘AND’ the other 

statement?

Other triangular norms can also be used to represent conjunction, but the two listed above are 

the most commonly used.

The disjunction fuzzy relation 
�
R between fuzzy sets 

� �
A A
1 2
and  may be obtained using the 

following triangular co-norms.

 • Maximum: m m m
� � �
R A A
x x x x( , ) { ( ), ( )}1 2 1 21 2

= max  (6.48a)

 • Algebraic sum: m m m m m
� � � � �
R A A A A

x x x x x x( , ) ( ) ( ) ( ) ( )1 2 1 2 1 21 2 1 2
= + -  (6.48b)

Other triangular co-norms can also be used to represent disjunction, but the two listed above are 

the most commonly used.

We have earlier listed the commonly used triangular norms and triangular co-norms in Section 

6.3.3 for the intersection and union functions defined on fuzzy sets that lie in the same universe 

of discourse. Triangular norms are employed for intersection while triangular co-norms for union.

The set-theoretic operations such as intersection or union applied to fuzzy sets defined in 

different domains result in a multi-dimensional fuzzy set in the Cartesian product of these domains. 

The operation is, in fact, performed by first extending (cylindrical extension (Section 6.3.4)) the 

original fuzzy sets into Cartesian product domain and then computing the operation on these multi-

dimensional fuzzy sets. Consider for example Cartesian-product intersection. Fuzzy sets 
�
A1 and 

�
A2 

are subsets of universes of discourse X1 and X2, respectively. The conjunction fuzzy set 
� �
A A
1 2
¥  is 

given by 

                                                                  
� � � �
A A ceA ceA
1 2 1 2
¥ = «  (6.49)

where both ceA ceA
� �
1 2
and (cylindrical extensions of 

� �
A A1 2and , respectively) are defined on the 

product space X1 ¥ X2.

                                            m m m
� � � �
A A ceA ceA

x x x x x x
1 2 1 21 2 1 2 1 2¥

= Ÿ( , ) ( , ) ( , )  (6.50a)

The cylindrical extension is usually considered implicitly and it is not stated in the notation:

                                            m m m
� � � �
A A A A

x x x x
1 2 1 21 2 1 2¥

= Ÿ( , ) ( ) ( )  (6.50b)

In fuzzy rule-base, intersection is used to represent the ‘AND’ operation, while union is used to 

represent the ‘OR’ operation. Conjunction and disjunction functions defined on fuzzy sets that lie 

in different universes of discourse represent intersection and union, respectively.
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The fuzzy relation given by conjunction/disjunction function is actually a surface over the 

Cartesian product X1 ¥ X2, a three-dimensional plot ( , , ( , ))x x x x
A A1 2 1 21 2

m
� �
¥

.

Fuzzy Implication Relations: In everyday human reasoning, implications are used to combine 

somehow related statements. Human reasoning is based on cause-effect relations; there has to be a 

causality between the antecedent (IF part) and the consequent (THEN part). Fuzzy logic is a tool 

for transferring such structured knowledge into workable algorithms. 

For fuzzy implication, there can be no effect (output) without a cause (input). The quantification 

of fuzzy implication may be based on the logic that truth value of the conclusion must not be larger 

than that of the premise, i.e., we can be no more certain about our conclusions than we are about 

our premises. 

Consider the rule ‘IF 
� �
x Ais THEN 

� �
y Bis ’, written as 

� �
A BÆ , and defined on universes X and 

Y, respectively. The minimum and product fuzzy implications are the two most commonly used 

functions to quantify the implication operator.

 • Minimum fuzzy implication:

                                               m m m
� � � �
A B A Bx y x y
Æ

=( , ) { ( ), ( )}min  (6.51a)

 • Product fuzzy implication:

                                               m m m
� � � �
A B A Bx y x y
Æ

=( , ) ( ) ( )  (6.51b)

Note that m
� �
A B x y
Æ

( , ) defines a fuzzy set implied by the rule. The implication 
� �
A BÆ  is, thus, a 

fuzzy relation defined on {(x, y)| x Œ X and y Œ Y}.

Many fuzzy implications have been proposed in the literature. The two listed above use the 

definition of fuzzy conjunction (intersection operator).

6.4.2  Fuzzification of Input 

In the previous section, we have seen that fuzzy sets are used to quantify the knowledge in the 

rule-base. Next section will describe inference mechanism that operates on fuzzy sets to produce 

fuzzy sets. As we shall see, the mechanism works on the principle of matching input fuzzy sets with 

rule-base fuzzy sets, requiring input to the fuzzy system being specified in the form of fuzzy sets.

In the real-world applications, we are usually given the crisp inputs. A fuzzy logic system works 

on fuzzy inputs; therefore, an additional process of fuzzification is required.

Quite often, singleton fuzzification is used for crisp inputs. Singleton fuzzification, given by Eqn 

(6.18) and graphically shown in Fig. 6.12, is simply a different representation for the number x0. 

This fuzzification is usually employed in implementations because in the absence of noise, we are 

undeniably sure that x0 takes on its measured value (and no other value), and it offers some savings 

in calculations required for implementation of a fuzzy system (relative to, for instance, Gaussian 

fuzzification). Most practical implementations of fuzzy systems use singleton fuzzfication. Our 

focus in this book on applied machine learning, will therefore be on singleton inputs to fuzzy 

systems.
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6.4.3  Inference Mechanism 

In Section 6.3.4, we discussed relational inference. A summary will be helpful for ongoing 

discussion. 

Suppose there exists a fuzzy relation 
�
R in product space X ¥ Y, and 

�
A is a fuzzy set in X. Then 

fuzzy set 
�
B in Y can be induced by 

�
A through the composition of 

�
A and 

�
R.

                                                                         
� � �
B A R=   (6.52a)

This composition is defined by 

                                                          
� � �
B proj R ceA Y= «( ) on  (6.52b)

where 
� �
R ceAand (cylindrical extension of 

�
A) are fuzzy sets in space X ¥ Y, and proj ( )

� �
R ceA« is the 

projection of 
� �
R ceA« (intersection (combination) of 

� �
R ceAand ) on Y.

We considered two popular composition operators: 

Max-Min composition 

                                          m m m
� � �
B

x
A Ry x x y( ) [ ( ( ), ( , ))]= max min  (6.53a)

Max-Product composition

                                          m m m
� � �
B

x
A Ry x x y( ) [ ( ) ( , )]= max  (6.53b)

Note that cylindrical extension of 
�
A into X ¥ Y is implicit, and Max-Min and Max-Product 

composition operators show projection and combination (intersection) phases.

Equations (6.53a) and (6.53b) may be represented by a single general equation.

                                        m m m
� � �
B

x
A Ry x y( ) [ ( ) ( )];= Ÿmax  Ÿ is a t-norm. (6.54) 

Inference in fuzzy rule-based systems is the process of deriving an output fuzzy set given the 

rules and the inputs. A rule-base in a fuzzy system can be regarded as a fuzzy relation. Consider a 

fuzzy rule-base consisting of rules with atomic propositions. General rth rule; r = 1, …, R, in this 

rule-base, is of the form:

                             Rule r : IF x is 
�
A

r( )  THEN y is 
�
B

r( ); r = 1, …, R; x Œ X, y Œ Y (6.55)

Each rule in the rule-base can be represented by a fuzzy relation 
�
R

r( ): X ¥ Y Æ [0, 1], computed 

by implication operator. Two popular implication operations have been listed earlier in this section:

Minimum fuzzy implication 

                             m m m m

� � � � �
R A B A B

r r r r rx y x y x y( ) ( ) ( ) ( ) ( )( , ) ( ( ), ( )) ( , )= =
Æ

min  (6.56a)

Product fuzzy implication 

                             m m m m

� � � � �
R A B A B

r r r r rx y x y x y( ) ( ) ( ) ( ) ( )( , ) [ ( ) ( )] ( , )= =
Æ

 (6.56b)

The entire rule-base (6.55) is represented by aggregating the relations 
�
R

r( ) of the individual rules 

into a single fuzzy relation 
�
R. The relations 

�
R

r( ) represent implications; the aggregated relation is 

obtained by a union operator. In other words, the rules are implicitly connected by ‘OR’ operator.
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� � � �

∪R R x y x y
r

R
r R

r

R

R
r= =

£ £
=

( ), , ( , ) [ ( , )]( )that is m mmax
1

1

 (6.57)

Substituting from Eqn (6.56a)/Eqn (6.56b), the rule-base relation 
�
R may be expressed as, 

                                  
�

� �

R x y
r R A B

r r= Ÿ
£ £

max
1

[ ( ) ( )]( ) ( )m m ; Ÿ is a t-norm (6.58)

Once the rule-base is represented as a fuzzy relation, the output of the rule-based model can then 

be computed by the relational composition operator given by Eqn (6.52). 

For the rule-based models, the reasoning scheme can be simplified bypassing the relational 

calculus. This is advantageous as discretization of domains and storing of relation 
�
R can be avoided. 

In the following, we present a reasoning scheme for rule-based systems which does not require any 

discretization; it works directly with continuous membership functions.

Suppose an input fuzzy set is x = 
�

¢A . Given the fuzzy rule-base (6.55) and the fuzzy input, the 

inference mechanism yields output fuzzy set 
�

¢B (refer to Eqn (6.54)):

                                            m m m
� � �
¢ ¢

= ŸB
x

A Ry x x y( ) { ( ) ( , )}max  (6.59a)

Substituting for m
�
R x y( , )  from Eqn (6.58),

                         m m m m
� � � �

¢ ¢
£ £

= Ÿ ŸB
x

A
r R A B

y x x yr r( ) { ( ) [ ( ( ) ( ))]}( ) ( )max max
1

 (6.59b)

Since the max and Ÿ operations are taken over different domains, their order can be changed as 

follows: 
m m m m

� � � �

¢
£ £

¢
= Ÿ ŸB

r R x
A A B

y x x yr r( ) { [ ( ) ( ( ) ( ))]}( ) ( )max max
1

                                                = max max
1£ £

¢
Ÿ Ÿ

r R x
A A B

x x yr r{ [ ( ) ( ) ( )]}( ) ( )m m m
� � �

  (6.60)

Denote 

                                          a(r) = max
x

A A
x xr[ ( ) ( )]( )m m

� �

¢
Ÿ  (6.61)

                                                 = the degree of fulfillment of the rth-rule antecedent

It is also called matching degree, representing the compatibility of the antecedent condition of the 

rule and the input.

The output fuzzy set of the linguistic model is thus, 

                                    m a m
� �

¢
£ £

= Ÿ ŒB
r R

r

B
y y y Yr( ) [ ( )],( )

( )max
1

 (6.62)

The union (max operator in Eqn (6.62)) of the fuzzy sets representing conclusions [ ( )]( )
( )a m

r

B
r yŸ

�

 

from various rules results in an overall implied fuzzy set 
�

¢B .

The fuzzy inference algorithm is summarized below. 

 1. Compute the degree of fillment for each rule: 

                                            a(r) = max
x

A A
x xr[ ( ) ( )]( )m m

� �

¢
Ÿ ; 1 £ r £ R (6.63a)
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  Note that for singleton fuzzy set
�

¢A , 

                                       m
�
¢ =

=Ï
Ì
Ó

A
x

x x
( )

1

0

0

otherwise
  (6.63b)

  The equation for a(r) simplifies to 

                                            a(r) = m
�
A

r x( ) ( )0  (6.63c)

 2. Derive the output fuzzy sets m
�

¢B
r( ) for each rule:

                           m a m

� �
¢

= Ÿ
B

r

B
r ry y( ) ( )( ) ( )( ) ; y ŒY, 1 £ r £ R (6.64)

 3. Aggregate the output fuzzy sets:

                              m m
� �

¢
£ £ ¢

=B
r R B

y yr( ) [ ( )]( )max
1

; y ŒY (6.65)

Rules with Several Inputs 

We have so far described the inference mechanism for the rule-based models having antecedents 

with atomic (single) propositions (Eqns (6.42)). In real-life applications, we come across rule-based 

models with rules having compound (several) propositions. Fuzzy logic operators (connectives) 

such as conjunction or disjunction, can be used to combine the propositions. The connectives AND 

and OR are implemented by t-norms, and t-conorms, respectively.

Consider the following antecedent of a rule:

                                          IF x1 is 
�
A1  AND x2 is 

�
A2  THEN y is

�
B  (6.66a)

where 
� �
A A
1 2
and  have membership functions m

�
A1

(x) and m
�
A2

(x), respectively. The premise of the rule 

can be represented by a fuzzy set with the membership function

                                        mpremise(x1, x2) = m m
� �
A A

x x
1 2
( ) ( )Ÿ  (6.66b)

where ‘Ÿ’ stands for the selected t-norm to model the AND connective.

The relation
� � � �
R A A B= Æ( )1 2AND is defined by 

   m
�
R(x1, x2, y) = m( )

� � �
A A B1 2AND Æ

(x1, x2, y) (6.66c)

When the inputs are crisp and treated as fuzzy singletons: x1 = x10, and x2 = x20, then output 

m m m
� � ���� � ����� �
¢ =B A Ay x x( ) [ ( ) ( )]

Inference
Output

IF

AND
1 210 20

����� ��
Æ mB y( )

THEN

Therefore, 

                                         m a m
� �
¢

= ŸB By y( ) ( )  (6.66d)

where 

                                                 a = m m
� �
A A

x x
1 210 20( ) ( )Ÿ   (6.66e)

is the degree of fulfillment (matching degree) of the inputs with rule antecedent.
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When inputs are fuzzy sets 
� �

¢ ¢A A
1 2
and  (this may correspond to situations where inputs are based 

on expert estimate) then 

                    m a m
� �
¢

= ŸB By y( ) [ ( )] ; y ŒY (6.67a)

where 

                            a = [ ( ( ) ( ))] [ ( ( ) ( ))]max max
x

A A
x

A A
x x x xm m m m

� � � �
¢ ¢

Ÿ Ÿ Ÿ
1 1 2 2

 (6.67b)

For systems with several inputs, the inference mechanism given by Eqns (6.63–6.65) is applicable 

with the only change in computation of degree of fulfillment a(r) for rule r. The degree of fulfillment 

a(r) now is obtained by applying logical connectives AND/OR to the antecedents of the fuzzy rules.

Fuzzy logic researchers have proposed and applied several t-norms/t-conorms to execute ‘Ÿ’ 

operations in Eqn (6.66), and of course different methods may lead to different results. Most of 

the fuzzy-system software tools allow us to customize the t-norms for computation of degree of 

fulfillment (Eqn (6.66e)), AND/OR logical connectives t-norms/t-conorms (Eqn (6.66b)), and 

t-norm for fuzzy implication (Eqn (6.66d)). The user is required to make the choice.

The most popular choice is min operator for computation of degree of fulfillment, min/max for 

AND/OR, and min for fuzzy implication. Our focus in application examples will be on this widely 

used choice.

Singleton Model for Consequents 

A special case of the linguistic fuzzy model is obtained when the consequent fuzzy set 
�
B is a 

singleton set. This set can be represented by real number b, yielding the following type of fuzzy 

rule for rule r in the rule-base; r = 1, …, R.

                              IF x1 is 
�
A

r

1
( )  AND x2 is 

�
A

r

2
( )  THEN y = b(r) (6.68)

We will see in Section 6.6 that the singleton model can also be seen as a special case of Takagi-

Sugeno fuzzy model. The advantage of singleton model for consequents is that the consequent 

parameters b(r) can easily be estimated from data using least-squares techniques.

Graphical Visualization of the Fuzzy-Inference Algorithm

For graphical visualization of the fuzzy inference algorithm, let us consider different kinds of 

rule-base conditions.

Inferred Fuzzy Set of a Single Atomic Fuzzy Rule 

Fuzzy logic allows inference when the input is close to the premise of a rule, but not equal. It 

produces an output which is close to the consequent of the rule, but not equal. A typical problem in 

fuzzy approximate reasoning is as follows: 

Implication : IF x is 
�
A  THEN y is

�
B  

Given input : x is 
�

¢A  (6.69a)

Output         : ?

Given the fuzzy rule and the fuzzy input, the inference mechanism yields
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Output : y = 
�

¢B  (6.69b)

A graphical representation of fuzzy inference algorithm is shown in Fig. 6.19.
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Figure 6.19  Inference of a single atomic fuzzy rule 

It may be noted that the consequent membership function is clipped or scaled to the level of 

degree of fulfillment of the rule antecedent, leading to not-normal fuzzy sets.

The commonly used technique of correlating the rule consequent with the degree of fulfillment 

of the rule antecedent is to merely cut the consequent membership function at the level of the 



Fuzzy Inference Systems  289

degree of fulfillment (minimum fuzzy implication). This technique is known as clipping. With the 

top of the membership function being sliced, the clipped fuzzy set suffers some loss of information. 

But clipping is often favored as it results in algorithms that are simpler and faster.

Scaling is useful in preserving the original shape of the fuzzy set: the original membership 

function of the rule consequent is adjusted through the multiplication of all the membership levels 

by the degree of fulfillment of the rule antecedent (product fuzzy implication).

Inferred Fuzzy Set of a Single Compound Fuzzy Rule 

Implication: IF x1 is 
�
A1  AND x2 is 

�
A2 THEN y is 

�
B

Given input: x1 = 
�

¢A1 and x2 =
�

¢A2

Output: y = 
�

¢B ?

Figure 6.20 shows the graphical representation of fuzzy inference algorithm for 

 (i) crisp input: x10, x20 (ii) fuzzy input: 
� �

¢ ¢A A1 2,

x1
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m m
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�
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Figure 6.20  Inference of a single compound fuzzy rule
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Given input: x is 
�

¢A

Output: y is 
�

¢B ?

Figure 6.21 shows the graphical representation of fuzzy inference algorithm for crisp input x0: 

a fuzzy singleton.
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Figure 6.21  Inference of rule-base with atomic propositions

Note that for the given input x0, the degree of fulfillment of the antecedent of rule 1 is a(1) =

m
�
A1

(x0), and degree of fulfillment of rule 2 is a (2) = m
�
A2

(x0). Since m
�
A3

(x0) = 0, the degree of 
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fulfillment a(3) = 0. This equivalently means that for the given input, rule 3 is not ‘ON’, i.e., given 

input does not ‘trigger’ rule 3.

Determining applicability of a rule is called ‘firing’. We say that a rule fires if its degree of 

fulfillment is greater than zero. The degree of fulfillment is also called f iring strength. The inference 

mechanism seeks to determine which rules fire to find out which rules are relevant to the current 

situation. The inference mechanism then combines the recommendations of all the rules that fire, to 

come up with the single conclusion.

The firing strength of the antecedent of a rule determines the certainty with which that rule 

applies, and typically we will more strongly take into account the recommendations of the rules 

that we are more certain apply to the current situation. For example, from Fig. 6.21 we observe that 

m
�
A1

(x0) > m
�
A2

(x0). Therefore, certainty of rule 1 is higher than that of rule 2; recommendation of rule 

1 gets greater weightage in the overall conclusion derived from the rule-base (This will become 

clear later when we discuss defuzzification process to obtain crisp value of the overall conclusion). 

However, all the rules that fire, contribute to the overall conclusion.

Figure 6.21 shows two types of output of the inference process: 

 • Recommendations represented by implied fuzzy sets from all the rules that fire.

 • Recommendation represented by aggregated implied fuzzy set. Aggregation is the process 

of unification (union operator) of the outputs of all the rules. In other words, we take the 

membership functions of all the rule consequents previously clipped (or scaled) and combine 

them into a single fuzzy set (obtained by drawing all the inferred fuzzy sets on one axis, as 

shown in Fig. 6.21).

In the next section, we will describe the defuzzification process which operates on the implied 

fuzzy sets produced by the rules that fire, and combines their effects to provide the ‘most certain’ 

crisp value of the output y. We will also describe an alternative defuzzification scheme of obtaining 

the crisp output from aggregated implied fuzzy set.

One observation can, however, be made here itself. The crisp value of the output is certainly a 

function of the area under the inferred fuzzy sets. For the output to be finite, the area must be finite. 

Therefore for the output y, the membership functions at the outermost edges (
�
B1 and 

�
B3 in Fig. 6.21) 

cannot be ‘saturated’. This is essential for the fuzzy system to be properly defined. For the input, 

there is no such restriction; the membership 
�
A3 in Fig. 6.21 saturates at a value of one. 

Inferred Fuzzy Set of Fuzzy Rule-Base with Compound Propositions 

Consider a fuzzy inference system characterized by three fuzzy variables:

Input variables: x1 Œ X1 = [0, 125]; x2 Œ X2 = [0, 10]

Output variable: y ŒY = [0, 10]

The linguistic values of x1 are described by fuzzy subsets 
� � � � �
A A A A A11 12 13 14 15, , , and . The linguistic 

values of x2 are described by fuzzy subsets 
� � � � �
A A A A A21 22 23 24 25, , , and , and those of y by 

� �
B B1 2, , 

� �
B B3 4,  and 

�
B5.

With the membership function encompassing all fuzziness for a specific fuzzy set, the way it 

is described reflects the essence of a fuzzy operation. Due to the significance of the ‘shape’ of the 
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membership function, several shapes for assigning membership values to fuzzy variables have 

been proposed (refer to Section 6.3.2). Optimization of these assignments is often done through 

tial-and-error. Figures 6.22–6.24 show an assignment of ranges and fuzzy membership functions 

for x1, x2, and y.

Now that we have inputs and output in terms of fuzzy variables, we need to construct a set of 

rules for the operation of the fuzzy inference system. The rule-base matrix for our example is given 

in Table 6.2. Note that we do not need to specify all the cells in the matrix. No entry signifies no 

action (inference) for that situation.

0 10 20 30 40 50 60 6570 80 90 100 110 120
x1
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1
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�

Figure 6.22  Fuzzy membership functions for x1
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Figure 6.23  Fuzzy membership functions for x2
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Figure 6.24  Fuzzy membership functions for the output y

We can translate the table entries into IF-THEN rules. We give here a couple of examples.

 • IF x1 is 
�
A
12

 AND x2 is 
�
A22 THEN y is 

�
B3

 • IF x1 is 
�
A11 AND x2 is 

�
A
24

 THEN y is 
�
B5

Table 6.2  Rule Table 

Output y

Input x1

�
A11

�
A
12

�
A
13

�
A
14

�
A
15

Input

x2 �
A
21

�
B3

�
B2

�
B1

�
A22

�
B4

�
B3

�
B1

�
B1

�
A
23

�
B5

�
B4

�
B3

�
B1

�
A
24

�
B5

�
B4

�
B4

�
B2

�
A
25

�
B5

�
B4

�
B4

�
B3

We assume that input is defined as x10 = 65, x20 = 6.5. Figures 6.22–6.23 show the fuzzy singletons 

corresponding to the given input. For x1 = 65, m
�
A13

(65) = 0.45 and m
�
A14

(65) = 0.28, and all other 

membership functions are off (i.e., their values are zero). Therefore, the proposition ‘x1 is 
�
A
13

’ is 

satisfied to a degree of 0.45 and the proposition ‘x1 is 
�
A
14

’ is satisfied to a degree of 0.28; all other 
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atomic propositions associated with x1 are not satisfied. For x2 = 6.5, m
�
A23

(6.5) = 0.25 and m
�
A24

(6.5) 

= 0.38; all other membership functions are off.

From the rule table (Table 6.2), we observe that the rules that have premise terms

 (i) x1 is 
�
A
13

 AND x2 is 
�
A
23

 (ii) x1 is 
�
A
14

 AND x2 is 
�
A
23

 (iii) x1 is 
�
A
13

 AND x2 is 
�
A
24

 (iv) x1 is 
�
A
14

 AND x2 is 
�
A
24

have mpremise(degree of fulfillment) > 0. For all other rules, degree of fulfillment is zero. Therefore, 

for the given inputs, only four rules given above fire. Firing strengths of these rules are:

 (i) m
� �
A A13 23¥

 = min (0.45, 0.25) = 0.25

 (ii) m
� �
A A14 23¥

 = min(0.28, 0.25) = 0.25

 (iii) m
� �
A A13 24¥

 = min (0.45, 0.38) = 0.38

 (iv) m
� �
A A14 24¥

 = min (0.28, 0.38) = 0.28

Output recommendation of each rule is shown in Fig. 6.25. Figure 6.26 shows the aggregated 

output 
�

¢B .
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Figure 6.25  Inference for each rule 
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Figure 6.26  Aggregated fuzzy set 
�

¢B

There are several ways to select the parameters of the fuzzy inference system that seem sensible. 

Which of the membership functions are the best? What is the number of linguistic values and rules 

that should exist? Should minimum or product be representing ‘AND’ in the premise—and the 

implication? Which defuzzification technique should one select? Such questions must necessarily 

be answered while designing a fuzzy inference system.

Generally, the selection of all the parts of the fuzzy system is done using a kind of trial-and-error 

approach. But eventually, the aforementioned questions can be answered through the experience 

of designing fuzzy inference systems for a variety of applications presenting challenging 

characteristics. This is what we do in this chapter.

    Example 6.10

Let us revisit Example 6.9. The rule-base of the fuzzy system considered in the example, is given 

by (6.45a). Fuzzy variables and fuzzy sets defined for this system are given in (6.45b), and the 

rule-base in terms of these variables and fuzzy sets is given in (6.45c). The membership functions 

for all the linguistic values are shown in Fig. 6.18.

We consider the crisp input: x1(project_funding) = 35%, and x2 (project_staffing) = 65%. As 

seen in Fig. 6.27, the crisp input x10 corresponds to the membership functions of 
�
A11 (inadequate) 

and 
�
A
12

(marginal) to the degrees of 0.5 and 0.2, respectively. The crisp input x20 corresponds to 

the membership functions of 
�
A
21

(small) and 
�
A22 (large) to the degrees of 0.1 and 0.7, respectively. 

Firing strengths (degrees of fulfillment) of the three rules are obtained as follows:

 a(1) = max[ ( ), ( )]m m
� �
A A

x x
13 2110 20  = max[0.0, 0.1] = 0.1

 a(2) = min[ ( ), ( )]m m
� �
A A

x x
12 2210 20  = min[0.2, 0.7] = 0.2

 a(3) = m
�
A

x
11 10( )  = 0.5

Now for each rule, the result of the antecedent evaluation can be applied to the membership 

functions of the consequent; the consequent membership function is clipped to the level of firing 

strength of the rule. The implied fuzzy sets of the rules are then aggregated. Figure 6.28 shows the 

implied fuzzy sets of the rules, and the aggregated fuzzy set.
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Figure 6.27  Fuzzy membership functions
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Figure 6.28

Rule-Base with Singleton Consequents 

It is possible to make use of one spike, a singleton, as the membership function of the rule consequent. 

A fuzzy singleton is a fuzzy set possessing a membership that is unity at a single particular point on 

the universe of discourse and zero everywhere else.
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Fuzzy inference mechanism for singleton consequents is similar to the one described earlier for 

fuzzy-set consequents in Figs 6.22–6.26; instead of triangular fuzzy sets 
�
B1, 

� � �
B B B2 3 4, , , and 

�
B5, we 

use fuzzy singletons.

    Example 6.11

Let us reconsider the fuzzy system described earlier in Examples 6.9 and 6.10; now with singleton 

consequents.

The output of each fuzzy rule is now constant. The rule-base is now given as, 

Rule-base:

IF is OR is THEN is

IF is AND is THEN i

x A x A y b

x A x A y

1 13 2 21
1

1 12 2 22

� �

� �

( )

ss

IF is THEN is

b

x A y b

( )

( )

2

1 11
3

�

Ï

Ì
ÔÔ

Ó
Ô
Ô

Given input: x10, x20

For the given input (x10, x20), the degree of fulfillment of rule 1 is a (1) = max[ ( ), ( )];m m
� �
A A

x x
13 2110 20  

for rule 2, a (2) = min[ ( ), ( )];m m
� �
A A

x x
12 2210 20  and for rule 3, a (3) = m

�
A11

(x10). 

Figure 6.29 shows graphical representation of fuzzy inference process. It shows the implied 

singleton fuzzy set of each rule, as well as the aggregated output fuzzy set.

The similarity of fuzzy inference represented in Figs 6.27–6.28 and Fig. 6.29, is quite noticeable. 

The only distinction is that rule consequents are singletons in Fig. 6.29. From Fig. 6.27, we have 

a (1) = 0.1, a (2) = 0.2, and a (3) = 0.5. The fuzzy sets of Fig. 6.28 are now replaced by singletons b(1) 

= 20, b(2) = 50, and b(3) = 80.

y
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Figure 6.29
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6.4.4  Defuzzification of Inferred Fuzzy Set 

Next, we consider the defuzzification operation, which is the final component of the fuzzy inference 

system. The operation of defuzzification is carried out on the implied fuzzy sets created by the 

inference mechanism and the results of this process are combined to provide the ‘most certain’ 

output. Defuzzification may be thought of as ‘decoding’ the fuzzy set information produced by 

implied fuzzy sets of the rules that fire, into numeric output.

As an alternative, the inference mechanism could, in addition, calculate the aggregated  

implied fuzzy set representing the conclusion arrived at, taking into account all the rules firing 

simultaneously. Defuzzification then operates on this aggregated implied fuzzy set to provide the 

‘most certain’ output.

There are several defuzzification strategies, and it is easy to create/devise many more. Each one 

offers a means to select one crisp output, on the basis of either aggregated implied fuzzy set or 

implied fuzzy sets of each rule individually.

In the following, the two most popular defuzzification methods are presented: the center-of-

gravity (COG) and the Mean-of-maxima (MOM).

COG method:  It finds the point where a vertical line would slice the aggregate fuzzy set 
�

¢B  

into two equal masses (areas). The method is also called centroid defuzzification or center-of-area 

(COA) defuzzification.

Mathematically, the COG can be expressed as, 

 COG = 
m

m

�

�

¢

¢

Ú

Ú

B
y

B
y

y y dy

y dy

( )

( )
 (6.70)

In theory, the COG is calculated over a continuum of points in the aggregate output membership 

function m
�

¢B y( ), but in practice, a reasonable estimate can be obtained by calculating it over a 

sample of points. In this case, we may discretize the universe Y into q equal (or almost equal) 

subintervals by the points y1, y2, …, yq–1. The crisp value y ¢, according to this method, is 

 y¢ = 

y y

y

k B k

k

q

B k

k

q

m

m

�

�

¢

=

-

¢

=

-

Â

Â

( )

( )

1

1

1

1
 (6.71a)

Consider, for example, the aggregated fuzzy set shown in Fig. 6.26. From this figure, we obtain

y yk B km
�
¢Â ( )  = 1 ¥ 0.25 + 1.5 ¥ 0.25 + 2 ¥ 0.28 + 3 ¥ 0.28 + 4 ¥ 0.25 + 5 ¥ 0.25 + 6 ¥ 0.25 + 7 

¥ 0.38 + 8 ¥ 0.38 = 11.475

    m
�
¢Â B ky( )  = 0.25 + 0.25 + 0.28 + 0.28 + 0.25 + 0.25 + 0.25 + 0.38 + 0.38 = 2.57

Therefore, 

y¢ = 
11 475

2 57
4 46

.

.
.=
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The physical interpretation of y¢ is that, if the area is cut of a thin piece of metal or wood, the 

center of the area will be the center of gravity.

In fact, there is hardly any need of discretization of the universe for situations like the one shown 

in Fig. 6.26; we can split up geometry into pieces and place a straight edge (centroid) through the 

area of each piece to have it perfectly balanced with equal area of the figure on either side. The crisp 

output can be calculated using the expression given below:

                y¢ = 

( ) ( )

(

area of sub-region center of area of sub-region

are

th
p p

p

P

¥

=

Â
1

aa of sub-region p
p

P

)
=

Â
1

 (6.71b)

where P indicates the number of small pieces of area or sub-regions.

Using the aggregated implied fuzzy set for defuzzification has two associated problems: (1) The 

aggregated implied fuzzy set itself is difficult to compute; (2) The defuzzification of aggregated 

fuzzy set is also difficult to compute.

It may turn out to be a computationally simple and acceptable solution if individual implied 

fuzzy sets from each fired rule are used in defuzzification process. Area and center of area of each 

implied fuzzy set is calculated, and then COG is computed.

Let b(r) denote the center of membership function m(r)(y) of the implied fuzzy set of rule r, and 

m
( )( )r

y
y dyÚ denote the area under the membership function m(r)(y). The COG method computes 

crisp output y ¢ to be 

 y ¢ = 

b y dy

y dy

r r

y
r

R

r

y
r

R

( ) ( )

( )

( )

( )

m

m

ÚÂ

ÚÂ

=

=

1

1

   (6.72a)

 = 

( ) (Area of the implied fuzzy set of rule Center of area of this fuzzyr ¥ sset

Area of the implied fuzzy set of rule

)
r

R

r

R

r

=

=

Â

Â

1

1

 (6.72b)

Center-Average Method: In the center-average method of defuzzification, we let 

 y¢ = 

b
r r

r

R

r

r

R

( ) ( )

( )

a

a

=

=

Â

Â

1

1

 (6.73)
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where b(r) denotes the center of membership function m(r)(y) of the implied fuzzy set of rule r, and 

a (r) is the degree of fulfillment (firing strength) of rule r. We call it the ‘center-average’ technique 

as Eqn (6.73) is a weighted average of the center values of the output membership functions of 

the rules. The center-average technique replaces the areas of the implied fuzzy sets employed in 

COG with the values of firing strengths a (r). This replacement is a valid one because the area of the 

implied fuzzy set is usually proportional to a (r).

Weighted-Average of Implied Singletons

For the singleton model, the weighted-average of the implied singletons results in defuzzification 

of the model to the crisp output y ¢:

 y¢ = 

a

a

( ) ( )

( )

r r

r

R

r

r

R

b

=

=

Â

Â

1

1

 (6.74)

Note that in this equation, b(r) are singletons.

    Example 6.12 

Let us revisit the fuzzy system considered in Examples 6.9–6.11.

The COG defuzzification of the aggretated fuzzy set in Fig. 6.28:

COG = 
( ) . ( ) . ( ) .

. .

0 10 20 0 1 30 40 50 60 0 2 70 80 90 100 0 5

0 1 0 1

+ + ¥ + + + + ¥ + + + + ¥

+ + 00 1 0 2 0 2 0 2 0 2 0 5 0 5 0 5 0 5. . . . . . . . .+ + + + + + + +

         = 67.4

It means that the risk involved in our ‘fuzzy’ project is 67.4%.

Weighted average of the singletons in Fig. 6.29:

Weighted-Average = 
0 1 20 0 2 50 0 5 80

0 1 0 2 0 5

. . .

. . .

¥ + ¥ + ¥

+ +

                               = 65

MOM Method: A crisp output y ¢ may be chosen as the point on the output universe of discourse 

for which the aggregated implied fuzzy set 
�

¢B achieves a maximum. 

Sometimes, same maximum value can occur at more than one point in 
�

¢B . In this case, we need 

to specify a strategy on how to pick only one point. In the mean-of-maximum (MOM) strategy, we 

choose crisp output y¢ that represents the mean of all elements y ŒY whose membership in 
�

¢B is the 

maximum.

MOM method can also be applied on individual implied fuzzy sets of rules r. The implied fuzzy 

sets 
�
B

r( ) are first defuzzified in order to obtain crisp values b(r)—representatives of fuzzy sets 
�
B

r( ):

 b(r) = mom ( )( )

�
B

r  (6.75a)
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A crisp output value is then computed by taking the weighted average of b(r)’s:

 y ¢ = 

a

a

( ) ( )

( )

r r

r

R

r

r

R

b

=

=

Â

Â

1

1

 (6.75b)

where a(r) is the degree of fulfillment (firing strength) of fired rule r.

Choice of a Defuzzification Method: While various values calculated by various defuzzification 

techniques may offer reasonable outputs y¢, it is not easy to say which is the most ideal. As 

for other components of fuzzy inference system, trial-and-error approach is generally used to 

select defuzzification method. Experience of designing fuzzy inference systems for a variety of 

applications presenting challenging characteristics may yield some guide lines for choosing the 

inference strategy and defuzzification technique. 

6.5  MAMDANI MODEL FOR FUZZY INFERENCE SYSTEMS 

A fuzzy inference system (FIS) is a static nonlinear mapping between its inputs and outputs. It 

is assumed that the fuzzy system has inputs xj, j = 1, …, n; and outputs yq; q = 1, 2, …, M. For 

simplicity of discussion, we will consider a system with only one output, as shown in Fig. 6.30. 

(It is usually possible to consider a multi-output system in terms of q single-output systems). The 

inputs and output are “crisp”—that is, they are real numbers, not fuzzy sets.

Fuzzy
inputs

Fuzzy
conclusions

x1

x2

xn

Crisp
inputs

y

Crisp
output

º

Knowledge base

Data-base Rule-base

Inference mechanism

Defuzzification
interface

Fuzzification
interface

Figure 6.30  Structure of fuzzy inference systems

An FIS comprises five traditional blocks: a rule-base of IF-THEN rules comprising a fuzzy logic 

quantification of the expert’s linguistic description of the way to arrive at appropriate decisions; 
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a database which defines the membership functions of the fuzzy sets used in the fuzzy rules; an 

inference system (also known an ‘inference engine’’, or ‘fuzzy inference module’) which emulates 

the decision making of the expert; a fuzzification interface, which converts the crisp inputs into 

information (fuzzy sets) that the inference mechanism can conveniently employ to activate and 

apply rules; and a defuzzification interface, which converts the fuzzy output of the inference 

mechanism into a crisp output (refer to Fig. 6.30).

The fuzzy inference technique most widely in use is the Mamdani technique. In 1975, Professor 

Mamdani of London University established what is probably the first fuzzy mechanism for 

controlling a  steam engine and boiler combination [95, 96]. A set of fuzzy rules were applied, 

which were supplied by process operators with experience.

The fuzzy inference technique suggested by Takagi, Sugeno and Kang is a significant topic in 

theoretical studies as well as in practical applications of fuzzy modeling and control. The fundamental 

idea of this technique is to decompose the input space into fuzzy areas and to approximate the system 

in each area using a simple model. The overall fuzzy model, therefore, comprises of interlinked 

subsystems with less complex models. In fuzzy systems literature, this approach is being referred 

to by various titles: Sugeno [97], Takagi-Sugeno [98], Takagi-Sugeno-Kang [98, 99] fuzzy model. 

We will use the title ‘Takagi-Sugeno fuzzy model’, popularly known as T-S fuzzy model.

Thus, two typical fuzzy inference systems are based on Mamdani model, and T-S fuzzy model. 

Mamdani’s method is a fuzzy inference mechanism that is designed directly based on the set of 

fuzzy rules supplied by experienced human operators. The underlying nonlinearity of the decision-

making system is shaped heuristically in the design process. Explicit nonlinear system identification 

is not done in this case. On the other hand, the Takagi-Sugeno method follows an indirect approach: 

identification of the nonlinear system in terms of a T-S fuzzy model is first carried out; the T-S fuzzy 

model is then used for designing decision-support system.

In this section, we describe the Mamdani model; T-S fuzzy model will be discussed in a later 

section of this chapter.

Fuzzy Inference Systems (FIS) for decision support that ensure high performance cannot be 

constructed using any general systematic technique. The procedure for designing FIS is simply a 

heuristic process with which nonlinear systems can be synthesized. For each of the design problems 

discussed here, it should be remembered that an underlying nonlinearity is being shaped in an 

FIS design. The shape of this nonlinearity drives the way in which the fuzzy decision-making 

mechanism behaves, and it is the designer’s responsibility to obtain appropriate knowledge of the 

rule-base to be able to adequately shape the nonlinearity.

In spite of the absence of a universal systematic design procedure, we will see that a kind of 

systematic design process is created, even if the focus is on just one design example from a range 

of application areas. While the process is quite closely connected to application-specific concepts 

and parameters, it frequently provides a good framework wherein the designer can come up with a 

way to get started/a way to at least arrive at a solution/often a way to quickly arrive at a solution.

In the following sub-sections, we discuss two design examples for different kinds of challenging 

applications: mobile robot navigation among moving obstacles, and mortgage loan assessment. We 

begin with the problem of mobile robot navigation. Through this example, we provide a detailed 

view of the general methodology for deign of fuzzy inference systems. Our discussion on the other 

example is relatively brief.
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6.5.1  Mobile Robot Navigation Among Moving Obstacles

In robotics, one of the significant areas of research is to create intelligent robots capable of planning 

their own motion during navigation via two-dimensional or three-dimensional terrains. A significant 

amount of work has been carried out for motion planning of a mobile robot among moving obstacles. 

Here, our objective is limited: illustration of design procedure for fuzzy inference systems. We 

therefore consider here a simple fuzzy-logic based solution to the motion planning problem.

A typical process for developing FIS incorporates the following steps.

Step 1: Specify the problem and define linguistic variables 

The first, and the most significant step in building an FIS is problem specification. We need to 

determine the problem input and output variables as well as their ranges.

For our problem, a mobile robot is required to navigate from point S (starting point) to point 

T (target point). A schematic representation of our problem is shown in Fig. 6.31. There are three 

main fuzzy variables which the FIS for our problem should consider: distance of the nearest 

obstacle forward from the robot (distance |PO2| in Fig. 6.31, assuming O2 to be the nearest obstacle 

forward); relative angle between the path joining the robot and the target point and the path to the 

nearest obstacle forward (–TPO2 in Fig. 6.31, assuming O2 to be the nearest obstacle forward); and 

the relative velocity vector of the nearest obstacle forward with respect to the robot.

Starting
point S

P
Current position

O3

O2

v2O1
v1

O4

T Target
point

Figure 6.31  A schematic of input (distance and angle) and output (deviation) variables

Pratihar et. al. [100, 101] have proposed a simple practical procedure for creating a rule-base 

for the problem. It is possible for the robot to locate and find the velocity of each obstacle at a 

consistent interval of time with the help of sensors. The robot, thus, is aware of the position and 

velocity of each hurdle at the end of each time step. Therefore, the nearest obstacle forward can 

be defined and altered with the help of the relative velocity information of the obstacles. In such 

cases, (Fig. 6.31), even if the obstacle O1 is closer in comparison to obstacle O2, it is assumed that 

the obstacle O2 is the closest obstacle forward as the relative velocity v1 of O1 directs away from 

the robot’s way in the direction of the target point T, while the relative velocity v2 of O2 directs 

towards the robot. This practical consideration permits us to get rid of the third variable (relative 
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velocity) from the rule base. Therefore, we have only two input variables: x1 = distance, and x2 = 

angle. The action (consequent) variable is the deviation of the robot from its path towards the target 

(Fig. 6.31).

Step 2: Determine fuzzy sets

In practice, all linguistic variables, linguistic values and their ranges are usually chosen by 

domain experts. For our problem, the fuzzy variable distance is represented using four linguistic 

terms: Very Near (VN
~

), Near (N
~

), Far (F
~

), and Very Far (VF
~

). Each of these terms is assumed to 

take a triangular membership function as shown in Fig. 6.32. 
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Figure 6.32  Database of the fuzzy motion planner

The fuzzy variable angle is represented using five linguistic terms: Left Big (LB
~

), Left Small

(LS
~

), Straight Ahead (SA
~

), Right Small (RS
~

), and Right Big (RB
~

). Each of these terms is also 

assumed to take a triangular membership function as shown in Fig. 6.32. The output (action) 

variable deviation is considered to have five fuzzy values: LB
~

, LS
~

, SA
~

, RS
~

 and RB
~

. The triangular 

membership functions for deviation are also shown in Fig. 6.32.

Step 3: Construct fuzzy rules

Next we need to obtain fuzzy rules. There are two input variables and one output variable in our 

example. It is often convenient to represent fuzzy rules in a matrix form. For a two input-one output 

system, the rules are depicted as K1 ¥ K2 matrix, where K1 corresponds to the number of linguistic 

terms of one input variable, and K2 corresponds to the number of linguistic terms of the other. The 

linguistic values of one input variable form the rows of the matrix and the linguistic values of the 

other input variable form the columns. At the intersection of a row and a column lies the linguistic 
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value of the output variable (Note that for a three input-one output system, the representation takes 

the form of a cube, and so on).

A typical rule will look like the following:

IF distance is VN
~

 AND angle is SA
~

 THEN deviation is LS
~

When an obstacle is very near and straight ahead, the robot deviates towards left by small 

amount. However, when the obstacle is very near but on the left (big) of the robot, the robot goes 

straight ahead.

If distance is VN
~

 AND angle is LB
~

 THEN deviation is SA
~

With four choices of distance and five choices for angle, there could be a total of 4 ¥ 5 or 20 

combinations of the two antecedent variables possible. For each of these 20 combinations, there 

will be one value of the consequent variable. Thus, the maximum number of rules that may be 

present in the rule-base is 20. All the 20 rules which are used in this study are given in Table 6.3 

[91].

Table 6.3  Rule-base of the fuzzy motion planner 

Deviation
 Angle

LB
~

LS
~

SA
~

RS
~

RB
~

Distance

VN
~

SA
~

RS
~

LS
~

LS
~

SA
~

N
~

SA
~

SA
~

RB
~

SA
~

SA
~

F
~

SA
~

SA
~

RS
~

SA
~

SA
~

VF
~

SA
~

SA
~

SA
~

SA
~

SA
~

Step 4: Encode the fuzzy sets and fuzzy rules, and set the design-procedure to perform fuzzy 

inference.

The structure of the fuzzy inference system (FIS), shown in Fig. 6.30, comprises four principal 

components: knowledge base, inference mechanism, fuzzification interface, and defuzzification 

interface. The knowledge base (database and rule-base) for the problem is given in Fig. 6.32 and 

Table 6.3. The input fuzzifier takes the crisp numeric inputs and converts them into fuzzy form 

needed by the inference mechanism. At the output, the defuzzification interface combines the 

conclusions reached by the inference mechanism and converts them into crisp numeric values for 

robot steering action. 

After defining fuzzy sets and fuzzy rules, the next step is to encode them along with the procedure 

for fuzzy inference. To accomplish this task, we may choose one of the two options: to build our 

system using a programming language such as C/C++ or to apply a fuzzy logic development tool 

such as ‘MATLAB Fuzzy Logic Tool box’.

In the following paragraphs, we describe the inference procedure through a hand-calculation 

exercise.

Step 4(a): Fuzzification 

The first step in the FIS design procedure is to take the crisp inputs x1 = distance, and x2 = angle, 

and determine the degree to which these inputs belong to each of the appropriate fuzzy sets.
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Assume the given set of inputs to be x10(distance) = 1.04 m; x20(angle) = 30 degrees. Figure 

6.33a shows fuzzy singletons for the given crisp inputs. From this figure, we find that distance 

of 1.04 m corresponds to membership functions N
~

(Near) and F
~

(Far) to the degrees of 0.66 and 

0.34 respectively. In the same way, angle of 30 degrees corresponds to membership functions SA
~

 

(Straight Ahead) and RS
~

 (Right Small) with values 0.33 and 0.67, respectively.

Step 4(b): Rule evaluation 

The second step in the FIS design procedure is to take the fuzzified inputs m
�
N (x10) = 0.66, m

�
F  

(x10) = 0.34, m
SA~

(x20) = 0.33 and m
RS
~

(x20) = 0.67, and apply them to the antecedents of the fuzzy 

rules. To evaluate the conjunction of the rule antecedents, we apply the min t-norm and to evaluate 

the disjunction, we apply the max t-conorm. The antecedent evaluation results in a single number 

that represents the degree of fulfillment (firing strength) of a rule.

For the given inputs, the following four rules are being fired from a total of 20:

IF distance is 
�
N AND angle is SA

~
 THEN deviation is RB

~
 

IF distance is 
�
N  AND angle is RS

~
 THEN deviation is SA

~
IF distance is 

�
F  AND angle is SA

~
 THEN deviation is RS

~
 

IF distance is 
�
F  AND angle is RS

~
 THEN deviation is SA

~

The degree of fulfillment (firing strength) of the fired rules are calculated as follows:

a (1) = min ( ( ), ( ))
~

m m
�
N SA

x x10 20  = min(0.66, 0.33) = 0.33

a(2) = min ( ( ), ( ))
~

m m
�
N RS

x x10 20  = min (0.66, 0.67) = 0.66

a(3) = min ( ( ), ( ))
~

m m
�
F SA

x x10 20  = min (0.34, 0.33) = 0.33

a (4) = min ( ( ), ( ))
~

m m
�
F RS

x x10 20  = min(0.34, 0.67) = 0.34

With min fuzzy implication, the fuzzified outputs (implied fuzzy sets) corresponding to the above 

four rules are shown in Fig. 6.33b. Figure 6.33c shows union of these fuzzified outputs (aggregated 

implied fuzzy set).

Step 4(c): Defuzzification

The COG method is a well-balanced method, sensitive to the height and width of the total fuzzy 

region. Therefore, this technique may be used for defuzzification unless we have a strong reason to 

believe that our fuzzy system will behave better under other defuzzification methods.

As said earlier, a reasonable estimate of COG can be obtained by calculating it over a sample of 

points (refer to Eqn (6.71a)). This can be achieved by discretizing the universe. Alternatively, we 

can split up geometry into pieces and place a straight edge (centroid) through area of each piece to 

have it perfectly balanced with equal area on either side. Equation (6.71b) is then used to compute 

COG. For example, the shaded region in Fig. 6.33c representing combined output (aggregated fuzzy 

set) corresponding to the four fired rules can be divided into four regular sub-regions; two triangles 

and two rectangles. Area and center of area of each of these regions can easily be determined. Crisp 

output can then be obtained using Eqn (6.71b). We leave this as an exercise for the reader; and 

instead, illustrate the method given by Eqn (6.72) that uses implied fuzzy sets of the rules.
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The shaded region corresponding to each fired rule is shown in Fig. 6.33b. The values of area and 

center of area of these shaded regions are obtained:

Rule 1 Area = 12.5, Center of area = 71

Rule 2 Area = 39.71, Center of area = 0

Rule 3 Area = 25, Center of area = 45

Rule 4 Area = 25.57, Center of area = 0

The crisp output of above four rules, given by Eqn (6.72b) is 

 y¢ = 
12 5 71 39 71 0 25 45 25 57 0

12 5 39 71 25 25 57

. . .

. . .

¥ + ¥ + ¥ + ¥

+ + +

  = 19.58

Therefore, the robot should deviate by 19.58 degrees towards right with respect to the line joining 

the present position of the robot and the target to avoid collision with the obstacle.

Step 5: Evaluate and tune the fuzzy system

Assessing and tuning the fuzzy system is heuristic (trial-and-error) process. By evaluation, it is 

possible to establish whether the FIS fulfils the requirements stated initially. Generally, a sensible 

solution to the problem can be arrived at from the first series of fuzzy sets and fuzzy rules. This is a 

well-known and accepted benefit of fuzzy logic. However, the improvement of the system is quite 

an art and less of  engineering.

Tuning a fuzzy system may involve several actions in the following sequence:

 • Reviewing the model input and output variables, and redefining their ranges if the need 

arises.

 • Reviewing fuzzy sets, and defining additional sets, if need be, on the universe of discourse.

 • Offering adequate overlap between neighboring sets.  

 • Reviewing present rules, and if needed, adding new rules to the rule-base.

 • Adjusting the rule execution weights. The majority of fuzzy logic tools permit control of the 

significance of rules by altering a weight multiplier.

 • Revising shapes of the fuzzy sets.

6.5.2  Mortgage Loan Assessment 

Assessing the risk entailed while lending to a borrower is a common challenge faced by financial 

institutions. Those applying for a mortgage are usually compared to each other using the credit 

score, which is a number that can be generated by the application of fuzzy logic to information 

available in the applicant’s credit report. With increase in credit score, the risk from the applicant 

decreases. Let us now create a model capable of generating credit scores, using fuzzy logic.

We follow the usual steps:

 (i) First formulate all the factors that impact, and the manner in which they impact the output.

 (ii) After establishing the required set of inputs and output, an approximation of the range of each 

variable is done.

 (iii) Then, partition the Universe of Discourse of each fuzzy variable into several fuzzy sets, 

allotting a linguistic label to each one of them. Also, define a set of ranges corresponding to 

each linguistic label. 
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 (iv) The next step is to create a fuzzy rule-base to establish the manner in which a variable 

influences the result.

 (v) Then the fuzzy system can be modeled with the help of a fuzzy logic development tool. 

 (vi) Finally, evaluate and tune the fuzzy inference system.

Membership functions can be defined and fuzzy rules constructed based on expert advice from 

mortgage advisors who have experience. The help of bank managers is also sought for developing 

the mortgage granting policies. For our problem, the input and output variables are:

 • Input Variables 

 1. Consumer Evaluation [0–10]

 2. Market Value of House [0–1000 ¥ 103] $

 3. Income [0–100, 000] $

 4. Interest on Loan [0–10] %

 • Output Variable 

  Credit Score [0–10]

Figure 6.34 depicts fuzzy sets for linguistic variables employed in our problem. Triangular and 

trapezoidal membership functions can appropriately represent the knowledge of the mortgage 

expert.

Decision-support systems may include hundreds of fuzzy rules. For example, a fuzzy system for 

Credit Score evaluation developed by BMW Bank used 413 fuzzy rules [102]. We should examine 

whether the knowledge base allows dividing the problem into several modules deployed in a 

hierarchical structure. For our problem, the range of Consumer Evaluation is 0–10: a normalized 

value. The value of this variable follows from fuzzy evaluation of Demographics, Finance, and 

Financial Security. A module with inputs Demographics, Finance, and Financial Security gives the 

output Consumer Evaluation, which in turn, becomes an input for Credit Score evaluation module. 

Further module division deals with dependence of Demographics on Age, Education, Marital Status 

and Number of Children; Finance on Income, Length of Employment and Type of Employment, and 

Financial Security on current Living Arrangement, Value of Car, and Value of Assets.

For the purpose of illustration, we give here an oversimplified rule-base for Credit Score 

evaluation module [5].

Let 

x1 = Market Value of House, with linguistic values: Very Low, Low, Medium, High, Very High.

x2 = Income, with linguistic values: Low, Medium, High, Very High

x3 = Interest on Loan, with linguistic values: Low, Medium, High

x4 = Consumer Evaluation, with linguistic values: Low, Medium, High

 y = Credit Score, with linguistic values: Very Low, Low, Medium, High, Very High

A rule-base for Credit Score evaluation follows.

Rule 1: IF x2 is Low AND x3 is Medium THEN y is Very Low

Rule 2: IF x2 is Low AND x3 is High THEN y is Very Low
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Rule 3: IF x2 is Medium AND x3 is High THEN y is Low

Rule 4: IF x4 is Low THEN y is Very Low

Rule 5: IF x1 is Very Low THEN y is Very Low

Rule 6: IF x4 is Medium AND x1 is Very Low THEN y is Low 

Rule 7: IF x4 is Medium AND x1 is Low THEN y is Low 

Rule 8: IF x4 is Medium AND x1 is Medium THEN y is Medium 

Rule 9: IF x4 is Medium AND x1 is High THEN y is High

Rule 10: IF x4 is Medium AND x1 is Very High THEN y is High

Rule 11: IF x4 is High AND x1 is Very Low THEN y is Low

Rule 12: IF x4 is High AND x1 is Low THEN y is Medium 

Rule 13: IF x4 is High AND x1 is Medium THEN y is High

Rule 14: IF x4 is High AND x1 is High THEN y is High

Rule 15: IF x4 is High AND x1 is Very High THEN y is Very High

To build our system, we may use the MATLAB fuzzy Logic Tool box, or any other fuzzy system 

software tool. We leave this as an exercise for the reader. Hand calculations will help the reader 

understand the design procedure.

6.6  TAKAGI-SUGENO FUZZY MODEL 

As said earlier in Section 6.5, two typical fuzzy inference systems are based on Mamdani model 

and Takagi-Sugeno (T-S) fuzzy model. The Mamdani model results in a ‘standard’ fuzzy system, 

and is widely used for capturing expert knowledge. It allows us to describe the expertise in more 

intuitive, more human-like form. The underlying nonlinearity of the decision-making system is 

shaped heuristically in the design process. Explicit nonlinear system identification is not done in 

this case.

On the other hand, the Takagi-Sugeno method follows an indirect approach: identification of the 

nonlinear system in terms of a T-S fuzzy model is first carried out; the T-S fuzzy model is then used 

for designing decision-support system.

If a nonlinear system is effectively represented as a fuzzy cluster of linear systems defined locally, 

then understanding of the complex nonlinear system can become more profound as linear systems 

are well understood. Such a powerful representation has been introduced by Takagi, Sugeno, and 

Kang [97–99], which we will refer to as T-S fuzzy model. Numerous research works have been 

carried out using the T-S fuzzy model, as such a representation can provide a better understanding.

The T-S fuzzy modeling is thus a multi-model approach for modeling complex nonlinear systems, 

in which simple sub-models (typically linear models) are combined to describe the global behavior 

of the system. The idea of multi-model approach is not new, but the idea of building multi-models 

using fuzzy set theory offers a new technique.
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The rule base of a fuzzy inference system consists of a set of R fuzzy IF-THEN rules of the form:

‘If a set of conditions is satisfied THEN a set of consequences can be inferred’ 

Different types of consequent parts have been used in fuzzy rules. In the earlier section, we 

have studied fuzzy rules based on Mamdani’s approach, in which linguistic term associated 

with a membership function is used as consequent. The T-S fuzzy model is based on a different 

approach: instead of a linguistic term with an associated membership function, we use a function 

in the consequent of a rule, that does not have an associated membership function. Typically linear 

functions are used as consequent of the R rules; the overall fuzzy model of a nonlinear system is 

achieved by fuzzy ‘blending’ of the R linear system models.

One mapping that has proven to be particularly useful is to have linear dynamic system as the 

output function, so that rth rule has the form (r = 1, …, R):

Rule r : IF 
� �
x A

k1 1 1
is AND 

� �
x A

k2 2 2
is AND … AND 

� �
x A
n nkn
is  

                                THEN �x(r)(t) = A(r) x(t) + B(r)u(t) (6.76)

where x = [x1 x2 … xn]
T is n-dimensional state vector and u = [u1 u2 … um]T is m-dimensional 

input vector. Each rule represents a fuzzy zone in the state space. For an n-dimensional state-space 

system, the number of such fuzzy rules (and hence fuzzy zones) is 

 K1 ¥ K2 ¥ … ¥ Kn (6.77a)

That is, the n-dimensional input space is divided into K1 ¥ K2 ¥ … ¥ Kn fuzzy partition spaces: 

 ( , , , )
� � �
A A A

k k nkn1 21 2
º ; k1 = 1, …, K1, …, kn = 1, …, Kn

or  { }
�
Ajkj

; j = 1, …, n, kj = 1, 2, …, Kj (6.77b)

Thus, the nonlinear dynamic system is composed of R such rules where each rule is associated 

with a local linear model, with parameters A(r) and B(r).

The decision-making logic employs fuzzy IF-THEN rules from the rule-base to infer the output 

by a fuzzy reasoning method. The contribution of each local linear model (i.e., each rule) in the 

estimated output of the FIS is dictated by the firing strength of the rule. We use product strategy to 

assign firing strength m(r) to each rule r = 1, …, R:

 m(r) = m1 1k (x1) ¥ m2 2k (x2) ¥ … ¥ m
nkn

(xn) (6.78a)

  = m jk

j k I
j

j r( , )Œ

’ (xj) (6.78b)

where Ir is the set of all 
�
Ajkj

 associated with the premise part of rule r.

Given a current state vector x, and an input vector u, the T-S fuzzy model infers the system 

dynamics as, 

                                      �x A x B u= +

=

=Â
Â

1

1

1
m

m

( )

( ) ( ) ( )( )
r

r

R

r r r

r

R

 (6.79)
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By defining the normalized membership grade associated with the rth rule as, 

                                                            m
m

m

( )
( )

( )

r

r

r

r

R
=

=

Â
1

 (6.80)

the T-S fuzzy model representation of any nonlinear continuous-time system is expressed as, 

                                                        �x A x B u= +

=

Âm
( ) ( ) ( )( )r r r

r

R

1

 (6.81)

The linear model parameters A(r) and B(r) can be found from the input-output dataset using a 

fuzzy neural network [103, 104].

If the nonlinear model of a system is exactly known, then the T-S fuzzy representation can be 

derived using linearization techniques [85], i.e., the parameters A(r) and B(r) can be directly obtained 

from the system dynamics by linearizing the nonlinear dynamics at different operating points.

Given a nonlinear system in terms of T-S fuzzy model, various control schemes can be designed 

using traditional control techniques [85].

T-S Fuzzy Model with Linear Static Mapping as Rule Consequents

An alternative setting in which T-S fuzzy models have been used is to use a linear static mapping 

as rule consequents. For example,

Rule r : IF 
� �
x A

k1 1 1
is AND … AND 

� �
x A
n nkn
is

                                THEN ˆ( )
y

r  = a0
(r) + a1

(r)x1 + … + an
(r)xn; r = 1, 2, …, R (6.82)

The consequent part is a linear function of the input variables xj; j = 1, …, n; and a0, a1, …, an 

are the (n + 1) parameters that determine the real consequent value.

We limit our discussion to linear mappings of this form, and describe a procedure for finding the 

parameters a0, a1, …, an from the input-output data.

T-S  Fuzzy  Model  from  Input-output  Data: We consider here, a single-output FIS in the 

n-dimensional input space. Let us assume that the following N input-output pairs are given as 

training data for constructing FIS model:

                                                           {x(i), y(i)| i = 1, 2, …, N} (6.83)

where x(i) = [x1
(i) x2

(i) … xn
(i)]T is the input vector of ith input-output pair and y(i) is the corresponding 

output.

The fuzzification interface transforms crisp values of input variables into fuzzy singletons. A 

singleton is a fuzzy set, possessing a membership function that is unity at a single particular point 

on the universe of discourse (the numerical-data value), and zero everywhere else. Basically, a 

fuzzy singleton is an accurate value, and therefore, fuzzification does not introduce any fuzziness 
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in this case. This strategy has been employed widely in fuzzy modeling applications, as it is 

implemented with ease. Two  aspects define a database (i) a fuzzy partition of an input space, and 

(ii) membership functions of antecedent fuzzy sets. Assume that the domain interval of the jth input 

variable xj is equally divided into Kj fuzzy sets labeled 
� �
A Aj j1 2, , …, 

�
AjKj

,  for j = 1, 2, …, n. Then 

the n-dimensional input space is divided into K1 ¥ K2 ¥ … ¥ Kn fuzzy partition spaces:

                             (
� � �
A A A

k k nkn1 21 2
, , ,º ); k1 = 1, 2, …, K1; …; kn = 1, …, Kn (6.84)

Though any type of membership functions (e.g., triangle-shaped, trapezoid-shaped, bell-shaped, 

etc.) can be used for fuzzy sets, we employ the symmetric triangle-shaped fuzzy sets,
�
Ajkj

, with the 

following membership functions: 

                                 m m
�

�A j j k j

j j k

j k
jkj j

j

j

x x
x c

w
( ) ( )

( , )

( , )

= -

-

1
2

; kj = 1, 2, ..., Kj (6.85)

c j kj( , )  is the center of the membership function, where the membership grade is equal to 1, and 

w j kj( , ) denotes the width of the membership function (Fig. 6.35).

By means of the input-output data, the range [xj
min, xj

max] of the jth input variable is determined, 

where

 xj
min = min , max

{ , , }

( ) max

{ , , }

( )

i N
j
i

j
i N

j
i

x x x
= º = º

=

1 1
 (6.86a)

xjc( j, kj)

1

w( )j, kj

( )
jjk jxm

Figure 6.35  Parameters of a membership function

The position of center of each membership function with respect to the jth variable is determined 

by,

            c j kj( , )  = xj
min + (kj – 1) [xj

max – xj
min)/(Kj – 1]; c(j, 1) = xj

min; c j Kj( , )  = xj
max (6.86b)

To achieve sufficient overlap from one linguistic label to another, we take,

                                                      w c cj k j k j kj j j( , ) ( , ) ( , )( )= -
+

2 1  (6.86c)
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Figure 6.36 shows an example where the domain interval of x1 is divided into K1 = 5 fuzzy sets. 

m1 1k1
( )x

1
11A

�

12A
�

13A
�

14A
�

15A
�

min
1x

0
max
1x

Figure 6.36  Fuzzy partition of an input space and membership functions of fuzzy sets

The rule base consists of a set of fuzzy IF-THEN rules in the form ‘IF a set of conditions is 

satisfied THEN a set of consequences can be inferred’. Different types of consequent parts have 

been used in fuzzy rules; here we focus on linear static mapping in T-S fuzzy architecture: the 

domain interval of y is represented by R linear functions, giving rise to R fuzzy rules. All the rules 

corresponding to the possible combinations of the inputs are implemented. The total number of 

rules R for an n-input system is: K1 ¥ K2 ¥ … ¥ Kn.

The format of fuzzy rules is,

Rule r : IF x1 is 
�
A

k1 1
AND … AND xn is 

�
A
nkn

THEN

                                    ˆ( )
y

r  = a0
(r) + a1

(r)x1 + … + an
(r)xn; r = 1, 2, …, R (6.87)

The consequent part is a linear function of the input variables xj; a0, a1, …, an are the (n + 1) 

parameters that determine the real consequent value. The aim of the linear function is to describe 

the local linear behavior of the system. Each rule r gives rise to a local linear model. The selected 

R rules are required to approximate the function that theoretically underlines the system behavior 

most consistently, with the given sample of input-output data (6.83) (When ŷ is a constant in (6.87), 

we get a standard fuzzy model in which the consequent of a rule is specified by a singleton).

The decision-making logic employs fuzzy IF-THEN rules from the rule base to infer the output 

by a fuzzy reasoning method. The contribution of each local linear model (i.e., each rule) in the 

estimated output of the FIS is dictated by the firing strength of the rule. We use product strategy to 

assign firing strength m(r) to each rule r = 1, 2, …, R.

Given an input vector, x(i) = [x1
(i) x2

(i) … xn
(i)]T, the degree of compatibility of x(i) to the rth fuzzy 

IF-THEN rule is the firing strength m(r) of the rule, and is given by (note that we have used product 

t-norm operator on the premise part of the rule),

 m(r)(x(i)) = m m m1 1 2 21 2k

i

k

i

nk n

i
x x x

n
( ) ( ) ( )

( ) ( ) ( )
¥ ¥ ¥�

  = 
( , )j k I

jk

j r

j
Œ

’ m (xj
(i)) (6.88)

where Ir is the set of all 
�
Ajkj

associated with the premise part of rule r.
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The main idea of the T-S fuzzy model is that in each input fuzzy region 
� �

�

�

A A A
k k nkn1 21 2
¥ ¥ ¥  of 

the input domain, a local linear system is formed. The membership function m(r)(x(i)) of each region 

is a map indicating the degree of the output of the associated linear system to the region. A simple 

defuzzification procedure is to take the output of the system as the fuzzy combination of the outputs 

of local systems in all regions:

 ŷ  = 

( )
( ) ( ) ( ) ( )

( )

a a x a x
r r

n

r

n

r

r

R

r

r

R

0 1 1

1

1

+ + +

=

=

Â

Â

� m

m

 (6.89a)

  = ( )
( ) ( ) ( ) ( )
a a x a x
r r

n

r

n

r

r

R

0 1 1

1

+ + +

=

Â � m  (6.89b)

where                               m
m

m

( )
( )

( )

r

r

r

r

R
=

=

Â
1

 (6.89c)

is the normalized firing strength of rule r; a ratio of firing strength of rule r to the sum of the firing 

strengths of all the rules.

Note that the output of the fuzzy model can be determined only if the parameters in rule consequents 

are known. However, it is often difficult or even impossible to specify a rule consequent in a 

polynomial form. Fortunately, it is not necessary to have any prior knowledge of rule consequent 

parameters for the T-S fuzzy modeling approach to deal with a problem. These parameters can be 

determined using least squares estimation method as follows.

Given the values of the membership parameters and a training set of N input-output patterns 

{x(i), y(i); i = 1, 2, …, N}, we can form N linear equations in terms of the consequent parameters.

       y(i) = m( )1 (x(i))[a0
(1) + a1

(1)x1
(i) + … + an

(1)xn
(i)] + m( )2 (x(i))[a0

(2) + a1
(2)x1

(i) + … + an
(2)xn

(i)] + …

                + m ( )R (x(i))[a0
(R) + a1

(R)x1
(i) + … + an

(R)xn
(i)]; i = 1, 2, … N (6.90)

where m ( )r (x(i)) is the normalized firing strength of rule r, fired by the input pattern x(i). 

In terms of vectors 

 x
( )i  = [1 x1

(i) x2
(i) …xn

(i)]T

 q
(r) = [a0

(r) a1
(r)… an

(r)] (6.91)

 Q = [a0
(1) a1

(1)… an
(1) a0

(2) … an
(2) … a0

(R) … an
(R)]
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we can write the N linear equations as follows:

y(1) = m m m
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) [ ] ( ) [ ] ( ) [1 1 1 1 2 1 2 1 1

x x x x xq q q+ + +�
R R)) ( )]x

1

y(2) = m m m
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) [ ] ( ) [ ] ( ) [1 2 1 2 2 2 2 2 2

x x x x xq q q+ + +�
R R)) ( )]x

2  (6.92)

     

y(N) = m m m
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( ) [ ] ( ) [ ] ( ) [1 1 2 2

x x x x x
N N N N R N R

q q q+ + +�
)) ( )]x

N

These N equations can be rearranged into a single vector-matrix equation:
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 (6.93a)

or                  y = XT QT   (6.93b)

Solution methods for least squares estimation problem have earlier been described in Section 

3.8. The optimal solution to this classic problem in calculus is given by (refer to Eqn (3.78)),                                                         Q*T  = (XXT)–1X Y = X+ y  (6.93c)

where X+ is the pseudoinverse of matrix XT.

In the T-S fuzzy model given above, we have used most intuitive approach of implementing all 

possible combinations of the given fuzzy sets as rules. In fact, if data is not uniformly distributed, 

some rules may never be fired. This and other drawbacks are handled by many variants of the basic 

ANFIS model, described in the next section.

6.7  NEURO-FUZZY INFERENCE SYSTEMS

The intelligent technologies—fuzzy inference systems (FIS) and neural networks (NN)—both have 

same objectives. Both try to mimic human intelligence and ultimately generate a machine with 

intelligence. But, the means they use to attain their objectives differ. The theory of fuzzy logic, 

which finds basis  in the idea of graded membership, offers mathematical power to emulate cognitive 

functions—the processes of thought and perception. In neural information processing, there are a 

variety of complex mathematical operations and mapping functions involved, that, in synergism, 

act as a parallel computing machine that emulates the biological neuronal processes. Therefore, 

while an FIS is dependent on logical inferences and concentrates on modeling human reasoning, an 

NN depends on parallel data processing and concentrates on modeling a human brain, by taking a 

look at its structure and functions, in particular, at its learning ability. The knowledge representation 

and data processing techniques employed in FIS and NN reflect these basic differences.  

The IF-THEN rules suggested by domain experts represent the knowledge in FIS. Once the rules 

are stored in knowledge base, they cannot be modified. FIS cannot learn from experience or adapt 

to new environments. It is only possible for a human expert to manually alter the knowledge base 

through addition, change or deletion of certain rules.
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Knowledge in NN is stored in synaptic weights between neurons. This knowledge is procured 

while learning, when  the network is presented with a training set of data. Unlike FIS, NN learns 

without human involvement.

In FIS, however, knowledge can be classified into individual rules and the user can see and 

comprehend the knowledge the system applies. On the contrary, in NN, it is not possible to choose 

a single synaptic weight as a discrete piece of knowledge. Knowledge is entrenched in the whole 

network; it is not possible to break it into individual pieces. Any alteration in a synaptic weight may 

result in random outcomes.

An FIS cannot learn, but can explain how it arrives at a particular solution. It is thus, a ‘white-box’ 

for the user. An NN can learn but acts as a ‘black-box’ for the user. Through marriage between the 

two technologies, we can combine the advantages of each and create a more powerful and effective 

intelligent machine. Integrated neuro-fuzzy systems are a combination of the parallel computation 

and learning capabilities of neural networks with the human-like knowledge representation and 

explanation capabilities of fuzzy systems. The outcome is that neural networks become more 

transparent, whereas fuzzy systems gain the ability to learn.

Neural networks have been integrated with fuzzy logic techniques in two different ways. In one 

approach, the neurons of an NN have been designed using the concept of fuzzy set theory with the 

following combinations of input signals and connection weights:

 • Real input signals but fuzzy weights.

 • Fuzzy input signals but real weights.

 • Fuzzy input signals and fuzzy weights.

The developed network is generally called Fuzzy Neural Network [105].

In another approach, an FIS is represented using the structure of an NN, and trained using 

backpropagation algorithm. Thus, the performance of FIS can be tuned using NN techniques. Such 

an integrated system is popularly known as Neuro-Fuzzy Inference System [94].

Neuro-fuzzy inference systems have been developed by various investigators to solve a variety 

of problems. Attempts have been made to model Mamdani approach of FIS using the structure of 

feedforward network [5, 91]. The Takagi-Sugeno approach is by far the most popular candidate for 

data-based fuzzy modeling. Roger Jang from the Tsing Hua University (Taiwan) proposed a neural 

network that is functionally equivalent to a T-S fuzzy model [106]. He called it an Adaptive Neuro-

Fuzzy Inference System (ANFIS). We limit our discussion in this section to ANFIS only.

6.7.1  ANFIS Architecture 

Figure 6.37 shows the ANFIS architecture. For simplicity, we assume that the ANFIS has two 

inputs, x1 and x2, and one output ŷ. Each input is represented by two fuzzy sets, and the output by 

a first-order polynomial. The ANFIS implements the following four rules:

Rule 1: IF x1 is 
�
A11  and x2 is 

�
A
21

THEN y(1) = a0
(1) + a1

(1)x1 + a2
(1)x2

Rule 2: IF x1 is 
�
A
12

 and x2 is 
�
A22 THEN y(2) = a0

(2) + a1
(2)x1 + a2

(2)x2 
(6.94)

Rule 3: IF x1 is 
�
A
12

 and x2 is 
�
A
21

THEN y(3) = a0
(3) + a1

(3)x1 + a2
(3)x2

Rule 4: IF x1 is 
�
A11  and x2 is 

�
A22 THEN y(4) = a0

(4) + a1
(4)x1 + a2

(4)x2
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where 
�
A11 and 

�
A
12

 are fuzzy sets on the universe of discourse of input variable x1, 
�
A
21

 and 
�
A22 are 

fuzzy sets on the universe of discourse of input variable x2; a0
(r), a1

(r) and a2
(r) is a set of parameters 

specified for rule r.
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Figure 6.37  An Adaptive Neuro-Fuzzy Inference System (ANFIS)

Let us now discuss the purpose of each layer in ANFIS of Fig. 6.37.

Layer 1  The inputs to the nodes in the first layer are the input fuzzy sets of the ANFIS. Since 

input fuzzy sets are fuzzy singletons, numerical inputs are directly transmitted to the first-layer 

nodes.

Nodes in this layer represent the membership functions associated with each linguistic term of 

input variables. Every node here is an adaptive node. Links in this layer are fully connected between 

input terminals and their corresponding membership function nodes. Membership functions can be 

any appropriate parameterized function; we use Gaussian function.

 m
�
Ajkj

(xj) � m jkj
(xj) = exp -

-Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í

˘

˚

˙
˙

x c

w

j j k

j k

j

j

( , )

( , )

2

 (6.95)

The nodes are labeled 
�
Ajkj

; j = 1, 2; k = 1, 2. Total number of nodes in this layer is, therefore, 

four. c j kj( , ) is the center (mean) and w j kj( , ) is the width (variance), respectively, of the membership 

function corresponding to the node 
�
Ajkj

; xj is the input and m jkj
is the output of the node. The 

adjusted weights in Layer 1 are c j kj( , )’s and w j kj( , )’s. As the values of these parameters change, the 

Gaussian function varies accordingly; thus exhibiting various forms of membership functions of 

fuzzy set 
�
Ajkj

. Parameters in this layer are referred to as premise parameters.

Layer 2  Every node in this layer is a fixed node labeled ’, whose output is the product of all 

the incoming signals. Each node output represents firing strength of a rule. In fact, other t-norm 

operators could also be used as node functions.
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Each node, representing a single T-S fuzzy rule, has the output

                                            m m
( )

( , )

( ) ( )r
jk

j k I

jj

j r

xx �

Œ

’  (6.96)

where Ir is the set of all 
�
Ajkj

associated with the premise part of rule r.

Layer 3  Every node in this layer is a fixed node labeled N. The rth node calculates the ratio of 

the rth rule’s firing strength, to the sum of all rules’ firing strengths:

                               m
m

m

( )
( )

( )

r

r

r

r

R
=

=

Â
1

 = Normalized firing strength of rule r (6.97)

Layer 4  Every node is this layer is an adaptive node, is connected to the respective normalization 

node in the previous layer, and also receives inputs x1 and x2. It calculates the weighted consequent 

value of a given rule as, 

 ˆ( )
y

r  = m ( ) ( ) ( ) ( )
[ ]r r r r

a a x a x0 1 1 2 2+ +  (6.98)

where m ( )r  is the normalized firing strength from layer 3, and a0
(r), a1

(r) and a2
(r) are the parameters of 

this node. Parameters in this layer are referred to as consequent parameters.

Each node in Layer 4 is a local linear model of the T-S fuzzy system; integration of outputs of all 

local linear models yields global output.

Layer 5  The single node in this layer is a fixed node labeled S, which computes the overall output 

as the summation of all incoming signals:

 ŷ  = ( ) ;
( ) ( ) ( ) ( )

a a x a x R
r r r r

r

R

0 1 1 2 2

1

4+ + =

=

Â m  (6.99)

6.7.2  How Does an ANFIS Learn?

An ANFIS employs a hybrid learning algorithm—a combination of the least squares estimator 

and the gradient descent technique. To begin with, each membership neuron is allocated initial 

activation functions. The function centers of the neurons linked to input xj, are set in such a manner 

that the domain of xj is equally divided, and the widths are set to permit enough overlapping of the 

respective functions.

A forward and a backward pass are involved in each epoch of an ANFIS training algorithm. 

In the forward pass, the ANFIS is presented with a training set of input patterns (input vector x), 

neurons outputs are computed on layer-by-layer basis, and the rules consequent parameters are 

identified by the least squares estimator. In the T-S fuzzy inference, an output ŷ  is a linear function. 

Thus, given the values of the membership parameters and a training set of N input-output patterns, 

we can form N linear equations in terms of the consequent parameters (refer to Eqn (6.93)). Least-

squares solution of these equations yields the consequent parameters.
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As soon as the rule consequent parameters are established, we can compute actual network 

output, ŷ, and determine the error

 e = y – ŷ  (6.100)

The back propagation algorithm is applied in the backward pass. The error signals are transmitted 

back, and the premise parameters are updated as per the chain rule.

The goal is to minimize the error function 

 E = 1
2
(y – ŷ )2 (6.101)

The error at Layer 5:

 
∂

∂

E

ŷ
 = ( ŷ  – y) (6.102)

Back propagating to Layer 3 via Layer 4 (refer to Eqn (6.99)),
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Back propagating to Layer 2 (refer to Eqn (6.97),
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The error at Layer 1:

Ir is the set of all 
�
Ajkj

associated with the premise part of rule r. Reverse pass: I j kj( , )  is the set of 

all rule nods in Layer 2 connected to ( j, kj)
th node (corresponding to 

�
Ajkj

) of Layer 1.

Back propagating error to Layer 1 (refer to Eqn (6.96)),
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From Eqn (6.95), we obtain, 
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Denoting the iteration index by t (refer to Eqn (5.24)),

                                   c t c t
E t

c t
j k j k

j k
j j

j

( , ) ( , )
( , )

( ) ( )
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+ = -

∂
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∂

∂
1 h  (6.106b)

where h is the learning rate.

For given input-output pairs (x(i), y(i); i = 1, 2, …, N), the batch-updating algorithm back 

propagates the cumulative error resulting from the difference between y(i); i = 1, …, N and ˆ( )
y

i ;

i = 1, …, N, from output layer to the previous layers to update weights of the network.

    Example 6.13

Figure 6.37 shows the schematic diagram of an ANFIS, used to model a process with two inputs, x1 

and x2, and one output y. Two fuzzy sets 
�
A11 and 

�
A
12

 have been utilized to represent x1; and x2 has 

been expressed using two other fuzzy sets 
�
A
21

 and 
�
A22. The membership function distributions of 

x1 and x2 are shown in Fig. 6.38.
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Figure 6.38  Membership function distributions
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There are a maximum of 2 ¥ 2 possible rules (refer to (6.94)); the values of the coefficients of the 

consequent part of the rules are as follows:
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The objective is to determine the predicted output ŷ of ANFIS when x1 = 1.1 and x2 = 6.0.

For given values of x1 and x2, we find, using the principle of similar triangles, from Fig. 6.38 

(Layer 1 in Fig. 6.37):
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All the possible four rules, given in Eqn (6.94), will be fired. Firing strengths of the rules are (Layer 

2 in Fig. 6.37; Eqn (6.96)):

 m(1)(x) = 0.900990 ¥ 0.8 = 0.720792

 m(2)(x) = 0.099010 ¥ 0.2 = 0.019802

 m(3)(x) = 0.099009 ¥ 0.8 = 0.079208

 m(4)(x) = 0.900990 ¥ 0.2 = 0.180198

The normalized firing strengths of the rules are (Layer 3 in Fig. 6.37; Eqn (6.97)):

m m m m
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1

4

0 720792= = =
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Â
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, ,
2 2 3 3 4 4
= = =

Weighted consequent values of the rules are (Layer 4 in Fig. 6.37; Eqn (6.98)):

 ŷ
(1) = 0.720792(0.10 + 0.2 ¥ 1.1 + 0.3 ¥ 6.0) = 1.528079;

 ŷ
(2) = 0.054059; ŷ(3) = 0.179010; ŷ(4) = 0.517168
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Predicted output of the ANFIS, is (Layer 5 in Fig. 6.37; Eqn (6.99)):

                           ŷ  = 2.278316

6.8  GENTIC-FUZZY SYSTEMS

Fuzzy inference systems are highly nonlinear systems with many input and output variables. The 

performance of an FIS depends on the knowledge base, which consists of database (membership 

functions of input and output variables) and rule-base (refer to Fig. 6.30). Crucial issues in the 

design are the tasks of selecting appropriate membership functions, and the generation of fuzzy 

rules. These tasks require experience and expertise. The trial-and-error approach involved in this 

process sometimes needs quite a lot of time, but genetic algorithms can be helpful here. We have 

presented basic genetic algorithm in Appendix A.

Genetic algorithms can be introduced into fuzzy inference systems at many different levels [91]:

 • tuning of membership functions, while the rule base remains unchanged;

 • generating a rule-base when a set of membership functions for input/output variables remains 

unchanged, or 

 • for both of these tasks simultaneously.

We will limit our presentation to the first task, i.e., tuning of membership functions while the 

rule-base remains unchanged.

Tuning of Membership Functions

The fuzzy system operation can be made more efficient through suitable tuning of the fuzzy sets. The 

GA (genetic algorithm) alters membership functions by altering the location of characteristic points 

of their shapes. The information on characteristic points of the membership functions is coded in 

chromosomes. Once the fuzzy sets are appropriately represented in the chromosome, the GA works 

on the population of individuals, that is, on the population of chromosomes encompassing coded 

shapes of fuzzy membership functions, as per the genetic cycle consisting of the following steps:

 1. Decode every individual (chromosome) of the population, recreate the set of membership 

functions, and construct a suitable fuzzy system. The rule-base is predefined.

 2. Evaluate the performance of the fuzzy system based on the difference (error) between 

the system’s responses and the values sought. This error defines how fit the individual 

(chromosome) is.

 3. Select and apply genetic operators, such as crossover and mutation, and gain a new generation.

    Example 6.14

Let us consider the application of GA to a fuzzy model of a manufacturing process. The process is 

characterized by two input variables, x1 and x2, and one output variable, y. The membership function 

distributions of the inputs and the output are shown in Fig. 6.39 and the predefined rule-base is 

given in Table 6.4.
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Figure 6.39  Membership distributions for Example 6.13

Table 6.4  Rule base for Example 6.13
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The membership functions have the shape of isosceles triangles, which may be described by 

means of characteristic points in the following manner: the vertices of the triangles are fixed, and 

the base-widths q1, q2 and q3 are tunable. The ranges of the tunable parameters are assumed to be 

 2 £ q1 £ 4; 5 £ q2 £ 15; 0.5 £ q3 £ 1.5 (6.107)

Let us code these fuzzy sets in chromosomes by placing characteristic parameters one by one, 

next to each other (Fig. 6.40). Starting from the leftmost position, L bits are assigned for parameter 

q1. Each of the parameters q1, q2, q3 may be assigned different number of bits depending on their 

ranges. However, for simplicity of presentation, we assign L = 5 in each of the three cases. Thus, 

the GA-string is 15 bits long.

q1 q2 q3

Figure 6.40  Chromosome with encoded parameters

An initial population for the GA is created at random. We assume that the first chromosome of 

this randomly selected population is 

                                                         10110 01101 11011 (6.108)

The mapping rule, given by Eqn (A.10) in Appendix A, is used to determine the real values of 

the parameters q1, q2 and q3, represented by this string. The decoded value b of the binary substring 

10110 is equal to 22. Therefore, the real value of q1 is given by (refer to Eqn (A.10) in Appendix 

A, and parameter values (6.107),

 q1 = q1
min + 

b

L2 1
2

22

2 1
1 1 5

-

- = +

-

( )max min
q q (4 – 2) = 3.419355

The real values of q2 and q3, corresponding to their respective substrings in Eqn (6.108), are 

9.193548 and 1.370968, respectively. Figure 6.41 shows the modified membership distributions of 

input and output variables.

The GA optimizes the database (tunes the membership functions) with the help of a set of training 

examples. Assume that we are given N training examples {x(i), y(i); i = 1, 2, …, N}. Further, we take 

first training example (i = 1) as {x1 = 10, x2 = 28, y = 3.5}.

For the inputs x1 = 10, x2 = 28, we calculate the predicted value of the output, ŷ, of the fuzzy 

model when the model parameters are given by the first chromosome in the initial population. This 

is done using the procedure given in Section. 6.4. This will give us the absolute value of error in 

prediction: e(1) = |3.5 – ŷ |.

From this procedure, repeated on all the training examples, we can obtain the average value of 

absolute errors in prediction,

                                                              e
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Figure 6.41  Modified membership distributions of inputs and output

Since GA is a maximization algorithm, we may choose the fitness function 

                                                               J = 
1

e + e

 (6.110)

where e is a small positive number,

The population of GA-strings is then modified using different operators, such as selection, 

crossover and mutation, and after a few generations, the GA will be able to evolve an optimal fuzzy 

system (refer to Appendix A).



DATA CLUSTERING AND 

DATA TRANSFORMATIONS

Chapter

7

7.1  UNSUPERVISED LEARNING

Chapter 1 introduced you to the machine learning process, clearly demarcating supervised learning 

from unsupervised learning. Design of a classifier/regressor is a supervised learning problem 

wherein training samples are labeled by their category membership/numeric values.

In Chapter 2, a methodology for supervised learning was introduced; this was followed by 

classifier/regressor design based on this methodology. Chapters 3–6 covered a wide variety of 

supervised learning techniques. More of these learning techniques will be discussed in Chapter 8.

In part of this chapter and part of Chapter 9, we will discuss unsupervised learning, which is 

perhaps the more challenging side of machine learning. Unsupervised procedures use unlabeled 

samples, that is, all one has is a collection of samples without being told their categories/function 

values.

As we have seen in earlier chapters, the purpose of supervised learning is to answer a specific 

question ‘phrased’ as a target variable, and the various techniques to discover patterns in data to 

discern the value of the target. Historical data contains examples to find the best answer. Target 

variable is a way of putting domain expertise into the modeling process. A data miner says, ‘This 

is what is important’. With this information, supervised techniques have enough inputs to optimize 

their models.

Unsupervised procedures have no such information. With these techniques, the data miner is 

looking for ‘something interesting’ in the data. Using these techniques requires more human under-

standing than supervised techniques.

The process of unsupervised learning is both quite different and quite similar to the process 

of supervised learning. The similarities are: both work with data and require exploration and 

understanding of the data with respect to the application domain. Both are improved by incorporating 

intelligent variables into the data that identify the quality of different aspects of the process in 

domain of interest. Because source data is usually not at the level required by the application 
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in hand, building the data for the application requires many transformations in both the learning 

approaches.

Unsupervised learning differs in not having a target variable, and this poses a couple of challenges:

 • Unsupervised learning is more about creative endevours—exploration, understanding and 

refinements that do not lend themselves to a specific set of steps, i.e, there is no specific 

methodology. The unsupervised learning process cannot be automated. Techniques are still 

not available to distinguish between the more useful and less useful. Humans play a crucial 

role.

 • There is no right or wrong answer; no simple statistical measure that summarizes the goodness 

of results. Instead, descriptive statistics and visualization are key parts of the process.

When it comes to unsupervised learning methods, the requirement of dataset partitioning—

into training, validation and test sets—is of little importance. Of late, researches have tried to 

study semi-supervised learning, that is, what lies between supervised and unsupervised learning. 

Semi-supervised learning is like a field that aims for classification but the input comprises data that 

is labeled as well as unlabeled. Classification is not possible in the absence of labeled data. The 

unlabeled data in the dataset, it seems, can actually help make classification better!

An easy way to fulfill this aim is to first use the labeled data to train a classifier. The next 

step is to apply the same to the unlabeled data so that it is labeled with class probabilities (using 

‘expec tation’ step of EM algorithm, as mentioned later in this chapter). The third step is to train 

another classifier with the help of labels for all the data (the ‘maximization’ step of EM algorithm). 

Fourth, repeat till conver gence is achieved. The primary question whose answer can only be given 

empirically is, ‘Will the repetitive parameter estimates of the EM algorithm make the classification 

more accurate?’ This kind of combination of Naive Bayes and EM algorithms is good for document 

classification [18, 107].

Unlabeled data can also enhance classification performance in situations wherein there are two 

independent and very different viewpoints on the classification work. For example, web page 

documents have two perspectives—content and the links to that content from other pages. In such 

issues, the co-training concept works in the following manner.

Start by learning a different model for each viewpoint or perspective from the examples carrying 

labels. Then, label the unlabeled examples using each model separately. For each model, choose the 

example that best labels it as positive and the one that best labels as negative, and add these to the 

pool of labeled examples. Iterate the entire process by training both models on the augmented pool 

of examples till the unlabeled pool is finished [18, 108].

The next several sections of this chapter cover specific techniques associated with unsupervised 

learning, called clustering techniques. Other unsupervised techniques leading to association rules 

will be taken up in Chapter 9.

7.1.1  Clustering

Our focus in this book so far, has been on classification and regression problems for the solutions 

using supervising learning techniques. In a training data matrix for classification problems, the 

outputs are known and these are class labels. For example, in a credit assignment problem, the 

inputs are the relevant information we have about the customer’s financial history, namely—
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income, savings, collaterals, profession, age, past financial history, and so forth. The bank has a 

record of past loans containing such customer data and whether the loan was paid back or not: risk/

no risk are the class labels with the data on each customer. The machine learning algorithm fits a 

model to the past data to be able to calculate the risk for a new application.

In a training dataset for regression problems, the outputs are known and these are numeric values 

Œ¬. Let us take an example of the regression problem: navigation of mobile robot. In the case of 

an autonomous car, the angle at which the steering should turn in order to move without bumping 

into any obstacle or without moving away from the path will be considered the output. Inputs, on 

the other hand, come from the car’s sensors. In other words, inputs are given by the video camera 

or other things, such as the GPS. It is possible to obtain training data by closely watching and 

recording the car driver’s movements and actions.

Ranking is an application area of machine learning that is different from classification and 

regression, and is sort of between the two. Consider an example. If users rate the movies they 

have watched as ‘enjoyed/not enjoyed’, this will be a binary classification problem. If they rate the 

movies on a scale of 1 to 10, this will be a regression problem. It will be easier for the users to say 

that of the movies they have watched, they like one more than the other instead of yes/no decision 

or a numeric value. That is, the output is ordinal with possible values that have a meaningful order 

or ranking among them, but the magnitude between successive values is not known.

Ranking has many applications. In search engines, for example, given a query, we want to 

retrieve the most relevant documents. If we retrieve and display the current top 10 candidates, 

and then the user clicks the third one skipping the first two, we understand that the third should 

have been ranked higher than the first and the second. Such click logs are used to train rankers. 

Other application areas of ranking which have been explored are information retrieval and natural 

language processing. Useful references for ranking applications and algorithms are [109–112].

In training datasets for clustering problems, outputs (class labels/numeric/ordinal) are not 

specified; only the feature vectors representing different objects/instances/records/situations are 

known. When you group a set of data objects to form several groups or clusters, in such a way 

that the components within a cluster are highly similar but differ from the components of other 

clusters, it is called clustering. The level of similarity and dissimilarity are evaluated on the basis of 

the characteristics of the variables that describe the objects or components. This assessment often 

involves distance measures introduced in Chapter 2.

Cluster detection is a tool for unsupervised learning, because the clustering techniques find 

patterns in the data without regard to any target variable. Finding clusters is rarely an end itself. 

After clusters have been detected, they may become objects of study.

Supervised learning, with a few exceptions, is often based on statistical techniques that have been 

around for many decades or centuries. These have adapted to the increased volumes of data and 

computer power available in the modern world, but many basic ideas remain the same. Clustering 

(a tool of unsupervised learning), on the other hand, is more recent and borne out of availability of 

lots of data and powerful computers. 

Sample application examples of clustering are given as follows:

Clustering can be used for data exploration, to understand the structure of the data. The data may 

contain so much complex structure that even the best data mining techniques are unable to coax out 
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meaningful patterns within the data. Cluster detection provides a way to learn about the structure of 

complex data. A natural way to make sense of complex data is to break the data into smaller clusters 

of data; then finding patterns within each cluster is often possible.

Image compression is an interesting application of clustering. In an image, if we decide to color 

code shades of the same group with a single color, say their average, then we are actually quantizing 

the image. If 24 bit pixels represent 16 million colors for an image, and there are shades of merely 

64 main colors, we will require 6 bits for each pixel rather than 24. 

Document clustering aims to classify similar documents. For instance, news reports can be 

further divided as those pertaining to politics, entertainment, sports, and so on.

Clustering is used in bioinformatics in learning sequences of amino acids that occur repeatedly 

in protiens; they may correspond to structural or functional elements within the sequences.

If a company has the data pertaining to past customers, along with demographic information and 

past transactions with the company, the clustering approach ensures that customers with similar 

attributes are assigned the same group. As a result, the customers of the company end up being in 

natural groups. This is termed, customer segmentation.

Clustering can be used to map data to a new space where supervised learning is easier. Clustering 

techniques find similarities between instances and thus group instances. It is possible to select the 

group mean to represent the prototype of instances in the group permitting a less complex data 

description. For instance, if an organization’s clients fit in one of the K groups known as segments, 

then there will be  better understanding of the customer base letting the organization offer different 

strategies for different segments. This is called customer relationship management.

Another use of clustering methods is in outlier detection which is finding instances that do not 

lie in any of the main clusters and are exceptions. The outliers may be recording errors that should 

be detected and discarded in data cleansing process. However, an outlier may indicate abnormal 

behavior, for example, in a dataset of credit card transactions, it may indicate a fraud; in an image, 

it may indicate anomalies, for example, tumors; or it may be a novel, previously unseen but valid 

case; for example, customers who do not fall in any large group may require special attention— 

churning customers. Outlier detection is sometimes given the name anomaly detection or novelty 

detection.

A problem that generally occurs is that the data used to train the outlier detector is unlabeled and 

may contain outliers mixed with typical instances. Clustering algorithms (unsupervised learning) 

are useful for detecting outliers in the unlabeled data.

Spotting of that which does not normally occur is basically outlier detection. To achieve this, a 

kind of unsupervised learning, which is restricted, is required. This can happen by an estimation of 

the high-density areas; by discovering a boundary (such that it reads as a classification problem) 

separating high-density volumes from low-density volumes. It is then possible to use such a 

boundary to detect outlier. This is also known as one-class classification.

7.2  ENGINEERING THE DATA

In the previous chapters, we have examined an array of machine learning methods: naive Bayes 

classifier, k-NN algorithm, linear regression, logistic regression, linear discriminants, support 



332  Applied Machine Learning

vector machines, neural networks, fuzzy logic models. Several other learning schemes (clustering, 

association rules, decision trees, fuzzy decision trees) will be discussed in the current and the later 

chapters. All are sound, robust methods, which can be applied to practical data mining problems.

Data mining applications generally have four basic types of learning—pattern recognition, 

numeric prediction, clustering learning and association learning. In pattern recognition or classi-

fication learning, classified example sets are presented and the learning scheme is expected to 

learn to classify examples that are not seen. In numeric prediction or regression learning, the 

result to be predicted is a numeric or continuous quantity rather than a class. Clustering learning 

seeks sets of examples that are similar or belong together. In association learning, any association 

among features is sought, not just ones that predict a particular class value. For a given data mining 

problem, a learning scheme that works best will have to be chosen from the range of schemes 

that are available for the type of learning (classification, regression, clustering, association rules) 

dictated by the problem. It is tempting to try out several learning schemes to make a right choice. 

Ensemble learning methods use a combination of learned models (classifiers/regressors) with the 

aim of creating an improved composite model. Bagging and boosting are the two such techniques 

for improving accuracy (refer to Section 2.5.2).

Mere selection of a learning algorithm and its running over the data collected is not enough. 

For data mining to be successful, much more is required. Today’s real-world data are typically of 

huge size and their likely origin is from multiple heterogeneous sources. The low-quality data that 

we collect will lead to low-quality mining results. Careful preprocessing of the available raw data 

improves the efficiency and ease of data mining.

Integration of data from different sources into a coherent data store provides a single consistent 

point of data access for mining. Section 9.3 will deal with construction of data warehouses.

Let us look at different ways in which data can be messaged so that it becomes more suited to 

learning techniques. The essential procedures that can materially improve success on application 

of machine learning techniques to practical data mining issues form a type of data engineering—

engineering the data into a form suited to the selected learning scheme. Our emphasis in this chapter 

is on four important processes of data preparation for successful data mining: data cleansing, 

derived attributes, discretizing numeric attributes and attribution reduction. All these processes 

result in data transformation to obtain high-quality mining performance.

Data transformation processes are performed using extensive exploration of the available 

data. Data clustering is a very useful stand-alone learning method and it is quite helpful in data 

exploration as well.

We examine in this chapter the data exploration, data clustering and data transformation 

processes involved in engineering the input data to make it more amenable for learning methods. 

When applied before mining, these processes can substantially improve the overall quality of the 

patterns mined, leading to huge payoffs for decision making. We can look on them as bag of tricks 

that we can apply to practical data mining problems to enhance the chances of success.

The execution of these processes is not necessarily sequential. With knowledge gained in 

execution of a step, we may go back to the earlier steps to refine our processing before we move 

forward; this results in a chain of nested loops. Because so many issues are involved, we cannot set 

it right the first time. This is why engineering the data for mining tasks takes so long.
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Although this book is not really about problems of data preparation, a feeling for the issues 

involved is important so that we can appreciate the complexities. With this objective in mind, our 

discussion is limited to more widely used techniques for applied machine learning.

7.2.1  Exploratory Data Analysis: Learning about What is in the Data

Exploratory data analysis is outside the scope of this book, but that is not because it is unimportant. 

In fact, books devoted exclusively to this subject have been written. Every commercial software 

devotes good amount of effort on data exploration.

Exploring data is an opportunity to learn about what is in the data. Much of the learning is about 

the processes that generate the data—essentially data quality issues. This is to be expected. The 

data that data miners work with usually comes from many different source systems, which might 

include data warehouses, external sources of data, operational systems, marketing spreadsheets, 

and so on (Section 9.3 will provide the details).

What do we want to look for when exploring data? The answer to this question is difficult. In fact, 

to a domain expert, data summaries, correlation analysis, cluster analysis and data visualization 

through graphs and plots will bring out the characteristics of the data that will guide the data mining 

process. Exploration is thus an exercise to bring out something new, unknown to the miner, which 

can then be exploited to improve the success of data mining.

As said earlier, unsupervised data mining does not have a specific methodology. Unsupervised 

learning is more about exploration, understanding and refinements. These are creative endeavors 

that do not lend themselves to a specific set of steps. The big data problems that we are facing 

today, primarily, are the problems of unstructured and unfamiliar huge amounts of data which 

our conventional (first generation) data mining techniques are not able to handle. Though second-

generation data mining techniques for big-data and other difficult problems are the subject of 

research today, data clustering and exploration techniques are providing some tools in our hand to 

look deeper into the problems for possible solutions.

Basic Statistical Descriptions

Basic statistical descriptions are used to get familiar with the data and its traits. These descriptions 

facilitate the identification of properties of the data and highlight the data values that need to be 

considered noise or outliers.

Three important aspects of basic statistical descriptions are as follows:

 (i) The measures of central tendency measure the location of the center of the data distribution,  

particularly mean, median and mode described in Section 3.2. They help identify where most 

of the values of an attribute fall.

 (ii) Second aspect of statistical description is to have an idea of dispersion of the data, that is, how 

are data spread out. The most common data dispersion measures are variance and standard 

deviation (Section 3.2) of the data. These measures are useful for identifying outliers.

 (iii) Correlation analysis is another facet of statistical data descriptions. In databases containing a 

large number of variables, the information covered by the variables usually overlap a lot. One 

way of finding redundancies is to examine the correlation matrix (Section 3.2), which depicts 

the correlations between variables in pairs. Pairs with very strong correlation witness a lot of 

information overlap and are ideal for data reduction by eliminating one of the variables.
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Using graphs and plots, basic statistical descriptions can be displayed for visual inspection of 

the data. Bar and pie charts, along with line graphs as well as scatter and quantile plots, are regular 

elements of a majority of the statistical data presentation software available.  

One of the best techniques to effectively determine a relationship, trend or pattern between 

two numeric attributes, graphically, is the scatter plot. It offers a glimpse of bivariate data to view 

clusters of points and outliers or to discover if there are any possible correlation relationships. 

Summaries of statistical descriptive data mining techniques are available in [113, 114].  Refer to 

[115] for statistics-based data visualization.

Data Visualization 

The objective of data visualization is to share data clearly and in an effective manner using graphs. 

Visualization methods can be used to explore data relationships, which cannot be clearly observed 

otherwise by simply taking a look at raw data. Some of the visualization methods offered by 

commercial software packages are pixel-oriented, geometric projection, icon-based and hierarchical 

visualization [17]. Refer to [116] for ground-breaking work on methods of data visualization.

For huge datasets, say, one million points, it is not uncommon to pick a random data sample and 

employ it to create more interpretable visualization. 

Interactive visualization is preferred over static plots. Software packages for interactive 

visualization permit the user to interactively choose as well as alter variables on the plots, to zoom 

in and zoom out of different areas on the plot, and provide the user with the power to navigate 

through the huge volume of  data.

Measuring Data Similarity and Dissimilarity

In clustering, k-NN classification, outlier analysis and other data mining applications, similar and 

dissimilar objects need to be assessed.  As mentioned earlier, in clustering, data objects are so 

grouped/collected that while the objects in one cluster are alike, they are very unlike the objects in 

other clusters. Outlier analysis employs clustering-based methods to recognize potential outliers as 

objects with high level of dissimilarity with others [117, 118]. Knowledge of similarities in objects 

can also be used in k-NN classification schemes.

7.2.2  Cluster Analysis: Finding Similarities in the Data

Cluster analysis groups the available data into different clusters on the basis of similarity of the 

objects in the dataset. Methods of clustering are applicable in the absence of class predictions tasks 

when the objects/instances need to be assigned to natural groups. These clusters display certain 

mechanism at work in the domain from which objects are drawn—a mechanism because of which 

certain objects resemble each other more strongly than they do with the other objects/instances.  

Clustering results can be expressed in various ways. The selection from among these and those not 

included here, should be determined by the nature of the mechanisms underlining the particular 

clustering phenomenon. However, since these mechanisms are hardly known—their very existence 

is being discovered—the selection generally depends on the available clustering tools, each one of 

which (algorithms) would give rise to data partition with a fixed structure, in terms of location and 

cluster shapes. 
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There is a dearth of universal algorithms that can work in all situations. The issue becomes worse 

due to the fact that there may be thousands and millions of samples in real tasks. Clustering as a 

subject is still being studied and researched on, given the big-data problems that pose a challenge 

in this age.

While selecting the right clustering algorithm, we should make use of the knowledge of the 

problem the dataset describes. Data partition must usually have two features:

 • Clusters should be homogeneous within: Data within each cluster should strongly resemble 

each other.

 • There should be heterogeneity between clusters: Data should differ from one cluster to 

another cluster as much as possible. 

The similarity of data depends on the kind of data to be clustered. As data usually describes 

features of objects in a numerical form, the ideal measure of similarity is by measurement of the 

distance between data vectors. For instance, we could use the Euclidean norm (refer to Section 

3.2.5), the most commonly employed measurement technique to measure the likeness of objects.

The primary characteristics of the popular Euclidean distance measure are:

 • It depends on scale; variables that have larger scales tend to exert a greater influence over the 

total distance. It is a usual practice to normalize continuous measurements before calculating 

the Euclidean distance. This enables conversion of all measurements to the same scale. Refer 

to Section 7.7.2 for details.

 • It does not take into account the relationship between the measurements. In case of strong 

correlation of measurements, it is better to select a different distance (such as statistical 

distance or Mahalanobis distance). Refer to Section 3.2.5.

 • Euclidean distance is sensitive to outliers (it is preferable to use more robust measures, for 

instance, the Mahalanobis distance).

Representing Clustering Result

When clusters are formed, the result could be expressed in the form of a diagram that shows how 

the instances fall into groups. For visual illustration, we use two-dimensional points, as shown in 

Fig. 7.1, as our data objects.

In the most basic scenario, representing a clustering result requires associating a cluster number 

with each object (instance), which may be portrayed through the instances: say s(1), s(2), s(3), s(4), s(5), 

s(6), s(7), s(8), s(9), s(10), s(11), in two dimensions and partitioning the space to indicate each cluster, as 

shown in Fig. 7.1(a). This exclusive clustering allocates each instance to a single cluster. In many 

cases, the point could be placed in more than one cluster. Usually, overlapping or non-exclusive 

clustering indicates that an instance can exist in more than one cluster at a time. This can be 

shown via a diagram depicting overlapping subsets representing each cluster [Fig. 7.1(b)]1. Some 

algorithms associate instances with clusters in a probabilistic way—for every instance there exists 

a probability with which it belongs to each of the clusters. Figure 7.1(c) shows normal distributions; 

1 In fuzzy clustering, every object belongs to every cluster with a membership weight that is between 0

and 1.
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probability density functions resemble mountain ranges—each cluster has a peak. If there are 

smaller groups or subclusters within each cluster a hierarchy emerges—clusters nested within each 

other to form a tree-like structure. Figure 7.1(d) depicts a hierarchical structure. Diagrams of this 

type are known as dendrograms, which is just another name for tree diagrams (‘dendron’ in Greek 

means ‘tree’).

(a) Exclusive clusters
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(c) Probabilistic clusters
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(d) Hierarchical clusters

Figure 7.1 Different ways of representing clusters
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Measuring Clustering Quality

Quantitative indices to measure clustering quality very much depend on the clustering approach. 

Various approaches lead to different types of clusters (Fig. 7.1). However, as we will see in the 

next section, the most widely used approaches, directly or indirectly, use the concepts employed 

in exclusive clustering (hard clustering) represented by Fig. 7.1(a). Our discussion that follows 

will be centered around this clustering. Extension of our discussion to other clustering approaches 

covered in this chapter will become obvious.

Cluster Validity: Following the application of a clustering technique on a dataset, the resultant 

clusters need to be assessed for quality. The evaluation of the result of a clustering algorithm is 

done using clustering validation indices which are used to quantitatively evaluate the result of 

a clustering algorithm. Many validation indices exist. Refer to [119] for a detailed survey. Two 

criteria that are usually considered enough to measure data partitioning quality are Compactness 

and Separation.

 • While patterns in one cluster should have similarity, they should be dissimilar to the patterns 

of other clusters. Compactness is indicated by the variance of patterns in a cluster.

 • Clusters need to be properly separated from one another. The Euclidean distance between 

cluster centroids indicates the cluster separation.

It is necessary to specify the number of clusters in advance in the majority of clustering 

algorithms. Conventionally, in order to determine the ‘optimum’ number of clusters, the algorithm 

needs to be run again and again, employing different values generated at random, and selecting the 

data partitioning resulting in the best validation measure.

It is not easy to mathematically obtain the optimum number of clusters in a dataset because this 

can only be possible through a priori knowledge and/or the absolute truth about the data, which is 

rarely available. In fact, many researchers have been studying the issue of arriving at an optimum 

number of clusters in a dataset.

In addition to mathematical measures of cluster goodness to provide some guidance on number of 

clusters, we must also evaluate on subjective basis to determine their usefulness for an application. 

Sometimes the number of partitions (or the acceptable range for this number) is supplied by the 

application. For example, in the clustering problem related to customers segmentation, how many 

segments a business can reasonably support is subjectively examined.

Cluster Interpretability: Let us study the characteristics of each cluster to be able to  understand 

the clusters by:

 • first getting the summary statistics from each cluster;

 • then, establishing if the dataset provided has a nonrandom structure, which may result in 

meaningful clusters;

 • and finally attempting to allocate a name or label to each cluster.

The most simple and commonly used criterion function for clustering is the sum-of-squared-error 

criterion. Let Nk be the number of samples in cluster k and mk be the mean of those samples:
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where K stands for number of data partitionings.

This criterion has a simple interpretation.

Cluster Stability: In case certain inputs are slightly changed, does this result in a major change in 

the cluster assignments?

Applications of Cluster Analysis

In cluster analysis, data objects are grouped together only on the basis of the information available 

in the data, which gives a description of the objects and their relationships. It is an unsupervised 

learning problem wherein training samples are unlabeled. That is, the problem is to see what can be 

done when all one has is a collection of samples without being told their categories/numeric values 

for regression.

It is natural to wonder why an issue as uncompromising as this should be of any interest to 

anyone, irrespective of whether it is possible to learn anything valuable from unlabeled samples.

Broadly speaking, cluster analysis can be used for exploring data, or it may serve as a standalone 

tool for machine learning/data mining applications.

Clustering for Data Exploration

 • It is a useful tool for data summarization.

 • The concept of outliers is linked to clusters. An outlier is an object that either comes from 

a remote cluster, which is small or does not belong to any cluster. Alteration of clustering 

algorithms can be done to ensure inclusion of outlier detection as a consequence of their 

execution.

 • The fact that distinct subclasses have been found—clusters or groups of patterns, wherein 

there is more similarity between the members than there is with other patterns—suggests 

certain alternative models for designing classifier/regressor.

   For instance, several machine learning methods are complex in terms of time or space. 

Therefore, they are not feasible in case of huge datasets. But it is possible to apply the 

algorithm to a smaller dataset—comprising just prototypes of clusters—instead of the whole 

dataset. Based on the nature of analysis, the number of prototypes, and how accurately the 

data is represented by the prototypes, it is possible to compare the results with those that 

would have been gained in case all the data had been used.
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 • To get the nearest neighbours, you need to compute the pairwise distance between all points. 

If objects are close to their cluster prototype, then prototypes can be used to bring down the 

number of distance computations needed to find the nearest neighbors of an object. In case 

two cluster prototypes are at a distance from each other, it is not possible for the objects in 

the corresponding clusters to become each other’s closest neighbors. As a result, finding the 

nearest neighbours of an object only requires computation of the distance to objects in nearby 

clusters.

Clustering as a Standalone Tool

Clustering is just a type of classification wherein objects are labeled with cluster or class labels. These 

labels, however, are drawn from the data itself, unlike supervised classification wherein the class label 

for each and every object is known beforehand. Therefore, cluster analysis is often called unsupervised 

classification. Some examples of applications are as follows:

 • Clustering has been used by biologists to find groups of genes that have similar functions.

 • The World Wide Web consists of billions of Web pages, and the results of a query to a search 

engine can return thousands of pages. Clustering can be used to group these search results 

into a small number of clusters, each of which captures a particular aspect of the query.

 • Clustering has many applications in psychology and medicine. For example, clustering has 

been used to identify different types of depression. Contents of MR brain images can be 

clustered into subclasses for diagonostic purposes.

 • In an image recognition application, subclasses or clusters can be discovered in character 

recognition systems, which are hand written.

 • In business intelligence, a lot of customers can be organized into groups using clustering. The 

customers within the group will be strongly similar to each other in terms of  characteristics. This 

helps develop the business strategies meant to improve customer relationship management. 

For instance, customers are divided on the basis of information related to demographic and 

transaction history. Then, a marketing strategy is devised suited to each section. Clustering 

can also be used to analyze the market structure: identify groups comprising similar products 

as per competitive measures of similarity.

 • Cluster analysis can help create balanced portfolios in finance.

Data clustering is under vigorous development. Because of the large volumes of data gathered 

and stored in databases, cluster analysis has of late become a very hot subject in data mining 

research.

Details on clustering methods are available in Sections 7.3–7.6.

7.2.3  Data Transformations: Enhancing the Information Content of the Data

Typically, data from a variety of sources must be integrated. Because the source data is usually 

not at the level required by the application in hand, building the data for the application requires 

many transformations. Preparing the data for mining by appropriate transformations depends on 

the nature of the data sources and the requirements of the data mining techniques. Some data 

preparation is almost always required and it is not unusual for data preparation to be the most time- 

consuming part of a data mining project. Some data preparation is required to fix problems with the 
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source data, but much of it is designed to enhance the information content of the data. Better data 

means better models.

Data Cleansing

The real-world databases of modern times are extremely vulnerable to inconsistency, noise and loss 

of data owing to their typical large size and also because they originate from multiple and varied 

sources. Data of low quality will give low-quality mining results. Preprocessing of the available 

raw data requires data cleansing to fix problems with the source data.

Data cleansing is a big challenge and consumes bulk of the effort in data mining process. 

Discrepancies in data can be caused by various factors including poorly designed data collection, 

human-errors in data entry, deliberate errors (e.g., respondents not willing to divulge information), 

inconsistent data representations, errors in instrumentation that record data and system errors. 

Practical data mining process has to deal robustly and sensibly with errors in raw data such as 

missing values, inaccurate values, outliers, duplicate data, sparse data, skewed data, noisy data, 

anomalies because of some systematic errors, etc.

Dealing with poor-quality data cannot be captured in simple routines available off-the-shelf, 

though there are a number of different commercial tools that can aid in the data cleansing process. 

These tools employ data exploration methods to develop understanding of the data. Data cleansing 

process requires great amount of trial-and-error effort using available commercial tools, and the 

knowledge we already have about the properties of the data (e.g., what is the domain of each 

attribute? What are the acceptable values for each attribute? Are there any known dependencies 

between attributes?, etc.)

Derived Attributes

Yet another significant aspect of the data transformation procedure pertains to the definition of new 

variables. These convey the information intrinsic in the data in such a way that the information 

becomes more useful for data mining methods. Derived variables for data preparation may involve 

creation of new variables through creative transformation of existing variables. When measuring 

variables on different scales, their standardization also becomes essential. For data mining methods 

that work on numerical data alone, it is necessary to numerically represent categorical data in some 

way.

Discretizing Numeric Attributes

Discretization of numeric attributes is absolutely essential if the task involves numeric attributes 

but the learning scheme chosen can only handle categorical ones. Even schemes that can handle 

numeric attributes often produce better results, or work faster, if the attributes are prediscretized. 

As has been said earlier, the converse situation in which categorical attributes must be represented 

numerically, also occurs, although less often.

Attribute Reduction

Datasets for analysis may contain hundreds of attributes, many of them may be irrelevant to the 

mining task. The role of domain expert is very important to pick out the relevant attributes (refer to 
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Section 1.5). Leaving out relevant attributes or keeping irrelevant attributes may be deterimental, 

causing confusion for the mining algorithm employed. This can result in performance of the learning 

scheme to deteriorate. In addition, the added volume of irrelevant or redundant attributes can slow 

down the mining process. Feature extraction using domain knowledge is thus an important initial 

step in data mining process.

Data mining success will suffer more if relevant features are left out compared to the loss in 

keeping irrelevant redundant attributes. This is because data transformation techniques can help 

eliminate the redundant attributes, but the relevant ones left out at the feature extraction stage 

cannot be recovered. Domain experts normally select a larger set of features, keeping all those for 

which they have doubts about redundancy. This larger set is then processed using transformation 

techniques for reduction of the attributes.

Transforming the data in different ways with respect to the objective, can help improve success 

when applying machine learning techniques.

Detailed discussion on transformation techniques will appear in Sections 7.7–7.10.

7.3  OVERVIEW OF BASIC CLUSTERING METHODS

There are many clustering algorithms in the literature. It is difficult to provide a crisp categorization 

of clustering methods. Nevertheless, it is useful to present a relatively organized picture of major 

fundamental clustering methods.

In this section, we limit our presentation to the following categories of clustering methods. The 

techniques based on these categories are widely used (refer to [17, 120] for broader categorization).

 1. Partitional Clustering 

 2. Hierarchical Clustering

 3. Spectral Clustering

 4. Clustering using Self-Organizing Maps

7.3.1  Partitional Clustering

Partitioning is the most simple and basic version of cluster analysis, as it organizes the objects 

of a dataset into many groups/clusters. To ensure conciseness of the problem specification, our 

assumption should be that the algorithm seeks a fixed number of clusters ‘K’, as the user specifies. 

This parameter marks the beginning of partitioning techniques.

Formally, if a set of N objects is given, a partitioning technique will create K divisions of the 

data, where each division or partition is representative of a cluster, and K £ N. In other words, it 

partitions the data into K groups in a way that each group must comprise a minimum of one object.

Since data frequently describes the features of objects as numbers, that is, in the numerical form, 

data subject to clustering will require representation by n-dimensional vectors x(i); i = 1, …, N, with 

x = {xj; j = 1, …, n} = [x1 x2 
… xn]

T. The set of N vectors builds a matrix X of dimension N ¥ n:
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In this matrix, the rows are objects, while the columns are features or attributes.

The clusters are created by optimization of an objective partitioning criterion, such as distance-

based similarity function, so that the objects within a cluster bear similarity with each other and 

bear no similarity with objects in other clusters, as far as the dataset attributes are concerned. There 

are many types of other criteria that help judge partition quality.

Achievement of global optimality in partitioning-based clustering can be rather prohibitive 

computationally. It requires analysis of all possible partitions of N objects into K clusters, which 

is generally a huge number. Instead, most applications resort to widely used heuristic techniques.

K-Means Algorithm

The most general of the heuristic clustering techniques is the K-means clustering. It is amongst the 

widely used clustering algorithms.

K-means clustering characteristically espouses exclusive cluster separation:

 • The set of all clusters comprises all data vectors.

 • Each object belongs to exactly one group.

 • None of the clusters is empty and none of them contain the entire dataset X. The clusters are 

not joined.

The goal of clustering algorithm is to find K points that make good cluster centers. These centers 

define the clusters. Each object is assigned to the cluster defined by the nearest cluster center. The 

best assignment of cluster centers could be defined as the one that minimizes the sum of distances 

from every point to its nearest cluster center (or the distance-squared).

Finding the optimal solution is difficult and the K-means algorithm does not attempt to do so. 

Instead, we follow the following iterative procedure.

K points are randomly selected as cluster centers, which gives us cluster seeds. All objects are 

allocated to their nearest cluster center as per the Euclidean distance metric. For allocation of all 

objects to the nearest seed, all that is required is the calculation of the distance between each object 

and each seed. Then comes the calculation of the centroid or mean of the objects in each cluster, 

which is the ‘means’ part of the algorithm. These centroids are considered as new cluster-center 

values for their respective clusters. The entire procedure is iterated with the new cluster centers. 

Repetition goes on until the same points are assigned to each cluster in successive rounds. At this 

stage, the cluster centers become stable.

The final clusters are rather sensitive to cluster seeds. Entirely different arrangements can be 

derived from small changes in primary random selection of the seeds, and some may be more 

beneficial than others. To increase the chance of discovering the solution that has the maximum 

benefit, the algorithm may require to be run many times with varioius seeds and then the best final 

result may be selected.
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Similar situation arises in the choice of K. Often, nothing is known about the likely number of 

clusters, and the whole point of clustering is to find it out. A heuristic way is to try different values 

and choose the best.

Fuzzy K-Means Clustering

In case of data clustering work, it is important to define the data partition type. There is a distinction  

between hard and soft partitions. 

The aforementioned K-means technique is an example of hard partitioning, which generally 

opts for exclusive cluster separation. In other words, each object has to be part of exactly one 

single group. There are many problems that do not allow such a partitioning. Algorithms that 

make an object belong to several clusters with varied membership degrees are helpful in case of 

many practical problems. This kind of partitioning can be called soft partitioning, and is simply an 

extension of hard partitioning, wherein an object may not always be grouped clearly into to one 

class or category. 

In K-means clustering algorithm, each point x(i) is part of only one cluster (the clusters are 

disconnected). In Fuzzy K-Means Clustering algorithms, on the other hand, the data points are 

allocated to many clusters with different degrees of membership, which is a number ranging from 

0 to 1. The concept is based on the fact that data clusters generally tend to overlap to a certain 

level, and it is not easy to  identify proper borders among them. Hence, some data vectors cannot 

be clearly allocated exactly to one cluster, and therefore, it becomes more sensible to assign them 

partially to varied clusters. There is a limit clamped on membership degrees of a specific object 

to different clusters—the sum total of membership degrees of this object to each of the K clusters 

should equal 1.

It is observed that an object existing at an almost same distance from centers of all clusters may 

be considered noise. It is natural for us to allocate extremely low membership degrees to noise. 

However, it is a must to meet the condition that the sum of all membership degrees of the said 

object should be equal to 1.

Probabilistic Clusters

Statistically, we can assume that clusters to be derived from cluster analysis are distributions over 

the data space, which can be mathematically represented using probability density functions. We 

call such clusters probabilistic clusters. Probabilistic clustering provides another approach to soft 

clustering.

If we assume that samples come from a mixture of K normal (Gaussian) distributions, we can 

approximate a large variety of situations. The problem then reduces to estimating the unknown 

mixture densities:

  p(x|q) = p w
k k

k

K

( )x q
=

Â
1

 (7.3)

where q = [q1 … qK]T are the parameters of the mixture density p(x|q). The conditional densities 

p(x|qk) are called the component densities, and the prior probabilities wk (wk = P(cluster k)) are 

called the mixing parameters.
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In many applications, Gaussian Mixture Model (GMM)-based clustering has been shown to 

be effective because it is more general than (hard) K-means clustering and (soft) Fuzzy K-means 

clustering methods.

Partitioning-based clustering methods are studied in depth in Sections 7.4–7.6.

7.3.2  Hierarchical Clustering

Let us now take a brief look at  another  clustering model which is an alternative to the partitioning-

based techniques talked about earlier. Partitioning-based techniques are not based on the assumption 

that substructures exist in the clusters. Yet, there may be instances when data is organized in a 

hierarchical manner, that is, clusters have subclusters, there are subclusters within subclusters and 

so on. In such a scenario, it is better to have hierarchical clustering for effectiveness.

Given a dataset X = {x(1), …, x(N )}Œ¬n, let us consider a sequence of divisions of its elements 

into K clusters, where K Œ [1, N], an integer not fixed a priori. The first possible division or 

partition is the one that divides the data into N groups with each cluster containing only one 

element. The second partition divides X into N – 1 clusters by merging two closest observations 

into one cluster. The third partition divides X into N – 2 clusters by merging two clusters with the 

smallest distance (we will shortly take up the issue of measuring distance between clusters). The 

process goes on progressively agglomerating (combining) the two closest clusters until there only 

one cluster remains, which comprises all data samples. We consider ourselves at level l of the 

sequence of partitions when K = N – l + 1. Therefore, level one corresponds to N clusters and level 

N to one cluster. If, according to the property of the sequence, whenever two samples exist together 

in the same cluster at level l, they continue to stay together at all higher levels, then it is said to be 

a hierarchical sequence.

Usually a tree, known as dendrogram, represents the hierarchical clustering. Figure 7.2 represents 

a dendrogram for a dataset with ten samples. At l = 1, each cluster has a single pattern. At level 2, 

x(9) and x(10) are gathered in a single cluster. At last level, l = 10, all patterns belong to the single 

cluster.

The process of hierarchical clustering can be categorized into two distinct models: agglomerative 

and divisive. Agglomerative processes begin with N singletons and form the sequence with 

successive merging of clusters. Divisive processes begin with all of the samples in a single cluster 

and create the sequence by consecutively separating clusters. In case of agglomerative processes, 

simpler computation is required to move from one level to another.

Whether employing an agglomerative technique or a divisive one, the primary requirement is 

to measure the distance between two clusters, where each cluster is usually a set of objects. The 

following are the four commonly used measures for distance between clusters:

 (i) The minimum distance between clusters—the distance between their two closest members. 

This gives the single-linkage clustering algorithm. Since this measure takes into consideration 

only the two nearest members of a pair of clusters, the procedure is sensitive to outliers. By 

adding  merely a single new instance the whole structure can be radically changed.

 (ii) The maximum distance between the clusters—the distance between the two members which 

are the farthest. This gives the complete linkage clustering algorithm. This measure is also 

sensitive to outliers but looks for compact clusters. Some instances, however, may end up a 

lot closer to other clusters than to rest of their own cluster.
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 (iii) The centroid-linkage method, which represents clusters by the centroid of their members 

(such as in K-means algorithm) and uses the distance between centroids.

 (iv) The average linkage method, which calculates the average distance of all possible distances 

between objects in one cluster and those in the other cluster.
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Figure 7.2 A dendrogram

Choosing from among clustering methods is done by exploitation of domain knowledge. If the 

probable nature of clusters is unknown, default choices are complete and average-linkage methods 

that yield spherical clusters.

Some observations regarding hierarchical clustering are:

 • It proves to be costly and slow when it comes to large datasets, because it requires the 

computation and storage of N ¥ N distance matrix (similarity matrix). 

 • If there is erroneous allocation of instances in the process initially, it cannot be reassigned 

later. In other words, the hierarchical algorithm passes through the data only once.

7.3.3  Spectral Clustering

Of late, spectral clustering has gained popularity as a modern clustering algorithm. It is not difficult 

to execute. It can be easily and efficiently solved using standard linear algebra software. Quite 

frequently, especially when the data is linked but not really compact or clustered within convex 

boundaries, spectral clustering works much better than other clustering algorithms, such as K-means 

and Gaussian mixtures. Refer [121] for a detailed tutorial on spectral clustering. This tutorial derives 

spectral clustering and offers different perspectives to working of spectral clustering.  
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Consider a set of data points x(i); i = 1, …, N (x(i) = {xj
(i); j = 1, …, n}). The natural aim of 

clustering is to partition the data points into many classes in such a way that points in the same 

group bear similarity while those in varied groups bear no similarity with each other. Clustering, 

therefore, requires some notion of similarity sil ≥ 0 between all pairs of data points x(i) and x(l); 1 £ 

i, l £ N.

Use of the similarity graph G is an appropriate way of data representation. In this graph, each 

vertex depicts a data point x(i). In case the similarity sil between two corresponding data points x(i) 

and x(l) is positive or more than a specific threshold, the two vertices are joined. It is now possible 

to reformulate the issue of clustering with the use of the similarity graph. We seek such a partition 

of the graph that the edges between various groups have extremely low similarity weights—this 

indicates the dissimilarity between the points in various clusters—and edges within a group have 

extremely high similarity weights (that is, the points inside the same cluster bear similarity to each 

other).

Diving into the theory of spectral clustering to formalize this intuitive understanding into 

algorithms is really not straightforward. One needs to go deeper into the subject. Luxberg tutorial 

[121] and the references given in there should provide a good starting kick to the interested reader.

At the first glance, spectral clustering algorithms are slightly mysterious. Though the 

implementation appears straightforward, it is not obvious to see why they work at all and what they 

really do. These algorithms have been successfully used in many applications including computer 

vision, but despite their empirical successes, different authors still disagree on various issues 

regarding these algorithms. The subject of spectral clustering is under extensive research since 

there seems to be a definite potential in its being one of the most powerful clustering techniques. 

In this subsection, we first attempt to provide an intuitive understanding of spectral clustering and 

thereafter discuss one of the many proposed algorithms—the Ng-Jordan-Weiss algorithm [122].

Affinity Matrix /Adjacency Matrix

What is an Affinity? It is a metric that determines how close, or similar, two points are in our space 

¬n. Let G be a symmetric graph with each vertex representing data point x(i). Each edge between 

two vertices i and l carries a non-negative weight wil ≥ 0. If wil
 = 0, it means that the vertices 

corresponding to x(i) and x(l) are not connected by an edge. As G is symmetric, wil = wli. The Affinity 

Matrix or Adjacency Matrix of the graph is the matrix:

  W = {wil}i, l = 1, …, N (7.4)

The degree of vertex representing x(i) is defined as,

  di = wil
l

N

=

Â
1

 (7.5)

Note that, in fact, the sum runs over all vertices adjacent to the one representing x(i) as for all 

other vertices, the weight wil = 0.

The degree matrix D is defined as the diagonal matrix with the degrees d1, d2, …, dN on the 

diagonal.
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Different Affinity Matrices

There are several popular constructions to transform a given set x(1), …, x(N) of data points with 

pairwise similarities into a graph. The goal is to model the local neighborhood between the data 

points. In e-neighborhood graph, we connect all points whose pairwise distances are smaller than 

e. In k-nearest-neighbor graph, the vertex representing x(i) is connected to vertex representing  x(l) if 

x(l) is among the k-nearest neighbors of x(i). Since the neighborhood relationship is not symmetric, 

some additional adjustments are required to construct the symmetric graph. A simple way is to 

ignore the directions of the edges. Another way is to connect two vertices if both x(i) is among the 

k-nearest neighbors of x(l) and x(l) is among the k-nearest neighbors of x(i).

We may use Gaussian similarity function

 w(x(i), x(l)) = wil = exp - -Ê
ËÁ

ˆ
¯̃

1
2

2

s

x x
( ) ( )i l  (7.6)

to construct a graph. Note that this symmetric similarity function (wil = wli > 0) itself models local 

neighborhoods; the parameter s controls the width of the neighborhoods. It controls how fast the 

affinity wil decreases as distance between x(i) and x(l) increases. wil   1 when the points x(i) and x(l) 

are close in ¬n, and wil Æ 0 if the points are far apart.

Graph Laplacian Matrices

Graph Laplacian matrices are the main tools used for spectral clustering. An entire field is dedicated 

to studying these matrices. However, our presentation is limited to just a few widely used variants 

of graph Laplacians. In the following, we assume that G is an undirected weighted graph with a 

symmetric weight matrix W, where wil = wli ≥ 0. 

The unnormalized graph Laplacian is defined as [123],

                                                                 L = D – W (7.7)

where D is the diagonal degree matrix assigned to the graph vertices and W is the weight matrix 

assigned to graph edges.

A normalized graph Laplacian matrix is given by,

 LN = D–1/2 L D–1/2 (7.8a)

  = D–1/2 (D – W) D–1/2

  = I – D–1/2 W D–1/2 (7.8b)

The Laplacian used by Ng-Jordan-Weiss [122] is a normalized graph Laplacian:

 LNJW = D–1/2 W D–1/2, and where wii = 0 (7.8c)

Left multiplying by a diagonal matrix is akin to scaling the rows, and right multiplying by a 

diagonal matrix is akin to scaling the columns.

The Ng-Jordan-Weiss Algorithm

Given a set of points x(1), …, x(N) in ¬n that we want to cluster into K subsets:
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 1. Form the Affinity Matrix, W Œ ¬N ¥ N defined by,

                                       wil = exp - -Ê
ËÁ

ˆ
¯̃

1
2

2

s

x x
( ) ( )i l  if i π l, and wii = 0 (7.9a)

 2. Define D to be a diagonal matrix whose (i, i)-element is the sum of all the W’s i th-row 

elements, i.e.,

                                                             dii = wil
l

N

=

Â
1

  (7.9b)

 3. Construct the Laplacian matrix

                                     LNJW = D–1/2 W D–1/2, and where wii = 0 (7.9c)

 4. Find v1, v2, …, vK, the K leading eigenvectors (refer to Sections 1.9, and 7.9) and form the 

matrix

                                                                     V = [v1 v2 … vK] Œ¬N ¥ K (7.9d)

  by stacking the eigenvectors in columns. The algorithm computes the K eigenvectors with 

the largest eigenvalues l1, l2, …, lK of LNJW.

 5. Form the matrix Z from V by normalizing each of the V’s rows to have unit length. That is, 

                            zik = vik vik
k

K

2

1

1 2

=

-

Â
Ê

Ë
Á

ˆ

¯
˜

/

; i = 1, …, N; k = 1, …, K. (7.9e)

 6. Treating each row of Z as a point in ¬K, cluster them into K clusters via K-means or any other 

algorithm serving the partitioning purpose.

 7. Finally, assign the original point x(i) to the cluster k if and only if row i of the matrix Z was 

assigned to cluster k.

Points to Note

 • In spectral clustering methods, the dimensionality of the new space is set to the desired 

number of clusters. Spectral clustering, thus, is a dimensionality reduction method for 

clustering high-dimensional data. Newly constructed space (derived from original space) 

should have low dimensionality [123].

 • There are many dimensionality reduction methods, some of which will be presented later in 

this chapter. However, such methods may not be able to detect the clustering structure. The 

setting of clustering algorithms expects that each new dimension should be able to manifest 

a cluster.

 • Computing eigenvectors of large matrices is costly.

 • The scaling parameter s2 controls how rapidly the affinity wil falls off with the distance 

between x(i) and x(l). Some methods have been proposed for choosing this parameter 

automatically. Choosing a good value of this parameter which has a profound effect on the 

results of spectral clustering, is usually difficult.
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 • Spectral clustering aims to group together the connected data, which may not always be  

compact within convex boundaries. A compact dataset comprises close points existing in the 

same cluster. Data points contained in different clusters are not near (Fig. 7.3(a)). However, 

the connectivity figure [Fig. 7.3(b)] indicates that the data points within one cluster may also 

be far away—may be farther away than the points in various clusters. Our aim is to transform 

the space in such a way that when two points are close together in the new space, they remain 

within the same cluster, but when they are not close to each other, they are in various separate 

clusters. Properties of the graph Laplacian alter the representation, improving the cluster 

properties in the data so that they are easily identified in the new representation. The simple 

K-means clustering algorithm finds it very easy to detect the clusters in a new representation.

(a) Compactness in clusters (b) Connectivity in clusters

Figure 7.3 

7.3.4  Clustering using Self-Organizing Maps

Self-Organizing Maps (SOMs) are a kind of neural network capable of performing unsupervised 

learning jobs, such as clustering. Although they were  originally used for images and sounds, these 

networks can also recognize clusters in data. Finnish researcher, Dr Tuevo Kohonen, is the inventor 

of self-organizing maps, which explains why they are also known as Kohonen networks. 

Patterns in data are identified by an unsupervised-learning network, which goes through changes 

in its parameters while identifying these patterns. Self-organizing is the process of undergoing these 

changes. Therefore, it can be said that self-organized learning involves regular alteration in the 

synaptic weights of the network, in response to input samples. The changes in weights take place 

according to certain learning rules. On repeatedly applying input samples to the network, there 

arises a significant configuration. Simply put, a sort of global order appears out of several, random 

and local interactions, which may finally result in some kind of similarity behaviour.

A special class of self-organizing neural networks is based on competitive learning. In competitive 

learning procedures, learning adjustments are confined to the cluster that is most similar to the 

pattern currently being presented. Consider, for example, the network structure shown in Fig. 7.4. 

The output layer (arranged in grid) consists of K units. Each of the units in the output layer is fully 



350  Applied Machine Learning

connected to the input terminals; the connection weights represented as w1, …, wK, that is, wk with 

k = 1, …, K; wk ={wkj ; j = 1, …, n}. The n-dimensional input pattern x(i) = {x1
(i), …, xn

(i); i = 1, …, 

N} is normalized to have length ||x(i)|| = 1. Each of the cluster centers in output layer is initialized 

with a randomly chosen weight vector, also normalized: ||wk|| = 1; k = 1, …, K. It is traditional, but 

not required, to initialize cluster centers to be K points randomly selected from data. 
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Figure 7.4 Competitive-learning architecture

When a new pattern is presented, each of the cluster units computes its activation ak = wk
Tx(i). 

Only the unit with the largest activation (i.e., whose weight vector is closest to the new pattern) is 

permitted to update its weights. That is, learning is confined to the weights at the most active unit; 

the weight vector at this unit is updated to be more like the input pattern:

 wk(t + 1) = wk(t) + h(x(i) – wk(t)) (7.10)

where h is a learning rate (‘t’ is the iteration index).

Note that whereas the clustering algorithms we have presented so far, typically have all the data 

present before clustering begins (i.e., are off-line), the competitive learning is an on-line algorithm 

where clustering is performed on-line as the data streams in.

The fact that only most active unit is modified for a given input x(i), results in hard competitive 

learning. The Self-Organizing Map (SOM), developed by Kohonen, is soft competitive learning 

network, wherein not only the weights for the most active units are adjusted, but the weights for 

units in its immediate neighborhood are also adjusted to strengthen their response to inputs [124].
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The SOM is an artificial system emulating specific brain mappings. The cerebral cortex, which 

comprises an extremely complex structure of billions of neurons and even more synapses, dominates 

the brain.  The cortex bears no uniformity or homogeneity. It consists of areas identifiable by how 

thick their layers are, and by the neurons they contain. These neurons are related to various sensory 

inputs as they are responsible for  auditory, visual, sensory, motor and other human activities. It 

will not be wrong to say that each sensory input is mapped to a corresponding area of the cerebral 

cortex. Therefore, the cortex is a self-organizing computational map within our brain.

Kohonen came up with the principle of topographic map formation, according to which the 

location of an output neuron (in terms of space) in the topographic map matches a specific trait of 

the input pattern. 

The fundamental idea of SOM is that inputs (belonging to an event space) are received by a 

simple network of adaptive elements; the signal representations are automatically mapped onto a 

set of outputs, in a way that the responses achieve the same topological order as that of the events.

Figure 7.5 shows a conventional feature-mapping architecture. The inputs to the network can be 

written in the vector form as,

  x = [x1 x2 … xn]
T

and the synaptic weight vector of the neuron k in the two-dimensional array is given by,

                                         wk = [wk1 wk2 … wkn]
T; k = 1, 2, …, K (7.11a)

where K is the total number of output neurons in the array. The best match of the input vector x with 

the synaptic weight vector wk is determined from the Euclidean distance between the input and the 

weight vector. The output unit with the smallest Euclidean distance, i.e.,

   min
"

-
k

kx w  (7.11b)

is the most active neuron q.

The next step in the Kohonen’s algorithm is to update the synaptic weight vector associated 

with the most active neuron and the neurons within a defined neighborhood Nq of this neuron. The 

learning rule is given by,

                                wk(t + 1) = 
w xk k

k

t t t

t

( ) ( ( ) ( ))

( )

+ - Œ

œ

Ï
Ì
Ó

h w

               w

if

if

k N

k N

q

q

 (7.11c)  

where h is the learning rate parameter, and t is the iteration index.

The neighborhood of the most active neuron may include neurons within one, two or even three 

positions on either side. Generally, training a SOM begins with the neighborhood of a fairly large 

size. Then, as training proceeds, the neighborhood size gradually decreases. 

Initialization of the network weights can be carried out by either randomly initializing them, 

or selecting a set of weights that reflect some a priori knowledge about the input data, that is, 

information regarding the possible distribution of the output clusters. Stopping conditions can 

be, for example, based on total number of specified iterations or based on monitoring the weight 

changes.
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Figure 7.5 Conventional feature-mapping architecture of SOM

Given is a set of N patterns {x(i); i = 1, 2, …, N} to be divided into K clusters. On each iteration, 

a pattern x(i) is presented to the network. Repeated presentations (that is, large number of iterations) 

of the input patterns to the network are normally required before the map begins to ‘unfold’.

A competitive learning network performs an on-line clustering process on the input patterns. A 

cluster center’s position is specified by the weight vector connected to the corresponding output 

unit. The update formula in Eqn (7.11c) implements a sequential scheme for finding the cluster 

centers of a dataset. When an input x(i) is presented to the network, the weight vector closest to 

x(i) rotates towards it. Consequently, weight vectors move toward those areas where most inputs 

appear, and, eventually, the weight vectors become the cluster centers for the dataset. When the 

process is complete, the input data are divided into disjoint clusters such that similarities between 

individuals in the cluster are larger than dissimilarities in different clusters. Here the dissimilarity 

measure of the Euclidean distance is used as a metric of similarity. Obviously, other metrics can be 

used, and different selections lead to different clustering results. 

7.4  K-MEANS CLUSTERING

The K-means clustering algorithm unambiguously partitions the given data into K clusters. The 

data describes the features of the objects in numerical form; data subject to clustering will be 

represented by n-dimensional vectors x(i); i = 1, …, N, with x ={xj; j = 1, …, n} = [x1 x2 … xn]
T. The 

set of N vectors creates data matrix X of dimension N ¥ n:

 X = 

x x x

x x x

n

N N

n

N

1
1

2
1 1

1 2

( ) ( ) ( )

( ) ( ) ( )

�

� � �
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È
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Í
Í
Í

˘

˚

˙
˙
˙

 (7.12)
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Matrix rows are the objects and the columns are features (attributes). For example, in the case 

of medical diagnostics, objects may be identified with the patients, while features will be identified 

with symptoms of a disease or with results of laboratory analysis of those patients.

In the K-means clustering, which may be  referred to as hard clustering, the object entirely 

belongs or does not belong to a given cluster. The objective of data clustering is data partitioning 

into K clusters Ck so that,

    Ck
k

K

=

=

X
1

∪  (7.13a)

  Ck ∩ Cl = ∆; 1 £ k π l £ K (7.13b)

                 ∆ Ã Ck Ã X; 1 £ k £ K (7.13c) 

Condition (7.13a) means that the set of all clusters contains all data vectors and each object 

belongs to exactly one cluster. Condition (7.13b) means that clusters are disjoint, and condition 

(7.13c) means that none of the clusters is empty nor contains the whole dataset.

When executing K-means algorithm, we compute the distance between each vector x(i) ; i = 1, 

…, N, and the cluster center mk; k = 1, …, K. If Nk represents the number of samples in cluster k, 

then,

 mk = 
1

1Nk

i

Nk

x
( )

i=

Â  (7.14)

That is, mk is the mean of all samples in cluster k.

Distance measure to represent similarity of data, may be defined in different ways (the most 

commonly used distance measure is the Euclidean norm). By using various distance measures, we 

can obtain different shapes of clusters. The partitioning based on Euclidean norm distance measure 

results in spherical-shaped clusters (hyperspheres). The clusters generated by Mahalanobis norm 

are hyperellipses.

In this section, we present K-means algorithm using Euclidean norm, defined as follows. The 

distance dik between data point x(i) and cluster mk is given by,

 dik = ( )
( )
x

j

j
i

kj

n

-

=

Â m
2

1

 (7.15a)

In the vector notation,

 dik = ( ) ( )( ) ( )
/

( )m m mk

i T

k

i i

k- -È
Î

˘
˚ = -x x x
12

 (7.15b)

The number of clusters K is selected on the basis of external considerations (e.g., prior knowledge, 

practical limitations, and so on) or we can attempt some different values for K and calculate the 

subsequent clusters. With repeated trials, the quality of clustering should become better. For this 

it is important for intracluster similarity to be high (distances low) and intercluster similarity to be 

low (distances high).



354  Applied Machine Learning

The goal of K-means clustering algorithm is two fold:

 • To find the centers mk of the clusters Ck; k = 1, …, K.

 • To determine the clusters (data points Nk belonging to cluster k) of each center in the dataset.

The second goal can easily be achieved once we accompalish the first goal. Given cluster centers 

mk, a data point x(i) in the dataset belongs to the cluster whose center is the closest, i.e.,

 x(i) ŒCk if ||x
(i) – mk || < ||x(i) – ml ||; k = 1, …, K; l π k (7.16)

In order to achieve the first goal, i.e., finding the cluster centers, we have to establish a criterion 

that can be used to search for these cluster centers. The simplest and most widely used criterion 

function is the sum-of-squared-error criterion:

 J = x
( )i

k

i

N

k

K k

-

==

ÂÂ m
2

11

 (7.17)

where Nk is the number of samples in the cluster k, and mk is the vector of cluster center to be 

identified. This criterion is useful because a set of true cluster centers will give a minimal J for a 

given dataset D. 
To improve the similarity of data samples in each cluster, we can minimize J with respect to mk  

by setting 
∂

∂
=

J

km
0. Thus the optimal location of mk is the mean of the samples in the cluster.

 mk = 
1

1Nk

i

i

Nk

x
( )

=

Â  (7.18)

The error J must decrease monotonically with K because the squared error can be reduced 

each time K is increased. If the N data samples are really grouped into K* well separated clusters 

satisfying conditions (7.13a–7.13c), we would expect to see J(K) decrease rapidly until K = K*, 

decreasing much more slowly thereafter until it reaches zero at K = N.

 J(1) = x
x

-

Œ

Â m
D

2

where m is the sample mean of the full data D. We now partition the data into two, D1 and D2, so 

as to minimize,

 J(2) = x
x

-

Œ=

ÂÂ mk

k kD

2

1

2

 

where mk is the mean of the samples in Dk.

                                                                        J(2) < J(1)

J(2)/J(1) < 1
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J(K)/J(1)  1 indicates poor performance, and J(K)/J(1)   0 indicates good performance. 

K-means clustering algorithm should, therefore, yield J(K)/J(1) a small value (a threshold).

The following steps show the execution of the K-means clustering algorithm:

 1. Initialize algorithm. 

 2. Determine the membership of objects based on their distance from the cluster centres.

 3. Establish new cluster centers by calculating the average of the distances of the objects 

belonging to various clusters.

 4. Check the stopping criterion.

The algorithm initialization consists in the choice of the number of clusters K and the initial 

location of their centers. The initial locations of the K cluster centers m m m1
0

2
0 0( ) ( ) ( )

, , ,… K may be 

chosen at random. Alternatively, these initial parameters mk
(t) (t = 0); k = 1, …, K, may be identical 

with K vectors x(i) chosen at random (t is the iteration index).

The algorithm stopping criterion is most frequently an appropriately small change in the number 

of elements of the clusters, that is, N N
k

t

k

t

k

K
( ) ( )+

=

- <Â
1

1

e, where e is a fixed constant. Alternatively, 

we may check the change in the cluster centers location, i.e., m m
k

t

k

t

k

K
( ) ( )+

=

- <Â
1

1

e. The K-means 

algorithm may give various results depending on the initial location of the cluster centers.

The algorithm may be extended to include trial-and-error search for the value of K. A summary 

of the algorithm for a given choice of K is shown in Table 7.1.

Table 7.1  Summary of K-means clustering algorithm

Step 1: Initialize X, K, m1
(0), …, mK

(0). Set t = 1.

Step 2: Classify N samples according to nearest mk:

                                 x(i) Œ mk cluster if

x x
( ) ( ) ( ) ( )i

k

t i

l

t
- < -

- -m m1 1
 for each l π k

Identify Nk
(t –1); k = 1, …, K.

Step 3: Recompute mk:

mk
(t)

 = 
1

1
1

1

1

N
k K

k

t

i

i

N
k

t

( )

( ) , , ,

( )

-
=

=

-

Â x …

Step 4: If stopping criterion is satisfied, stop; otherwise go to step 2. Set t = t + 1.

Step 5: Return m m m1 2, , ,… K
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7.5  FUZZY K-MEANS CLUSTERING

The fuzzy K-means clustering algorithm generalizes the K-means clustering algorithm to allow a 

data point to partially belong to multiple clusters. Therefore, it produces a soft partition for a given 

dataset. To do this, the objective function of (hard) K-means has been extended in two ways:

 1. The fuzzy membership degrees in clusters have been incorporated into the objective function. 

The parameter mik denotes the membership of x(i) into cluster k and mik Œ[0, 1]; i = 1, …, N; 

k = 1, …, K. 

  For better incorporation, the condition

                                                                         mik
k

K

=

Â
1

= 1 (7.19)

  must be valid for i = 1, 2, …, N.

   Note that in K-means algorithm, we have used m to denote the cluster center. However, 

earlier in Chapter 6, we have used m to denote the fuzzy membership degrees. Therefore, only 

for this section, we deviate a little from our earlier nomenclature. We continue to use m for 

fuzzy membership degrees and use g  to denote the cluster centers.

 2. An additional parameter m has been introduced as a weight component in the fuzzy 

membership; the weighted fuzzy membership degrees used in the objective function take the 

values mik
m. 

   The parameter m Œ [1, •). It is chosen to ‘turn out’ the noise in the data. The higher the 

value of m is used, less number of data points whose membership values are uniformly low, 

will contribute to the objective function. Consequently, such points tend to be ignored in 

determining the cluster centers and membership degrees.

   The extended (refer to Eqn (7.17)) objective function is,

                                                             J = mik
m
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In order to minimize this objective function, gk and mik are chosen in such a way that higher 

membership grades are assigned to the data closer to the cluster center and lesser grades are assigned 

to the data far away from the cluster center.

Like K-means, fuzzy K-means also tries to find a good partition by searching for prototypes gk 

that minimize the objective function J. Unlike K-means, however, the fuzzy K-means algorithm also 

needs to search for membership functions mik that minimize J. To accompalish these two objectives, 

a necessary condition for local/global minimum of J is derived below (Note that with a high value 

of m, the probability of getting stuck at local minima diminishes. A typical value for m is 1.5 or 2).

We have to minimize the objective function,

J = mik
m
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2
 (7.21a)
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This gives,

 J = ( )w dik
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˜  (7.21b)

Let l1, l2, ..., lN be the Lagrange parameters (refer to Chapter 4) and L(w, l) be the Lagrangian, 

given as,

                                    L (w, l) = ( ) ( )w d wik
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(Note that mik
k

K

=

Â =

1

1 is the constraint given in Eqn (7.19))

To obtain the optimal values of the parameters w and l that minimize L(◊), the gradient in both 

the sets of variables must vanish.
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From Eqn (7.23b), we get, 
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where ‘*’ stands for optimal values.

Summing the equations over l where l varies from 1 to K:
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Hence, we get from Eqns (7.23a) and (7.24),
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From Eqn (7.23c), we have,
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From Eqns (7.25a) and (7.25b), we get,
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The optimal value of gk* that minimizes J is the weighted mean of all vectors in cluster k:

      gk* = 

x
( ) ( )

( )

i

i

N

ik

m

ik

m

i

N

=

=

Â

Â

1

1

m

m

 (7.26c)

Because Eqns (7.26b) and (7.26c) rarely have an analytic solution, the cluster means and member 

functions are estimated iteratively. In the following, we describe fuzzy K-means algorithm for 

iterative solutions.
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Fuzzy K-Means Algorithm

The following two equations serve as the foundation of the fuzzy K-means algorithm.
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The two equations are dependent on each other.

A summary of the algorithm is shown in Table 7.2.

Table 7.2  Summary of fuzzy K-means clustering algorithm

Step 1: Initialize X, K, m, g k
(0); k = 1, …, K. Set t = 1

Step 2: Compute mik
(t – 1):

                              mik
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; i = 1, …, N ; k = 1, …, K

Step 3: Compute gk
(t):

                                  gk
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; k = 1, …, K.

Step 4: If stopping criterion is satisfied, stop; otherwise go to step 2. Set t = t + 1.

Step 5: Return g1, g2, ..., gK
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The algorithm stopping criterion is the same as in the case of K-means algorithm.

The fuzzy K-means algorithm, like K-means, may give various results depending on the 

initialization. The shape of clusters depends on the adopted distance measure. Refer to [125] for a 

thorough discussion on fuzzy clustering.

    Example 7.1

Consider the dataset of Table 7.3.

Table 7.3  Dataset for Example 7.1

Objects i x1 x2

1 2 12

2 4 9

3 7 13

4 11 5

5 12 7

6 14 4

Assume K = 2. Suppose we set the parameter m in fuzzy K-means algorithm at 2 and the initial 

prototypes to g1
(0) = [5 5]T, g2

(0) = [10 10]T.

The initial membership functions mik
 of the two clusters are calculated as follows:
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 m12
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 = 0.4603 = mik
(0); i = 1, k = 2

 m21
(0) = 

1
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17
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+

 = 0.6852 = mik
(0); i = 2, k = 1
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 m22
(0) = 

1
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 = 0.3148 = mik
(0); i = 2, k = 2

 m31
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Membership functions of the initial prototypes of the two clusters indicate that x(1) and x(2) are 

more in the first cluster while the remaining points are more in the second cluster.

The fuzzy K-means algorithm then updates the prototypes:
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The updated prototype g1 is moved closer to the center of the cluster formed by x(1), x(2) and x(3); 

while the updated prototype g2 is moved closer to the cluster formed by x(4), x(5) and x(6). This is 

illustrated in Fig. 7.6.
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Figure 7.6 Illustration of an iteration in fuzzy K-means algorithm.

7.6  EXPECTATION-MAXIMIZATION (EM) ALGORITHM AND GAUSSIAN MIXTURES 

CLUSTERING

We first describe the abstract form of EM algorithm as it is often given in the literature. We then 

develop the EM parameter estimation procedure for finding the parameters of a mixture of Gaussian 

densities. We try to emphasize intuition rather than mathematical rigor.

7.6.1  EM Algorithm

In order to help readers develop an intuitive understanding of what the EM algorithm is, what it 

does, and what the goal is, we first give the background of the algorithm.
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Given a set of observed data (an independent random sample), alongside a proposed model, how 

can we estimate the model parameters?

The maximum likelihood approach [4] is often used to answer this question. That is, for all 

possible parameters that our distribution might have, which of those are most likely?

We call the ‘most likely’ estimate that we choose from the maximum likelihood approach, the 

maximum likelihood estimate. It is computed as follows:

 • For each of our observed data points, we compute a likelihood as a function of the parameters 

we seek to estimate. This likelihood is just the value of the corresponding probability density 

function, evaluated at that particular data point.

 • We then compute the likelihood function, which is the combination of the likelihoods for all 

the data points we observed.

 • We then seek to estimate the set of parameters which will maximize the likelihood function.

Let X = {x(1), …, x(N)} denote the observed data in a set of N independently drawn instances. x 

= [x1 x2 … xn]
T is the n-dimensional feature vector. X is thus a random variable. The probability of 

receiving some measurements x(i) is given by the probability density function

p(x(i)|Q)

where Q denotes the set of parameters governing the distribution.

The probability of receiving the whole series of measurements is then

 p(x|Q) = 
i

N

=

’
1

 p(x(i)|Q)

Since the measurements are independent, the likelihood function is defined as a function of Q:

   L (Q|X) = 
i

N

=

’
1

p(x(i)|Q) (7.27)

Note that the likelihood function can be viewed as a function with the parameters as a function 

of the data, rather than the data as a function of the parameters. We assume that the data is fixed but 

parameters can vary. 

In the maximum likelihood problem, our goal is to find Q that maximizes L. That is, we wish to 

find Q* where

 Q* = argmax

Q

 L (Q|X) (7.28)

Often we maximize log (L (Q|X)) instead because it is analytically easier. Because the logarithm 

is monotonically increasing, the Q* that maximizes the log-likelihood, also maximizes likelihood:

Log-likelihood function

 log(L(Q|X)) = log (
i

N

=

’
1

p(x(i)|Q)
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   = log p
i

N

=

Â
1

(x(i)|Q) (7.29)

If p(x(i)|Q) is a well-behaved differentiable function of Q, Q* can be found by standard methods of 

differential calculus; for example, normal (Gaussian) distribution. For many problems, however, it 

is not possible to find such analytical expressions, and we must resort to more elaborate techniques. 

There are plenty of problems that make finding an analytical solution difficult or impossible. 

A common example is incomplete or missing data; other examples include ‘hidden’ or ‘latent’ 

variables. This is where the EM algorithm comes in.

The EM algorithm is an iterative method for approximating the maximum of the likelihood 

function.

In particular, the EM algorithm comes in when we have unobserved data/variables. The 

unobserved data problem occurs when the data indeed has missing values due to problems with or 

limitations of the observation process. The other problem occurs when optimizing the likelihood 

function is analytically intractable but when the likelihood function can be simplified by assuming 

the existence of and values for additional but missing (or hidden) variables. The latter problem is 

more common in the computational pattern recognition community.

In the general setting of the algorithm, let X = {x(1), …, x(N)} denote the observed data in a set of 

N independently drawn instances, and Z = {z(1), …, z(N)} denote the unobserved data in the same 

instances. We assume that a complete dataset S = (X, Z) exists, and also assume a joint density 

function

                                                   p(S|Q) = p(X, Z|Q)

With this new density function, we can define a new liklihood function

L(Q|S) = L(Q|X, Z) = p(X, Z|Q)

Note that this function is, in fact, a random variable since the missing information Z is unknown, 

random, and presumably governed by an underlying distribution.

The EM algorithm first finds the expected value of the complete-data log-liklihood function log 

p(X, Z|Q) with respect to the unknown data Z, given the observed data X and the current parameter 

estimes. That is, we define

                                               Q(Q|Q(t)) = E[log p(X, Z|Q)|X; Q(t)] (7.30)

where the left-hand side denotes that Q(Q|Q(t)) is a function of Q with Q(t) assumed fixed; and 

the right-hand side denotes that expected value is over the missing features assuming Q(t) are the 

true parameters describing the (full) distribution. The simplest way to interpret this equation is the 

following:

The parameter vector, Q(t), is the current (best) estimate for the full distribution; Q is a candidate 

vector for an improved estimate. Given such a candidate Q, the right-hand side of Eqn (7.30) 

calculates the log-liklihood of the data, including the unknown features Z, marginalized with 

respect to the current best distribution, which is described by Q(t). Different candidates will, of 
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course, lead to different such liklihoods. EM algorithm will select the best such candidate and call 

it Q(t+1)—the one corresponding to the largest Q(Q|Q(t)).

The EM algorithm bounces back and forth between the two processes.

 1. Given the current parameters Q(t) and the observed data, estimate the missing/hidden features, 

i.e., obtain Q(Q|Q(t)) given by Eqn (7.30).

   The evaluation of this expectation is called the Expectation-Step (E-Step) of the algorithm. 

This process is initiated by assuming that the true parameter vector is given by Q(t). We index 

Q by ‘t’ because ultimately the EM algorithm results in an iteration procedure; so we use ‘t’ 

as an iteration index.

 2. The second step in EM algorithm is the Maximization-Step (M-step) through which we 

maximize the expectation we computed in the first step:

                                                  Q(t+1) = argmax

Q
 Q(Q|Q(t)) (7.31)

These two steps are repeated as necessary. Each iteration is guaranteed to increase the 

log-liklihood and the algorithm is guaranteed to converge to the local maximum of the liklihood 

function. If we let threshold T representing the convergence criterion, the iteration process will 

continue until

                                                Q(Q(t +1)|Q(t)) – Q(Q(t)|Q(t –1)) £ T (7.32)

As presented above, it is not clear how exactly to ‘code up’ the algorithm. The details of the steps 

required to compute the given quantities are very much dependent on the particular application. 

In fact, some reviewers have commented that the term ‘algorithm’ is not appropriate for this 

Expectation-Maximization iteration scheme, since its formulation is too general. One has to develop 

an ‘algorithm’ for the specific application in hand based on the general Expectation-Maximization 

iteration scheme.

7.6.2  Gaussian Mixture Models

We now turn to the specific application: finding maximum liklihood mixture densities parameters 

via EM.

The mixture-density parameter estimation problem is probably one of the most widely used 

application of the EM algorithm in the computational pattern recognition community.

The K-means clustering algorithm, as we have seen in an earlier section, positions instances into 

disjoint clusters deterministically. Sometimes, a brittleness is associated with such schemes that 

make ‘hard’ judgements because of no enough evidence to make a completely firm decision on 

clustering. Probabilistic clustering methods assign instances to clusters probabilistically, i.e., each 

instance has a certain amount of probability of belonging to each cluster [1, 6].

The foundation for probabilistic clustering is a statistical model called mixture model. A mixture 

model is a set of K probability distributions, representing K clusters, that govern the attribute values 

for members of that cluster. In other words, each distribution gives the probability that a particular 

instance would have a certain set of attribute values if it were known to be a member of that cluster. 

Any particular instance belongs to one and only one of the clusters, but it is not known which one.
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Our focus here is on the most widely used Gaussian Mixture Model (GMM), a set of Gaussian 

(or normal) distributions with means and covariances. The clustering problem is to take a set of 

instances and a prespecified number of clusters (Gaussian distributions), and work out each cluster’s 

mean and covariance, and the population distribution between the clusters.

Let x ={xj; j = 1, …, n} be an n-dimensional vector to be modeled using a Gaussian mixture 

distribution. Let us assume that the model has K subclasses (clusters). Then the following parameters 

are required to completely specify the kth subclass; k = 1, …, K.

wk – the probability that a data sample x(i); i = 1, …, N, belongs to subclass k. wk ≥ 0 with 

wk

k

K

=

=

Â 1
1

. This parameter gives the population distribution between clusters; wk = Nk/N; 

where Nk = number of samples belonging to kth cluster.

mk – the n-dimensional mean vector for subclass k.

Sk – the n ¥ n covariance matrix for subclass k. 

We use w, m, and S to denote the parameter sets { }wk k

K

=1 , { }mk k

K

=1  and { }Sk k

K

=1, respectively. 

The complete set of parameters for a GMM is then given by, 

                        { ,( , , )}K w m S  = { , , }K w q ; w =
=

{ }wk k

K

1 ; q q=
=

{ }k k

K

1 , q m Sk k k= { , }

The joint Gaussian (normal) density has the form [refer to Eqns (3.23)-(3.24)]:

                               p(x|q) = 
1

2 2 1 2
1
2

1

( )
exp ( ) ( )

/ /
p

n

T

S
m S m- - -È

Î
˘
˚

-
x x  (7.33a)

This is the general form of multivariate normal density function.

 A special naive case is where the components xj of x are statistically independent; and cov (xj, 

xl) = 0 for j π l, var (xj) = s j j2
" . Then the covariance matrix is diagonal:
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s

s

s
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Further simplification occurs when we assume that s sj j n
2 2

1= " = , ,… . Then the covariance 

matrix becomes

S = s 2
I; S-

=

1

2

1

s

I ; I is n ¥ n unity matrix

We will present the results for the general case of covariance matrix S. For the subclass k (kth 

cluster in Gaussian mixtures), k = 1, …, K, the normal density function will be expressed as,
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                          p(x|qk) = 
1

2 2 1 2
1
2

1

( )
exp ( ) ( )

/ /
p

n

k

k

T

k k

S
m S m- - -È

Î
˘
˚

-
x x  (7.33b)

Our problem here involves a mixture of K different Gaussian distributions, and we cannot observe 

which instances are generated by which distribution. Thus, we have a prototypical example of 

a problem with ‘hidden’ or ‘latent’ variables. Here, the EM algorithm comes in because of the 

unobserved latent variables.

To use the EM algorithm for this kind of problems, we think of a full description of each instance 

as {x(i), z(k,i)}; i = 1, …, N; k = 1, …, K, where x(i) = {xj
(i)}; j = 1, …, n, are the observed values of 

the ith instance and where z(k, i) = {zki}; i = 1, …, N; k = 1, …, K, indicate which of the K normal 

distributions was used to generate the value of x(i). In particular, zki has a value of 1 if x(i) was 

created by the kth normal distribution, and 0 otherwise. Here, x(i) are the observed variables in the 

description of the instance and z(k,i) are the hidden variables.

By this choice, z(k, i) belongs to a matrix Z whose entry zki is equal to one if and only if GMM 

component k produced measurement i—otherwise it is zero. Note that each column of matrix Z 

contains exactly one entry equal to one. By this choice, we introduce additional information into 

the process: z(k,i) tells us the probability density function that underlines certain measurement. We 

cannot really measure this hidden variable, and it is not important. At this stage, we just assume that 

we have it, do some calculations and see what happens.

We assume the following mixture model:

 p(x|w, q) = wk k

k

K

p( )x q
=

Â
1

 (7.34)

 

where the parameters are {w1, ..., wK; q1, ..., qK} = {wk ; qk}
K
k = 1 such that wk

k

K

=

=

Â 1
1

, and each 

p(x|qk) is a density function parameterized by qk. In other words, we assume we have K component 

densities mixed together with K mixing coefficients wk.

The incomplete-data log-liklihood expression for this mixture density from the data X is given 

by,

                                          log(L (w, q|X)) = log
i

N

=

’
1

p(x(i)|w, q)

                                                                   = log ( )( )

i

N

k
i

k

k

K

p
= =
Â Â

Ê

Ë
Á

ˆ

¯
˜

1 1

w x q  

which is difficult to optimize because it contains log of the sum. If we consider X as incomplete, 

and assume the existence of unobserved data items Z whose values inform us which component 

density ‘generated’ each data item, the liklihood expression is significantly simplified. That is, we 

assume that zki = 1 if the ith sample was generated by the kth mixture component, otherwise zki = 0. 

If we know the values of Z, the liklihood becomes:
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                                   log(L (w, q|X, Z) = log ( )( )

i

N

ki k
i

k

k

K

z p
= =
Â Â

Ê

Ë
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ˆ

¯
˜

1 1

w x q    (7.35)

Remember zki is zero for all but one term in inner sum. However, we do not know the value of 

k for each sample x(i). If we assume zki is a random variable, we can proceed. We must first derive 

an expression for the distribution of the unobserved data. Let us first guess the parameters for 

the mixture density, i.e., we guess that { , , ; , , }
( ) ( ) ( ) ( )

w w1 1
t

K

t t

K

t
… …q q (t = 0; t is the iteration index) 

are the appropriate parameters for the liklihood L(w(t); q(t) |X, Z). Given{w(t); q(t)}, we can easily 

compute p(x(i)|q(t)
k
 ) for each i and k. In addition, the mixing parameters, wk, can be thought of as 

prior probabilities of each mixture component, i.e., wk = P(component k). Therefore, using Baye’s 

rule, we can compute:

                          P(component k|x(i); w(t); q(t)) = 
p P k

p
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 (7.36)

Inserting Gaussian distribution (7.33b) in Eqn (7.36), we get,

P(component k|x(i); w(t); m(t); S(t))

                      = 
w
k

t

k

t i

k

t T

k

t i

k

t( ) ( ) / ( ) ( ) ( ) ( ) (
[ ] exp[( / )( ) [ ] (S m S m- -

- - -
12 11 2 x x
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)]

[ ] exp[( / )( ) [ ] (w
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t i

=
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1

12 11 2S m Sx x
)) ( )

)]- m
l

t

  (7.37)

Note that expected value of zki, E [zki], is just the probability that instance x(i) was generated by 

kth normal distribution, given the parameters of the distributions, and the mixing parameters, i.e., 

P(component k|x(i); w(t); q(t)). Let us denote this probability by the variable hki, which is equal to 

E [zki]. We see that zki is a 0/1 random variable, while the expected value hki of this hidden variable 

is the posterior probability that x(i) is generated by component k of the Gaussian mixture. Because 

this is the probability, it is between 0 and 1 and is a ‘soft’ label as opposed to the 0/1 ‘hard’ label 

of K-means. In K-means clustering, x(i) either belongs to cluster k or it does not, while in Gaussian 

mixtures clustering, x(i) may belong to more than one cluster with different probabilities. Gaussian 
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mixtures clustering is, therefore, a ‘soft clustering’ technique (as is Fuzzy K-means) while K-means 

is a ‘hard clustering’ technique. From Eqn (7.37) we have,

                       hki = 
w

w

k k

i

k
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k

i
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l

l
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l
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 (7.38) 

We have thus obtained the marginal density of the hidden variables by assuming their existence 

and making an initial guess on the parameters.

In this case, Eqn (7.30) takes the form (refer to Eqn (7.35)),  

          Q(w; m, S|w(t); m(t), S(t)) = Q(w; q|w(t); q(t))
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This can now be rewritten as,

                     Q (w; q|w(t); q(t)) = E
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since zki is zero for all but one term in the inner sum for which zki = 1.

Note that the above expression for Q(◊) is a linear function of zki. In general, for any function f (z) 

that is a linear function of z, the following equality holds:

                                          E[ f (z)] = f (E [z])

This general fact about linear functions allows us to write

 Q(w; q|w(t); q(t)) = 
i

N
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To maximize this expression, we can maximize the term containing wk and the term containing qk 

independently since they are not related. Note that hki
(t) is constant given the parameters {w(t); q(t)}.

Optimizing with respect to wk

This is a constrained optimization problem; the constraint is
k

K

=

Â
1

wk = 1. We solve this problem by 

the method of Lagrange multipliers (refer to Section 4.4).
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Introducing the Lagrange multiplier l, we solve the following equation:

 
∂
∂

+ -
Ê

Ë
Á

ˆ

¯
˜

È

Î
Í
Í

˘

˚
˙
˙
=

= = =
Â Â Â

w
w l w

k i

N

ki

k

K

k k

k

K

h

1 1 1

1 0log

This gives,                                                                   
1

0

1
w

l
k

ki

i

N

h

=

Â + =

Summing both sides over k, we get,
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For each value of i, the inner sum equals one; therefore,

                                                          N + l = 0 or l = –N

resulting in (from Eqn (7.41)),

                                                                wk = 
1

1N
hki

i

N

=

Â  (7.42)

Optimizing with respect to qk

For the Gaussian mixture model, qk consists of mean mk and covariance Sk of the kth component. 

Taking the derivative of the second term on the right-hand side of Eqn (7.40) with respect to mk and 

setting it equal to zero, we get,
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By inserting the Gaussian distribution (7.33b), we arrive at,

                       hki
k

n

k

k

T

k k

i

∂

∂
- - -È
Î

˘
˚

È

Î
Í

˘

˚
˙

-

= m S
m S mlog

( )
exp ( ) ( )

/ /

1

2 2 12
1
2

1

p

x x

11

N

Â = 0  

Ignoring constant terms (since they disappear after taking derivatives), we get,
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This gives,
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Similar procedure yields [6],
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Summarizing, the estimates of new parameters in terms of the old parameters are as follows 

(given initial parameters: wk
(t); mk

(t), Sk
(t); t = 0):
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EM is initialized by K-means. After a few iterations of K-means, we get the estimates for the 

centers mk, and using the instances covered by each center, we estimate the Sk ; Nk/N gives us the 

wk. We run EM using Eqns (7.45) from that point on. The algorithm proceeds by using the newly 

derived parameters as the guess for the next iteration.

The Gaussian Mixture Model (GMM) consists of cluster centers along with the formulas that 

define the Gaussian probability distributions for each of the clusters. These formulas are defined in 
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terms of parameters that have been optimized in the course of training the model. In the end, the 

model is just a collection of Gaussian distributions.

For new instances, the algorithm applies these formulas to the data featuring new instances, in 

the following steps [19]:

 • Calculate the liklihood that the instance belongs to each cluster by applying the appropriate 

formula for each cluster.

 • Normalize the liklihoods to obtain the probabilities of membership in each cluster (that is, 

divide each one by the sum of all of them, so the total sums up to one).

 • Optionally, assign cluster membership based on the highest probability.

Thus, the data can be assigned to one of the K clusters by applying GMM.

Introduction to mixture-models and EM algorithm can be found in recent books [6, 8, 126, 127].

7.7  SOME USEFUL DATA TRANSFORMATIONS

Data often calls for general transformations of a set of attributes selected for the data mining 

problem. It might be useful to define new attributes by applying specified mathematical functions 

to the existing ones. New variables derived from existing ones express the information inherent in 

the data in ways that make the information more useful; thereby improving model performance.

Too many attributes are both a blessing and a curse. More variables generally mean more 

descriptive information is available that can be used to build better models. On the other hand, 

they are a curse because of the increased risk of high correlation among variables (redundancy of 

information, the increased risk of overfitting the data) and sparseness of the dataset. Transformations 

that lead to attribute reduction are very useful for deriving new attributes.

In the following, we give an overview of some standard transformations routinely carried out in 

data mining. In fact, many of these transformations have been discussed in earlier chapters.

7.7.1  Data Cleansing

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleansing routines attempt to 

fill in missing values, smooth out noise while identifying outliers, and correct inconsistencies in 

the data. This section provides an overview of basic methods for data cleansing. Data cleansing is 

discussed in a number of books, including [128].

Missing Values: Most datasets encountered in practice contain missing values. They may occur 

for several reasons, such as malfunctioning measurement equipment, changes in experimental 

design during data collection, human-errors in data entry, and deliberate errors (e.g., respondents 

not willing to divulge information).

If the number of instances with missing values is small, those instances might be omitted. 

However, if we have a large number of attributes, even a small proportion of missing values can 

affect a lot of instances. With only 30 variables (attributes), if only 5% of values are missing 

(spread randomly and independently among patterns and variables), almost 80% of the instances 
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would have to be omitted from the analysis (the chance that a given instance would escape having 

a missing value is (0.95)30 = (0.215)).

An alternative to omitting instances with missing values is to replace the missing value with an 

imputed value, based on the other values for that variable across the instances. For example, we 

might substitute the mean of the variable across all samples for the missing value of that variable, 

or attribute mean for all samples belonging to the same class as the tuple with missing value may 

be substituted for missing value. Note that using such techniques will understate the variability in 

a dataset, introducing bias. However, we can assess variability and performance of our data mining 

technique using the validation set.

An alternative to dropping samples with missing values or imputing the missing values is to 

examine the importance of the attribute with large number of missing values. If it is not very 

crucial, it can be dropped. When such an attribute is deemed crucial, the best solution is to invest 

in obtaining the missing data.

It is important to note that in some cases, a missing value may not imply an error in the data. If 

missing values mean that an operator has decided not to make a particular measurement, that may 

convey a great deal more than the mere fact that the value is unknown. Human judgment may be 

required for individual cases or to determine a special rule to deal with the situation. 

Although we can try our best to clean the data after it is seized, good design of databases should 

help minimize the missing values or errors in the first place.

Noisy Data: Noise is a random error or variance in a measured variable. Random errors (noise) is a 

commonly observed problem in datasets that requires ‘smoothing’ out the data. Various smoothing 

techniques are employed by commercial tools available for cleansing the data.

Outliers: The more data we are dealing with, the greater the chance of encountering inaccurate 

values resulting from measurement error, data-entry error, or the like. Inaccurate values often 

deviate significantly from the pattern that is apparent in the remaining values. Sometimes, however, 

inaccurate vales are hard to find, particularly without specialist domain knowledge.

Values that lie far away from the bulk of the data are called outliers. The term far away is 

deliberately left vague because what is or is not called an outlier is basically an arbitrary decision. 

Analysts use rules of thumb such as ‘anything over three standard deviations away from the mean 

is an outlier’, but no statistical test can tell us whether such an outlier is the result of an error. 

The purpose of identifying outliers is usually to call attention to values that need further review. 

Judgments are made by someone with domain knowledge.

In any case, if the number of samples with outliers is very small, they might be treated as 

noise/missing values. Clustering techniques could be used to identify outliers. Sometimes data 

visualization gives a clear indication of presence of outliers.

Sparse Data: Sometimes data matrix is sparse, most attributes have a value of 0 for most of 

the samples. For example, in text mining, samples are documents; data matrix columns and rows 

represent words of documents, and the numbers indicate how many times a particular word appears 

in a document. Most documents have a rather small vocabulary, so most entries are 0.
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Sparse data presents special challenges. Many learning techniques are unable to make use of 

very sparse data. One possible way out is the use of encoding schemes to represent information 

from a large number of sparse variables by a small number of dense ones.

Other  Types  of  Errors:  It is, in fact, difficult to list all the possible types of errors in data. 

Anomalies because of some systematic errors appear sometimes. Only a deep semantic knowledge 

of what is going on, will be able to explain systematic data errors. Short of consulting a human 

expert, there is really no way of telling whether a particular sample is an error or whether it just 

does not fit.

Duplicate data presents another source of error. Most machine learning algorithms will produce 

different result if some of the samples in data files are duplicated because repetition gives them 

more influence on the result.

When information on the same topic is collected from multiple sources, the various sources often 

represent the same data different ways. The inconsistency in data can occur due to inconsistent 

definitions of fields, units of measurement, time periods, and so on.

Finally, data goes stale. We need to consider whether the data we are using is still current.

We have, in fact, neither listed all possible errors that can appear in data, nor the solution for 

correcting discrepancies generated by the listed errors. We have simply given an overview of the 

complexities involved. 

Data cleansing is a time-consuming and labor-intensive procedure but one that is absolutely 

necessary for successful data mining. Data experts need to be consulted to explain anomalies. 

Data exploration normally helps even non-experts in getting to know the data. Various simple 

visualizations often help with the task of understanding the meaning of different attributes, the 

conventions used in coding them, the significance of missing values, measurement noise, outliers, 

and the presence of systematic errors.

7.7.2  Derived Attributes

Creating derived variables is about defining new variables that express the information inherent in 

the data in ways that make the information more useful to machine learning techniques. It is thus 

an art of making the data mean more.

Derived variables allow learning models to incorporate human insights into the modeling 

process, and allow learning model to take advantage of important characteristics already known 

about the data being processed. Derived variables definitely improve model performance.

Standardizing Numeric Variables: Some algorithms require that the data be normalized before 

the algorithm can be implemented effectively.

Attributes are often normalized to lie in a fixed range, say, from zero to one, by dividing all 

values by the maximum value encountered or by subtracting the minimum value and dividing by 

the range between the maximum and the minimum values. Another normalization technique is to 

calculate mean and standard deviation of the attribute values, subtract the mean from each value, 

and divide the result by the standard deviation. This process is called standardizing a numeric 

variable and results in a set of values whose mean is zero and standard deviation is one.
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To see why this might be necessary, consider the case of clustering. Clustering typically involves 

calculating a distance measure that reflects how far each instance is from a cluster center or from 

other instances. With multiple variables, different units will be used. If one variable has units in 

the thousands and everything else is in tens, the variable with value in thousands will dominate the 

distance measure.

Replacing Categorical Variables with Numeric Ones: We are encountered with the situations 

in which categorical attributes must be represented numerically. Some learning algorithms—

notably the k-NN method, regression methods, neural networks, clustering—handle only attributes 

that are numeric. How can they be extended to categorical attributes?

A common mistake of novice data miners is to replace categorical attributes with arbitrary 

numbers. The problem is that this enumeration creates spurious information that data mining 

algorithms have no way of ignoring.

Another popular approach is to create a separate binary variable for each category. A ‘1’ indicates 

that the category is present and a ‘0’ indicates that it is not. This works well when we have only a 

few categories in the data.

Often, the most satisfactory approach to categorical variables is to replace each one with a 

handful of numeric variables that capture important attributes of the categories. Domain knowledge 

plays a very important role in this conversion process.

Fourier/Wavelet  Transforms: Mathematical transformations are applied to signals to obtain 

further information from that signal that is not readily available in raw form. Signal processing 

techniques result in creative data transformations in machine learning.

There are a number of transformations that can be applied, among which the Fourier 

transformations are probably by far the most popular. Discrete Fourier Transform (DFT) is a 

frequently used technique in machine learning for image processing, computer vision, time-series 

data, and data cleansing applications.

Another linear signal processing technique, the wavelet transform, is closely related to DFT.

Transformations  based  on  the  Nature  of  Datasets/Learning  Scheme:  Given raw data 

may be a set of images, documents, audio clips, video clips, graphs, numerical measurements/

observations, etc. These are a set of objects/instances/patterns. In an input data file, we represent 

them as N instances characterized by their numerical/categorical values on a fixed set of n features 

or attributes. The transformation of raw data to numeric form calls for techniques that depend on 

the type of the input. Textual input, audio input and image input call for their own specialized 

conversions, described later in Section 9.5. Conversion of time-series data into standard data matrix 

has already been presented in Section 1.4. 

7.7.3  Discretizing Numeric Attributes

Some classification and clustering methods deal with categorical attributes only, and cannot handle 

ones measured on a numeric scale. To use them on general datasets, numeric attributes must first be 

‘discretized’ into a smaller number of distinct ranges.
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There are two basic approaches to the problem of discretization. One is to quantize each attribute 

in the absence of any knowledge of the classes of the instances in the training set—so-called 

unsupervised discretization. The other is to take the classes into account when discretizing—

supervised discretization.

Unsupervised Discretization: The obvious way of discretizing a numeric attribute is to divide 

its range into a predetermined number of intervals (bins). For example, attribute values can be 

discretized by applying equal-width or equal-frequency binning and then replacing each bin 

value by the bin mean or median. In both of these binning methods, the total range is divided into 

user-specified k intervals simultaneously. In equal-width binning, the continuous range of a feature 

is evenly divided into intervals that have an equal width, while in equal-frequency binning, an equal 

number of continuous values are placed in each bin.

The term ‘arity’ in the discretization context means the number of intervals/partitions, k. There is 

a trade-off between arity and its effect on the accuracy of classification and other tasks.

When arity is set to k, the maximum number of cut-points is k – 1. The term ‘cut-point’ refers 

to a real value within the range of continuous values that divides the range into two intervals, one 

interval is less than or equal to the cut-point and the other interval is greater than the cut-point.

Supervised Discretization: Binning methods mentioned above may not give good results in 

cases where the distribution of the continuous variables is not uniform. Furthermore, the approach 

is vulnerable to outliers as they affect the ranges significantly. Supervised discretization methods 

overcome this short coming, wherein class information is used to find the proper intervals caused 

by cut-points. Different methods have been devised to use class information for finding meaningful 

intervals.

Supervised discretization methods commonly apply ‘entropy’ measure to find a potential cut-point 

to split a range of continuous values into two intervals. These methods recursively binarize ranges 

or subranges until a stopping criterion is met. Many of these methods use ad hoc stopping condi-

tions. Many findings reported in the literature point toward MDLP (Minimum Descriptive Length 

Principle (Section 3.9)) being identified as the first choice for discretization as it provides a more 

principled way of determining when the recursive splitting should stop.

In the next section, we will discuss the MDLP approach for discretization. The method we will 

present is a top-down approach. Top-down methods start with an empty set of cut-points, and keep 

on adding new ones to the list by ‘splitting’ intervals as the discretization progresses. An alternative 

group of discretization methods use bottom-up approach, that starts with the complete list of all the 

continuous values of the feature as cut-points, and removes some of them by ‘merging’ intervals as 

the discretization progresses. The majority of the methods are found in the splitting category.

Choosing a suitable discretization method is generally a complex matter, and largely depends 

on user’s need and other considerations. Entropy (MDLP) is generally the first choice when no 

specific consideration dictates a particular choice. Refer to [129] for a comprehensive survey of 

discretization methods.

Some transformations depend intuitively on the semantic of the particular machine learning 

scheme. We have encountered such transformations in earlier chapters, for example, Fisher linear 

discriminants (Section 3.8) and kernel methods for support vector machines (Chapter 4).

Sometimes, it is useful to add noise to data, perhaps to test the robustness of a learning algorithm.
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7.7.4  Attribute Reduction Techniques

Many techniques for transformation of data to reduce the number of attributes, are available. These 

techniques can be categorized based on two factors: 

 • The first factor is whether or not the technique uses the target variable to select the input 

variables.

 • The second factor is whether or not the technique uses a subset of the original variables or 

derives new variables from them that maximize the amount of information.

The advantage in keeping the original variables is understandability. Presumably, the original 

variables in the data are easier to understand than those generated automatically by some variable 

reduction technique.

Although there are many techniques for attribute reduction, we focus on only two of them in this 

chapter: principal components and rough set theory.

Principal Components Analysis (PCA), discussed in Section 7.9, is a useful technique for 

reducing the number of attributes in the model by analyzing the input variables. It is especially 

valuable when we have subset of measurements that are highly correlated. In that case, it provides 

a few new variables that are weighted linear combinations of the original variables that retain the 

explanatory power of the full original set. PCA-based attribute reduction procedure does not use 

the target variable (unsupervised learning).

Rough Sets-Based Attribute Reduction, discussed in Section 7.10, uses the target variable (super-

vised learning), and retains a subset of original variables.

A survey of feature selection methods is given in [130]. The technique based on Laplacian 

eigenmaps, presented earlier in Section 7.3.3, is a powerful method of attribute reduction, which 

uses the idea of feature embedding such that given pairwise similarities are preserved [123].

7.8  ENTROPY–BASED METHOD FOR ATTRIBUTE DISCRETIZATION

In general, a discretization is simply a logical condition in terms of one or more continuous-valued 

attributes that serves to partition the data into at least two subsets. In many soft-computing algorithms, 

a continuous-valued attribute is typically handled by partitioning its range into subranges, i.e., a 

test based on some logical condition is devised that quantizes the continuous range. Supervised 

discretization provides useful classification information with respect to the classes to which the 

examples in the attribute’s range belong.

In this section, we present a binarization procedure for discretization of continuous-valued 

features. Patterns are described by a fixed set of attributes xj; j = 1, …, n. The output variable y is a 

boolean-valued function (binary classification problems) defined over the set S of patterns {s(i)} ∫ 
{x(i)}; i = 1, …, N. That is, y takes on values yq; q = 1, 2. If we assume y1 ∫ 0 and y2 ∫ 1, then y : S 

Æ [0, 1]. The training data is described by the dataset D of N patterns with corresponding observed 

outputs:

 D = {s(i), y(i)} = {x(i), y(i)}; i = 1, 2, …, N (7.46)

For each continuous-valued attribute xj, we select the ‘best’ cut-point Tx j
from its range of values 

by evaluating every candidate cut-point in the range of values. The examples are first sorted by 
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increasing value of the attribute xj, and midpoint between each successive pair of values in the 

sorted sequence is evaluated as potential cut-point. Thus, for each continuous-valued attribute, 

N – 1 evaluations will take place (assuming that examples do not have identical attribute values).

A cut-point Tx j
for xj will partition the patterns in D into two subsets satisfying the conditions 

Vx j
(value of xj) £ Tx j

, and V Tx xj j
> , respectively, thereby creating a binary discretization. Many 

different criteria may be used to evaluate the potential cut-points. We consider here the one which 

uses a clever idea for evaluating a potential cut-point, borrowed from the world of information 

theory (revisiting Section 3.9 will be helpful). If a partition D1 of dataset D has all patterns of one 

class, say y1, it is entirely pure because no additional information is needed to classify the patterns 

of this partition. On the other hand, the partition is impure if additional information is needed to 

classify the patterns. Information theory has a measure for this impurity, called entropy, which 

measures how disorganized a partition is with respect to the class information.

Imagine selecting a pattern at random from the subset D1 and announcing that it belongs to class 

yq. The message has the probability,

  Pq = 
freq yq( , )D

D

1

1

 (7.47)

where freq(yq, D1) stands for the number of patterns in D1 that belong to the class yq, and |D1| 

denotes the total number of patterns in D1. 

The expected information needed to classify a pattern in D1 is given by, 

 Info(D1) = – P Pq q

q

log ( )2

1

2

=

Â  (7.48)

A log function to the base 2 is used because information is encoded in bits (refer to Section 3.9). 

Info(D1) is just the average amount of information needed to identify the class label of a pattern in 

D1. Note that, at this point, the information we have is based solely on the proportions of patterns 

in each class in the data subset D1; in all calculations involving Eqn (7.48), we define 0log20 = 0.

Info(D1) is the entropy of D1—a measure of how disorganized (impure) D1 is with respect to 

class information. Notice that the entropy is 0 if all members of D1 belong to the same class. For 

example, if all members are of Class 1 (P1 = 1), then P2 = 0 and Entropy(D1) = – 1 log2 1 – 0 log2 

0 = 0. The entropy is 1 when the collection contains an equal number of Class 1 and 2 examples 

(P1 = P2 = 
1

2
). If the collection contains unequal number of Class 1 and 2 examples, the entropy is 

between 0 and 1. 
How much more information would we still need for a perfect classification after partitioning on 

xj? This amount is called the expected information requirement for classifying a pattern in D based 
on partitioning by Tx j

. It is given by,

                          Info(D, Tx j
) = 

D

D
D

D

D
D

1
1

2
2¥ + ¥Entropy Entropy( ) ( )  (7.49a)
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This is the entropy of the partitions induced by Tx j
, denoted as Entropy(D, Tx j

). 

                    Entropy(D, Tx j
) = 

D

D
D

D

D
D

1
1

2
2¥ + ¥Entropy Entropy( ) ( )  (7.49b)

The cut-point Tx j
for which Entropy( , )D Tx j

 is minimal amongst all the candidate cut-points, is 

taken as the best cut-point. This determines binary discretization of D by attribute xj. The process 

of determining a cut-point is recursively applied to each partition obtained, until some stopping 

criterion is met, such as when the entropy on all candidate cut-points is less than a small threshold, 

or when the number of partitions is greater than a threshold.

The entropy and information requirement measures described here are also used for decision tree 

induction [141]. These measures are revisited in greater detail in Chapter 8.

    Example 7.2

The weather problem is an entirely fictitious tiny dataset (Table 7.4); it supposedly concerns the 

conditions that are suitable for playing tennis. The patterns in the dataset are characterized by four 

features: outlook, temperature, humidity, and wind. The outcome is whether to play tennis; the 

output variable (class label) is PlayTennis. The attributes Outlook and Wind have categorical values 

and the attributes Temperature and Humidity have continuous numeric values.

Table 7.4  The weather data

Patterns Outlook

x1

Temperature (°F)

x2

Humidity (%) 

x3

Wind

x4

PlayTennis

y

s(1) sunny 85 85 weak no

s(2) sunny 80 90 strong no

s(3) overcast 83 86 weak yes

s(4) rain 70 96 weak yes

s(5) rain 68 80 weak yes

s(6) rain 65 70 strong no

s(7) overcast 64 65 strong yes

s(8) sunny 72 95 weak no

s(9) sunny 69 70 weak yes

s(10) rain 75 80 weak yes

s(11) sunny 75 70 strong yes

s(12) overcast 72 90 strong yes

s(13) overcast 81 75 weak yes

s(14) rain 71 91 strong no
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The dataset D in Table 7.4 has two categorical/nominal attributes: Outlook and Wind, and two 

continuous/numeric attributes: Temperature and Humidity. To see entropy-based discretization 

procedure working in practice, we consider here discretization of numeric attribute Temperature. 

This attribute has the following numeric values:

85 80 83 70 68 65 64 72 69 75 75 72 81 71

Ascending-order sorting gives (repeated values have been collapsed together):

64 65 68 69 70 71 72 75 80 81 83 85

yes no yes yes yes no no yes no yes yes no

      yes yes

It is common to place candidate cut-points half way between the values, although something 

might be gained by adopting a more sophisticated policy (one such policy will be described shortly 

in this section). There are 11 candidate cut-points. The entropy of the partitions induced by each of 

the 11 candidate cut-points is calculated using Eqn (7.49b). For example,

                    Entropy ( , . )D Tx2
71 5= = 

D

D
D

D

D
D

1
1

2
2¥ + ¥Entropy Entropy( ) ( )

                                         |D | = 14, |D1| = 6, |D2| = 8

                         Entropy(D1) = – P1 log2 P1 – P2 log2 P2; P1
4

6
= , P

2

2

6
=

                        Entropy(D2) = – P1 log2 P1 – P2 log2 P2; P1
5

8
= , P2

3

8
=

                   Entropy ( , . )D Tx2
71 5= = 0.939 bits

This represents the expected information required to specify the individual values of yes and no 

given the cut-point. We seek a discretization that makes the partitions as pure as possible, hence, 

we choose a cut-point where Entropy( , )D Tx2
 value is smallest (this is the same as splitting where 

expected information requirement for classifying a pattern in D is the smallest).

It can easily be verified that Entropy( , )D Tx2
84= is the smallest value (0.827 bits), which 

seperates off just the final value, a no pattern, from the preceding list.

Invoking the algorithm again on the lower range of temperature, from 64 to 83, yields the 

minimum at 80.5 (0.800 bits), which splits off the next two values, both yes patterns. Again 

invoking the algorithm on the lower range, now from 64 to 80, produces a minimum at 77.5 (0.801 

bits), splitting off another no pattern. Continuing the process, the next minimum for the temperature 

range 64 to 75 at 73.5 (0.764 bits) splits off two yes patterns; next to this one at 70.5 (0.796 bits) 

for the temperature range 64 to 72 splits off two no’s and a yes, and finally for the range 64 to 70, 

the minimum is at 66.5 (0.4 bits).

The fact that the recursion only ever occurs in the first interval of each split is an artifact of this 

example; in general, both the upper and the lower intervals will have to be split further.
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Cut-Point Optimization

It has been demonstrated that the cut-point selection criterion described above constitutes a powerful 

heuristic when used to guide the search for a good decision tree (Chapter 8) to classify a set of 

training examples. It does not guarantee optimal results but it is a good method for determining 

which attributes are relevant to the classification task at hand.

One of the main problems with this selection criterion is that it is relatively expensive. It must 

be evaluated (N – 1) times for each attribute (assuming that the N samples have distinct values). 

Machine learning programs are designed to work with large sets of training data, so N is typically 

very large.

Fayyad and Irani [131] have proved that regardless of how many classes there are (binary or 

multiclass problems) and how they are distributed, the cut-point will always occur on the boundary 

between two classes. This leads to a useful optimization: a cut-point that minimizes the entropy 

will never occur between two patterns of the same class; it is only necessary to consider potential 

divisions that separate patterns of different classes. 

This cut-point optimization result helps us improve the efficiency of the algorithm without 

changing its function at all. Since the cut-point must occur on a boundary, we only need to evaluate 

boundary points between classes instead of evaluating possibly all N – 1 candidate cut-points. Of 

course, savings in computation depend on the class changes from one example to the next in the 

sorted sequence of examples.

    Example 7.3

We revisit the previous example (Example 7.2) for discretizing the temperature attribute of the 

weather data whose values are

Ø Ø   Ø Ø Ø Ø Ø  Ø 

64 65 68 69 70 71 72 75 80 81 83 85

yes no yes yes yes no no yes no yes yes no

      yes yes

There are 11 possible positions for the breakpoint; we have considered all of these candidate 

cut-points in the previous example.

As per the cut-point optimization result described above, breakpoints are not allowed to separate 

items of the same class. This reduces the number of candidate cut-points to 8. Also these candidate 

cut-points are the boundary values, not the middle values of the intervals. It can easily be ascertained 

that the candidate cut-points are: 64, 65, 70, 71, 72, 75, 80, 83. 

                     Entropy ( , )D Tx2
64= = 

D

D
D

D

D
D

1
1

2
2¥ + ¥Entropy Entropy( ) ( )

                                         |D | = 14, |D1| = 13, |D2 | = 1

                          Entropy(D1) = – P1 log2 P1 – P2 log2 P2; P1
8

13
= , P2

5

13
=

                                              = 0.4310 + 0.5302 = 0.9612
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                                 Entropy(D2) = – P1 log2 P1 – P2 log2 P2; P1 = 
1

1
, P2 = 

0

1
 = 0

Entropy( , )D Tx2
64= =

13

14
0 9602

1

14
0¥ + ¥. = 0.8925 (bits)

It can easily be verified that Entropy( , )D Tx2
83= is the smallest value:

Entropy( , )D Tx2
83= = 

13

14

9

13

9

13

4

13

4

13

1

14
02 2

-
-Ê
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ˆ
¯̃
+log log ( )

                                                   =
13

14
(0.3672 + 0.5232) = 0.8268 (bits)

7.9  PRINCIPAL COMPONENTS ANALYSIS (PCA) FOR ATTRIBUTE REDUCTION

Principal Components Analysis (PCA) is a valuable result from applied linear algebra and is 

abundantly used for reducing number of variables (features/attributes) in the dataset that are 

correlated. The reduced set of variables are weighted linear combinations of the original variables 

that (approximately) retain the information content of the original dataset. The linear combinations 

of the original variables lose physical meaning (if any) attached to the original variables.

The goal of PCA is to transform data in the best possible way. The most important question is: 

What does ‘best transformation’ of the data mean? Let us build an intuitive answer to this question.

The potential problems with the data are noise and redundancy. A simple way to quantify the 

redundancy between individual attributes is through the covariance matrix S. Covariance matrix 

describes all relationships between pairs of attributes in our dataset. If our goal is to reduce 

redundancy, we would like each variable to co-vary as little as possible with other variables. More 

precisely, to remove redundancy, we would like the covariance between different variables to be 

zero. Evidently, in an ‘optimized’ matrix, all off-diagonal terms in S are zero. Therefore, removing 

redundancy diagonalizes S.

There are many methods for diagonalizing S; PCA selects the easiest method (based on linear 

algebra), perhaps accounting for its widespread application.

Let us now look at the other potential problem in a given dataset, the noise. There exists no 

absolute scale for noise but rather all noise is measured relative to the signal. A common measure 

is signal-to-noise ratio (SNR), which is the ratio of variances:

 SNR = 
s

s

signal

noise

2

2
 (7.50)

A high SNR (>>1) indicates high precision data, while a low SNR indicates noise contaminated 

data. The data with high SNR will have attributes with larger associated variances, representing 

interesting dynamics. The data with low SNR will have attributes with lower variances, repre-

senting noise.
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We have discussed all aspects of the goal PCA; what remains is the linear algebra solution. 

The solution is based on transformation of the covariance matrix to a diagonal form with larger 

associated variances.

We can visualize the data with n attributes x1, x2, …, xn, as a cloud of N points x(i); i = 1, …, N, 

x = [x1 x2 … xn]
T is an n-dimensional vector space. 

The N ¥ n data matrix X is given as,

 X = 

( )

( )

( )

( )

x

x

1 T

N T

�

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 (7.51)

where (x(i))T are row vectors representing data samples. Each row of X corresponds to values of all 

the n attributes of a particular data sample, and each column of X corresponds to all the N values of 

a particular attribute. The data matrix X is in nice table-like format.

PCA is an unsupervised method as it does not use the output information. We are interested in 

finding a mapping from the inputs in the original n-dimensional space to a new (k < n)-dimensional 

space with the minimum loss of information.

Let us first review the basic statistics covered in Section (3.2); the review will be helpful in 

understanding the process of Principle Components Analysis. We assume here that the reader has 

working knowledge of linear algebra (refer to Section 1.9).

The mean (average) of the attribute xj is given by,

 mj = 

x

N

j
i

i

N
( )

=

Â
1

; j = 1, …, n (7.52a)

Variance (a measure of the spread of the data) is given by,

 var (xj) = s

m m

j

j
i

j j
i

j

i

N

x x

N

2 1
=

- -

=

Â ( ) ( )
( ) ( )

 (7.52b)

  = 

( )
( )

x

N

j
i

j

i

N

-

=

Â m
2

1
; j = 1, …, n (7.52c)

Covariance (a measure to find out how attributes vary with respect to each other) is given by,

  cov (xj, xl) = s

m m

jl

j
i

j l
i

l

i

N

x x

N
=

- -

=

Â ( )( )
( ) ( )

1
; j, l = 1, …, n (7.52d)
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For the attribute vector x = [x1 x2 … xn]
T with mean m = [m1 m2 

… mn]
T, the covariance matrix

  S = 

( )( )( ) ( )
x x
i i T

i

N

N

- -

=

Â m m
1

  = 

s s s

s s s

s s s
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˙

 (7.52e)

Note that S is an n ¥ n square matix.

Since sjl = slj as seen by the formula (7.52d), the covariance matrix S is a symmetric matrix

(S = ST).

When we subtract the mean from each of the data dimensions, we get the transformed 

data in mean-deviation form. For PCA, working with the data whose mean is zero, is more 

convenient. From now onwards, we assume that the given dataset is a zero-mean dataset. 

We continue to use the same notation x(i) for the zero-mean dataset as well. For this dataset,

  SX = 

x x

X X

( ) ( )( )i i T

i

N

T

N N

=

Â
=

1 1
 (7.53)

where X is N ¥ n data matrix given by (7.51).

As we will shortly see, for linear algebra solution, working with an n ¥ N data matrix is more 

convenient. This can, of course, be achieved by taking XT as the data matrix. However, we will 

prefer to define new data matrix ˆX  derived from the given data matrix X:

                                                                   ˆX X=
T

 (7.54a)

In terms of ˆX, the covariance is given by,

                                                                S
ˆX

= 
1

N

Tˆ ˆX X  (7.54b)

The potential problems with the data are redundancy and noise. Let us first look at the linear 

algebra solution for reducing redundancy. To reduce redundancy, we would like each variable 

(feature) to co-vary as little as possible with other variables. More precisely, we would like the 

covariance between features to be zero. That is, we look for a mapping,

                                                 ˆ ˆ
( ) ( ) ( )
Z W X
n N n n n N¥ ¥ ¥

=  (7.55a)



Data Clustering and Data Transformations  385

such that,

 S
ˆZ

 = 
1

N

Tˆ ˆZ Z

  = 
1

N
(W ˆX) (W ˆX)T

  = 
1

N
W ˆ ˆXX

T WT

  = W W
X

S
ˆ

T  (7.55b)

is diagonal (in the transformed space, the covariance matrix has zero off-diagonal terms). Thus, 

diagonalizing S
ˆX

using transformation matrix W removes redundancy. Selecting transformation 

matrix W to be a matrix whose each row is an eigenvector of S
ˆX

results in diagonal matrix S
ˆZ
, as 

follows (refer to Section 1.9):

For the n ¥ n square matrix S
ˆX

(refer to Eqn (1.37c)),

                                            E E
X

-
=

1 S ˆ L

   = 

l

l

l

1
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0 0

0 0

0 0
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È
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˘

˚

˙
˙
˙
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 (7.56a)

where,

                                                       E = [e1 e2 … en] (7.56b)

The columns e1, e2, …, en of E are eigenvectors of S
ˆX

associated with its eigenvalues l1, l2, …, 

ln, respectively.

Since the n ¥ n square matrix S
ˆX

is symmetric, its eigenvectors e1, e2, …, en are orthonormal. 

This means that E is an orthonormal matrix, and by the result (Eqn (1.30)),

 ET = E–1

we get,

 ET S
ˆX

E = L, a diagonal matrix (7.57)

Thus, the symmetric covariance matrix S
ˆX

can be diagonalized by selecting the transformation 

matrix W in Eqn (7.55b) to be a matrix whose each row is an eigenvector of S
ˆX
. By this selection,

 W ∫ ET (7.58)

This was the first goal for PCA. Let us now pay attention to the other goal: reducing noise. We 

see from Eqns (7.55b), (7.57) and (7.58),

 S
ˆZ
 = ET S

ˆX
E = L (7.59)



386  Applied Machine Learning

The variances in the transformed domain are, therefore, given by,
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  (7.60a)

or

                                                            s ljz j j nˆ ; , ,
2

1= = º  (7.60b)

The largest eigenvalue, thus, corresponds to maximum variance. Therefore, the first principal 

component is the eigenvector of the covariance matrix S
ˆX

associated with the largest eigenvalue. 

The second principal component should also maximize the variance, which implies that the 

eigenvector associated with the second largest eigenvalue is the second principal component. It 

follows that other principal components are given by eigenvectors associated with eigenvalues with 

decreasing magnitude.

Envision how PCA might work. Once eigenvectors and eigenvalues are found from the 

covariance matrix, the next step is to order the eigenvalue-eigenvector pairs by the magnitude of the 

eigenvalues: from the largest to the smallest (a real symmetric matrix has all real and nonnegative 

eigenvalues). This gives us eigenvalue-eigenvector pairs in order of significance. Remembering 

that l sj

j

n

j z

j

n

=

= =

Â Â
1

2

1

ˆ
(Eqn (7.60a)), some eigenvalues have little contribution to the variance and 

may be discarded. We take the leading k components that explain more than, for example, 90% of 

variance. When l j are sorted in descending order, the proportion of variance explained by the k 

principal components is,

                                                          
l l l

l l l

1 2

1 2

+ + +

+ + +

�

�

k

n

 (7.61)

If the features are highly correlated, there will be small number of eigenvectors with large 

eigenvalues and k will be much smaller than n, and a large reduction of dimensionality may be 

attained. If the features are not correlated, k will be as large as n, and there is no gain through PCA.

The final step in PCA is to derive the new dataset—transformation of the original dataset (refer 

to Eqn (7.55a)):

                                                             ˆ ˆ
( ) ( ) ( )
Z W X

k N k n n N¥ ¥ ¥

=  (7.62)

We originally have n-dimensional data, and so we calculate n eigenvalues and n eigenvectors. 

We then choose only the first k (k £ n) eigenvectors from the list of eigenvalue-eigenvector pairs 

arranged in order of descending magnitude of eigenvalues. The k eigenvectors are called principle 

components, arranged in order of significance. We save them as row vectors of the transformation 

matrix W. Equation (7.62) then gives us the transformed and reduced dataset in a table-like format. 

Refer to [132] for an online procedure for doing PCA. 
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We have used N for normalization of variance (Eqn (7.52c)) and covariance (Eqn (7.52d)). 

This, however, gives a biased estimation of variances (refer to Section 3.8), particularly when the 

sample size N is small. The normalization by N would have given unbiased estimation if we were 

calculating the variances of the entire population. For a subset of entire population (sample of N 

instances), the correction is to use N – 1 instead of N in the formula for sample variance [4]. This 

correction reduces the bias error due to finite sample count. When the sample size is large, this 

correction may not be applied.

    Example 7.4

Table 7.5 gives a set of normalized data (mean subtracted), and Fig. 7.7 shows a plot of this data for 

the toy example. The zero-mean dataset has 10 samples (N = 10), and it has two attributes/features 

(n = 2).

The dataset may be expressed as a 2 ¥ 10 data matrix

ˆ
. . . . . . . . . .

. . .
X =

- - - -

-

0 69 1 31 0 39 0 09 1 29 0 49 0 19 0 81 0 31 0 71

0 49 1 21 0 999 0 29 1 09 0 79 0 31 0 81 0 31 1 01. . . . . . .- - - -

È

Î
Í

˘

˚
˙

Table 7.5  A zero-mean dataset

s(i) x1 x2

s(1) 0.69 0.49

s(2) –1.31 –1.21

s(3) 0.39 0.99

s(4) 0.09 0.29

s(5) 1.29 1.09

s(6) 0.49 0.79

s(7) 0.19 –0.31

s(8) –0.81 –0.81

s(9) –0.31 –0.31

s(10) –0.71 –1.01

The covariance matrix

S ˆ
ˆ ˆ

X
XX=

-

1

1N

T

                                                                     = 
0 617 0 615

0 615 0 717

. .

. .

È

Î
Í

˘

˚
˙



388  Applied Machine Learning

2

1.5

1

0.5

–0.5

–1

–1.5

–2

–2 –1.5 –1 –0.5 0.5 1 1.5 2

x1

x2

Figure 7.7 A plot of the dataset of Table 7.5 with the eigenvectors of the covariance matrix

For the square symmetric covariance matrix S ˆ ,
X

the eigenvalues and eigenvectors are:

                                                  l1 = 0.049; l2 = 1.284

                                                 e e1 2

0 735

0 678

0 678

0 735
=

-È

Î
Í

˘

˚
˙ =

-

-

È

Î
Í

˘

˚
˙

.

.
;

.

.

Note that these are orthonormal eigenvectors; shown as dotted lines in Fig. 7.7. The eigenvectors 

provide us information about the patterns in the data. 

Ordering eigenvalues from highest to lowest gives us the principle components in order of 

significance. In our example, principle components are:

e2
T = [–0.678 –0.735]

e1
T = [–0.735 – 0.678]

Given our example set of data, and the fact that we have two components, we have two choices. 

We can either form a transformation matrix with both of the components:



Data Clustering and Data Transformations  389

W = 
- -

-

È

Î
Í

˘

˚
˙

0 678 0 735

0 735 0 678

. .

. .

or we can choose to leave out one corresponding to smaller eigenvalue—the less significant 

component:

W = [–0.678 –0.735]

What needs to be done now is to generate the transformed data matrix:

ˆ ˆZ WX=

For the choice of k = n = 2, we use the transformation matrix given by Eqn (7.55a). The 

transformed dataset

ˆ
. . . . .

. . . . .
Z =

- - - -

- -

0 828 1 778 0 992 0 274 1 676

0 175 0 143 0 384 0 130 0 2099

È

Î
Í    

-

- -

˘

˚
˙

0 913 0 099 1 145 0 438 1 224

0 175 0 350 0 046 0 018 0 163

. . . . .

. . . . .

The transformed data ˆZ  has been plotted in Fig. 7.8. The original data ˆX  was in terms of axes 

x1 and x2. Through transformation matrix W, we have changed the basis vectors of our data; from 

the axes x1 and x2 to the directions of principle components. 
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Figure 7.8 A plot of data obtained by applying PCA using both eigenvectors.

In the case when the transformed data matrix has reduced dimenstionality (k = 1 < n), we use the 

transformation matrix given by Eqn (7.62).

ˆ [ . . . . . . . . . .Z = - - - - -0 828 1 778 0 992 0 274 1 676 0 913 0 099 1 145 0 438 1 2244]
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As expected, it has only single dimension (Fig. 7.9).
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Figure 7.9 A plot of data obtained by applying PCA using one eigenvector.

Kernel PCA

Laplacian eigenmaps (refer to Section 7.3.3) use the idea of feature embedding such that given 

pair- wise similarities are preserved [123]. The same idea is also used in “kernel” PCA: a nonlinear 

dimensionality reduction by mapping to a new space using nonlinear basis functions.

In the kernalized version, we work in the space of f(x) instead of x (refer to Chapter 4). The 

projected data matrix is F = F(X), and we work with the eigenvectors of FTF and hence the kernel 

matrix K(◊).
PCA, as we observed, is an unsupervised method of dimensionality reduction. Earlier in Section 

3.8, we presented Linear Discriminant Analysis (Fisher’s discriminants), which is a supervised 

method for dimensionality reduction for classification problems. The dimensionality reduction 

is from n to 1, and any classification method can be used thereafter. Because it uses the class 

information, Fisher’s linear discriminant direction is superior to PCA direction for k = 1, in terms 

of ease of discrimination afterwards. Fisher’s discriminant can also be kernalized.

Classic books on kernel machines are [133, 53].

7.10  ROUGH SETS-BASED METHODS FOR ATTRIBUTE REDUCTION

The theory of rough sets, developed by Z. Powlak and his co-workers in the early 1980’s [134], has 

become a recognized and widely researched mathematical approach to imperfect knowledge. The 

conceptual foundation of the theory is the consideration that all perception is subject to granularity. 

Classification on abstract levels seems to be a key issue in reasoning, learning and decision making.
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Rough set theory deals with the classificatory analysis of data tables. Consider, for example, 

a group of patients suffering from a certain disease. With every patient, a data file is associated 

containing information like body temperature, blood pressure, name, age, and others. All patients 

revealing the same symptoms are indiscernible (similar) in view of the available information and 

may be thought of as representing a granule (disease unit) of medical knowledge. These granules 

are called elementary sets (concepts) within the given training data. All the data tuples forming an 

elementary set are indiscernible.

Elementary sets can be considered as elementary building blocks of knowledge. Elementary 

concepts can be combined into compound concepts, i.e., concepts that can be uniquely determined 

in terms of elementary concepts. Any union of elementary sets is a crisp set, and any other sets 

are referred to as rough (imprecise). Due to granularity of knowledge, rough sets cannot be 

characterized by available knowledge. Therefore, with every rough set we associate two crisp 

sets, called its lower and upper approximation. Intuitively, the lower approximation of a rough set 

consists of all elements that surely belong to the set, whereas the upper approximation of the rough 

set consists of all elements that possibly belong to the set. The difference of the upper and the lower 

approximations is a boundary region. It consists of all elements that cannot be classified uniquely 

to the set or its compliment by employing available knowledge. All the data tuples forming the 

boundary region are discernible (not similar).

The concept of lower and upper approximations of a rough set is illustrated in Fig. 7.10 in 

two-dimensional universe of discourse. Each rectangular region represents elementary set (granule 

of knowledge). The lower and upper approximations, and the boundary region for a set (shown in 

grey shade) in two-dimensional universe of discourse are graphically displayed.
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Figure 7.10 Set approximations in two-dimensional universe of discourse

Given the real-world data, it is common that some decision classes (target concepts) cannot 

be distinguished in terms of the available attributes. Rough sets can be used to approximately or 

‘roughly’ define such classes. Decisions rules can be generated for each class. Typically, a decision 

table is used to represent the rules.
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Rough sets can also be used for attribute subset selection (or feature reduction, where attributes 

that do not contribute to the classification of the given training data can be identified and removed) 

and relevance analysis (where the contribution or significance of each attribute is assessed with 

respect to the classification task). Rough set theory applies to discrete-valued attributes. Continuous-

valued attributes must therefore be discretized before its use.

Basic problems of data analysis which can be tackled employing the rough set approach are the 

following:

 • Characterization of target concepts in terms of available knowledge (attribute values).

 • Analysis of relevance of attributes.

 • Reduction of attributes.

 • Generation of decision rules.

Rough set theory has simple algorithms to answer these questions and enables straight-forward 

interpretation of obtained results. In this section, we use rough set theory for relevance analysis of 

attributes, and attribute reduction.

Rough set theory is generally regarded as part of the ‘soft computing’ paradigm. However, while 

other soft computing methods require additional model assumptions such as prior probabilities, 

fuzzy functions, etc., rough set theory is unique in the sense that it is ‘non-invasive’, i.e., it uses only 

the information given by the data, and does not rely on other model assumptions. The numerical 

value of imprecision is not pre-assumed—as it is done in probability theory or fuzzy sets—but is 

calculated on the basis of approximations, which are the fundamental concepts used to express 

imprecision of knowledge. The main motto of rough set theory is

Let the data speak for themselves

Rough set theory and fuzzy set theory are complimentary. It is natural to combine the two models 

of uncertainty (partial membership in fuzzy sets to express vagueness, approximations in rough sets 

to express coarseness) in order to get more accurate account of imperfect information.

It is the experience of soft-computing community that hybrid systems, combining different soft 

computing techniques into one system, can often improve the performance of the constructed system. 

This is also true in case of rough set methods combined with neural networks, genetic algorithms, 

statistical inference rules, fuzzy sets, etc. For example, rough-set based attribute reduction can be 

very useful in preprocessing the data input to neural networks, fuzzy inference systems, etc.

7.10.1  Rough Set Preliminaries

Knowledge representation in rough sets is done via information systems, which are a form of data 

table. Each row of the data table represents a case, an event, a pattern or simply an object, and each 

column is represented by an attribute. More precisely, the pair (U, X) constitutes an information 

system I, where U is a non-empty finite set of objects called the universe, and X is a non-empty 

finite set of attributes. As done earlier in the book, we will represent the objects by the index i = 1, 

2, …, N; and attributes can be interpreted as variables xj ; j = 1, 2, …, n. Therefore, U = {1, 2, …, 

N} is the universe of objects, and X = {x1, x2, …, xn} is the set of attributes. With every attribute xj 

Œ X, we associate a set Vxj
of its values, called the domain of xj . Attribute xj may take a finite value 
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from a finite set of dj discrete values v v vx x d xj j j j1 2, , ,º . In such a case, Vxj
= {v vx xj j1 2, ,…,vd xj j

} =

{vkxj
; k = 1, 2, …, dj}, and v Vkx xj j

Œ . By (x1
(i), …, xn

(i)) we denote a data pattern defined by the object 

with index i and attributes from X. A data pattern i ŒU of I is the value set {x1
(i), …, xn

(i)} where xj
(i) 

ŒVxj
for j = 1, 2, …, n. The elements xj of X are called the condition attributes.

For supervised classification problems, an outcome (i.e., class of each pattern) is known a priori. 

This knowledge is expressed by one distinguished attribute, called the decision attribute. Information 

systems of this kind are called decision systems. More precisely, the tuple (U, X, y) constitutes a 

decision system D, where U is a finite set of objects, X is a finite set of condition attributes, and 

y is the decision attribute. Any such decision system can be represented by a data table (decision 

table) whereas rows correspond to observations/patterns belonging to U and columns correspond 

to attributes belonging to X » y. The decision attribute may take any of the values given by the set 

Vy = {1, 2, …, M} for a multiclass problem. The output y(i) for a pattern i will take a value yq
(i); q = 

1, 2, …, M, from the set Vy.

Table 7.6 shows an example of a decision system: U consists of six objects (patients); X consists 

of three condition attributes (symptoms); x1: Headache, x2: Muscle-pain, x3: Temperature; and 

there is one decision attribute y: Flu. The sets Vxj
of attribute values consist of observations on the 

patients. Decision attribute classifies each object to either Flue: yes; y1 = 1 or Flue: no: y2 = 0. Note 

that for binary classification, values {0,1} have been used.

Table 7.6  Tutorial dataset

i = Patient index x1 : Headache x2 : Muscle-pain x3 : Temperature y : Flu

1 no yes high yes

2 yes no high yes

3 yes yes very high yes

4 no yes normal no

5 yes no high no

6 no yes very high yes

Basic Granules of Knowledge about the Universe

Now we shall present two definitions that are very important in the rough set theory.

Indiscernibility relation: Suppose we are given two finite non-empty sets U and X, where U is 

the universe, and X is set of attributes. Each attribute xj ŒX takes a value from finite set of values 

v Vkx xj j
Œ ; k = 1, 2, …, dj. Vxj

is the domain of xj.
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Any subset Z of X determines a binary relation on U which will be called an indiscernibility 

relation, and is defined as follows:

                                       IND(Z) = {(i, l) ŒU ¥ U | , ( ) ( )" Œ =x Z V i V lj x xj j
 (7.63)

where Vxj
(i) denotes the value of attribute xj Œ Z for element i Œ U.

Objects i Œ U and l Œ U are indiscernible (similar) from each other by attributes from Z. 

Obviously, IND(Z) is an equivalence relation, called the Z-indiscernibility relation.

Equivalence Classes: The equivalence relation divides a set in which it is defined, into a family 

of disjoint sets called equivalence classes of the relation. The family of all equivalence classes of 

IND(Z), i.e., partitions determined by Z, will be denoted by U/IND(Z). Equivalence classes form 

basic granules of knowledge about the universe.

A group of objects having the property that each attribute xj Œ Z takes the same value vkxj
; k = 1,  

…, dj, forms an equivalence class. For Z = xj (one attribute),

 U/IND(xj) = {i ŒU |xj
(i) = vkxj

} (7.64)

Equivalence classes are also generated by considering multiple attributes Z Õ X at a time:

                                         U/IND(Z) = {i Œ U |"xj Œ Z, xj
(i) have similar values} (7.65)

Equivalence classes of the relation IND(Z) (or blocks of the partition U/IND(Z)) are referred to 

as Z-elementary sets. In the rough set approach, the elementary sets are the basic building blocks 

(concepts) of our knowledge about reality.

The indiscernibility relation will be used next to define set approximations—the basic concepts 

of rough set theory. Before that, a tutorial example will be helpful to appreciate the definitions 

given before.

    Example 7.5

Consider tutorial dataset given in Table 7.6. From this table, we observe that patients 2, 3, and 5 are 

indiscernible with respect to the attribute x1. Also, patients 1, 4, and 6 are indiscernible with respect 

to this attribute. Therefore for Z = x1, we have,

  U/IND(Z) = U/IND(x1) = {{1, 4, 6}, {2, 3, 5}}

With respect to attributes Z = {x1, x2}, patients 1, 4, 6 are indiscernible. Also patients 2, 5 are 

indiscernible. Therefore,

U/IND (x1, x2) = {{1, 4, 6}, {2, 5}, {3}}

Consider now Z = {x1, x2, x3} = X. Patients 2 and 5 are indiscernible with respect to the whole 

set X:

U/IND(X) = U/IND (x1, x2, x3) = {{1}, {2, 5}, {3}, {4}, {6}}

One can thus compute elementary sets generated by X or any subset of X.
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Set Approximations

An important issue in data analysis is discovering dependency of the decision attribute y on the set 

of condition variables Z Õ X. Attribute y depends totally on the set of attributes Z, denoted Z fi y, 

if all values of attribute y are uniquely determined by values of attributes from Z (i.e., there exists a 

functional dependency between values of y and Z). Rough set interpretation of total dependency of 

y on Z is that all elements of the universe U can be uniquely classified to blocks of the partition of 

U generated by decision attribute y, employing condition attributes Z. The family of all partitions 

generated by classification labels yq; q = 1, 2, …, M, will be denoted as U \y.

 U \y = {B(1), …, B(M)}; B(q) Ã U; B(q) « B(m) = ∆; » B(q) = U; q, m = 1, 2, …, M; (7.66)

                                                                 B(q) = {i ŒU |y(i) = yq}

denotes the set of elements of the universe U through qth classification label. This is referred to as 

equivalence class of U generated by classification label yq.

Equation (7.66) gives a set of equivalence classes generated by decision attribute y employing 

condition attributes Z. Generation of those equivalence classes where all elements of U can be 

uniquely identified to these classes, is possible only if there are no ambiguities in the dataset. This 

is, however, not true in real-world situations. The concept given by Powlak is to approximate each 

class by a pair of exact sets, called the ‘lower’ and ‘upper’ approximations. Lower approximation is 

the set of objects which certainly are identified to a given class, while upper approximation is the 

set of objects which can be possibly classified to a given class.

Equation (7.66) gives a set of equivalence classes B(1), …, B(M) generated by decision attributes 

yq; q = 1, …, M, employing condition attributes Z. The lower approximation of an equivalence 

class B in Z(Z Õ X), denoted as 
�
B (Z), is defined as the union of all elementary sets in space Z 

which are contained in B. We will refer to this as Z-lower approximation. More formally, Z-lower 

approximation

                                        
�
B Z C U Z C B( ) { / ( ) | }= » Œ ÕIND  (7.67)

The upper approximation of an equivalence class B in Z(Z Õ X), denoted as �B (Z), is defined as 

the union of all elementary sets in space Z which have at least one element in common with B. We 

will refer to this as Z-upper approximations:

                                        �B Z C U Z C B( ) { / ( )| }= » Œ « π ∆IND  (7.68)

The set difference �
�

B Z B Z( ) ( )- will be referred to as the Z-boundary region.

The accuracy of approximation

                                                        m
Z
B

B Z

B Z
( )

( )

( )
=

card

card
��

 (7.69)

(The cardinality of a set is the number of samples contained in the set)

Obviously, 0 £ mZ(B) £ 1. If mZ(B) = 1, the set Z is crisp with respect to B (attributes of Z are 

precise with respect to equivalence class B for a label yq); otherwise, if mZ(B) < 1, Z is rough with 

respect to B.
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    Example 7.6

Objects 2 and 5 in Table 7.6 have the same values of condition attributes x1, x2, and x3, but different 

values of decision attribute y. Objects 2 and 5 are, thus, indiscernible with respect to condition 

attributes and are discernible with respect to decision attribute. These objects contribute to our 

lack of knowledge about elements of U. The imprecision in rough set approach is expressed by 

boundary region of the dataset. Flu (decision attribute y = yes) cannot be characterized with respect 

to the attributes (symptoms) Headache (x1), Muscle-pain (x2), and Temperature (x3). Therefore, 

patients 2 and 5 are the boundary-line cases which cannot be properly classified in view of the 

available knowledge.

The patients 1, 3 and 6 display symptoms which enable us to classify them with certainty as 

Flu, and patient 4 for sure does not have flue in view of the displayed symptoms. Thus, the lower 

approximation of the set of patients having flu with respect to the three symptoms (attributes x1, x2, 

x3) is the set of patients {1, 3, 6}.

The upper approximation of the set of patients is {1, 2, 3, 5, 6} (Note that boundary region of 

the set is given by patients {2, 5}).

Now consider the concept ‘no-flu’ (decision attribute y = no). Patient 4 does not have flu and 

patients 2 and 5 cannot be properly classified in view of the available knowledge. Thus the lower 

approximation of the concept ‘no-flu’ is the set of patients {4}, whereas the upper approximation 

is the set {2, 4, 5}; and the boundary region of this concept is the set {2, 5}—the same as in the 

previous case.

Let us now express these observations in terms of rough-set terminology.

Z = {x1, x2, x3} = X

From Example 7.5, we have,

                                               U/IND(X) = {{1}, {2, 5}, {3}, {4}, {6}}

The equivalence classes of U determined by decision attribute yq, q = 1, 2:

 U \y = {B(1), B(2)}

  B(1) = {1, 2, 3, 6}; B(2) = {4, 5}

Elementary sets {1}, {3}, {6} from family of U/IND(X), are contained in class B(1), and elementary 

set {4} is contained in class B(2); elementary set {2, 5} is contained in none of the classes. Since {1} 

» {3} » {6} » {4} π U, all the elements of the universe cannot be uniquely classified by blocks of 

partition U \y, i.e., equivalence classes generated by decision attribute employing X = {x1, x2, x3}. 

Therefore y depends partially on X. 

The lower approximation

 
�
B( )1 (X) = {1} » {3} » {6} = {1, 3, 6}

 
�
B( )2 (X) = {4}

The upper approximation

 �B( )1 (X) = {1, 2, 3, 5, 6}

 �B( )2 (X) = {2, 4, 5}
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The accuracy of approximation

m
X
B

B X

B X

( )
( )

( )

( )
( )

( )

1
1

1

3

5
= =

card

card
�
�

m
X
B

B X

B X

( )
( )

( )

( )
( )

( )

2
2

2

1

3
= =

card

card
�
�

Since 0 < mX(B) < 1 (π 1), the attribute set X is rough with respect to B(1) and B(2). It means that 

the decision attributes yq = {0, 1} can be characterized partially and not uniquely.

7.10.2  Analysis of Relevance of Attributes

A decision system expresses the knowledge about the underlying problem domain in the form of raw 

measurements. The decision system may be unnecessarily large, in part, because it has redundancy 

in at least two ways. The similar (indiscernible) objects may be represented several times, and/or 

some of the condition attributes may be superfluous or dependent. Superfluous attributes have no 

effect on the classification performance of the information system, and dependent attributes lead to 

redundancy because of lack of discriminatory power. Reduction of data matrix is thus an important 

data-preprocessing step.

Rough sets can be used for relevance analysis, where the contribution or significance of each 

attribute is assessed with respect to the classification task. The analysis of relevance of each 

attribute is then used for attribute subset selection or attribute reduction, where attributes that do 

not contribute to the classification task can be identified and removed.

Some additional definitions will help us develop a systematic method for relevance analysis. 

When all the elements of the universe cannot be uniquely classified to blocks of the partition U \y, 

i.e., to equivalence classes B(1), …, B(M), employing Z, y depends partially on Z. We say y depends 

on Z to a degree g (0 £ g < 1), denoted Z yfi
g

, where g expresses the ratio of the elements of the 

universe which can be classified to blocks of the partition U \y employing variables Z to the total 

elements in the universe. The concepts, related to ambiguity in the datasets, can be captured in 

rough set terminology as follows.

Z-Positive Region

The set POSZ(B), called the Z-positive region of B, is the set of those samples which can, with 

certainty, be classified in the set B.

 The positive region of a set is equal to its lower approximation:

                                                       POSZ(B) = 
�
B  (7.70)

If B(1), …, B(M) are equivalence classes of the universe determined by decision y, then the set

�
B(1)(Z) » … »

�
B
M( )(Z) is called the Z-positive region of y and is denoted by POSZ(y)

Degree of Dependence of y on Z

We say that y depends upon Z in a degree g (0 £ g  < 1) if, 
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                                                        g (Z, y) = 
card

card

POSZ y

U

( )
 (7.71)

Significance of Attribute xj Œ X 

The theory of rough sets introduces the notion of dependency between features (attributes) of the 

decision system: condition attributes and decision attributes. Thanks to that, we can check whether 

it is necessary to know the values of all features in order to unambiguously describe the object 

belonging to the set U.

Dependency degree of decision attribute y on the set of condition attributes X is defined as

 k = g (X, y) = 
card

card

POSX y

U

( )
 (7.72)

where X is the complete set of condition attributes. It is now possible to define the significance of an 

attribute xj Œ X. This is done by calculating the change in dependency after removing the attribute 

xj from the set of considered condition attributes.

 • We say that xj is dispensable in X if,

                                                          g (X, y) = g (X – xj, y) (7.73)

  Otherwise xj is indispensable in X.

 • Set X is independent if all its attributes are indispensable.

  The normalized coefficient of significance

                                         s
g g

g
X y j

j
x

X y X x y

X y
, ( )

( , ) ( , )

( , )
=

- -

 (7.74)

 • The coefficient of significance plays an important role in relevance analysis of attributes. 

The zero value obtained for a given attribute xj indicates that this attribute may be deleted 

from the set X of condition attributes. The higher the value of s X y jx, ( ), which corresponds 

to higher change g (X, y) – g (X – xj, y) in dependency, the more significant xj is.

    Example 7.7

Let us reconsider the dataset in Table 7.6. From the previous example, we have, 

�
B( )1 (X) = {1, 3, 6}; 

�
B( )2 (X) = {4}

Therefore,

   POSX y B X B X( ) ( ) ( ) { , , , }( ) ( )
= » =

� �

1 2 1 3 4 6

The decision attribute y depends on condition attributes X in a degree

 g ( , )
( )

X y
y

U

X
= =

card

card

POS 4

6

=

Elements of the universe which can be classified to blocks of partitiion \

Total number of elements in the universe

U y
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Let us now determine significance of each attribute xj ; j = 1, 2, 3. This is given by the coefficient 

of significance:

s
g g

g
X y j

j
x

X y X x y

X y
, ( )

( , ) ( , )

,
=

- -

( )

The coefficient of significance for the attribute x3,

s
g

g
X y x

X x y

X y
, ( )

( , )

,

/

/
.3

31 1
1 6

4 6
0 75= -

-

( )
= - =

We get the following coefficients for x1 and x2:

sX, y(x1) = 0; sX,y (x2) = 0

This shows that attribute x3 is not dispensable having a significance coefficient of 0.75; while 

attributes x1 and x2 can be dispensed with as they do not provide any significant information for the 

classification.

The variable x3, thus, has strong significance in the information system presented in Table 7.6.

7.10.3  Reduction of Attributes

Rough set theory defines strong and weak relevance for variables. For a given dataset, a set of 

strongly relevant variables forms a core. A set of variables satisfactory to describe concepts of a 

given dataset, including a core and possibly some weakly relevant variables, forms reduct.

Subset Z of X is a reduct of X if Z is independent (i.e., all its attributes are indispensable) and 

IND(Z) = IND(X).

Thus, a reduct is a set of attributes that preserves partition. It means that a reduct is the subset 

of attributes that enables the same classification of the elements of the universe as the whole set of 

attributes. In other words, attributes that do not belong to a reduct are superfluous with regard to 

classification of elements of the universe.

A reduct is defined as a subset XR of the condition attributes X, such that 

  g (XR, y) = g (X, y) (7.75)

A given dataset may have many attribute reduct sets; the set of all reducts is given by, 

                                         R  = { | ; ( , ) ( , )}X X X X y X yR R R
Õ =g g   (7.76)

The intersection of all the sets in R is the core, the elements of which are those attributes which 

cannot be eliminated without introducing more contradictions to the dataset.

In rough set-based attribute reduction, a reduct with minimum cardinality is searched for; in 

other words, an attempt is made to search for the element Rmin (the reduct with minimal cardinality) 

from R—the set of all reducts.

                                       Rmin  = { | ; , }X X R Y R X Y
R R R

Œ " Œ £card card  (7.77)

A basic way of achieving this is to calculate the dependencies of all possible subsets of X. Any 

subset Z with g (Z, y) = 1 is a reduct; the smallest subset (i.e., with minimal cardinality) with this 

property is a minimal reduct Rmin.
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However, for large datasets this method is impractical and an alternative strategy is required. 

QUICKREDUCT algorithm attempts to calculate a minimal reduct without exhaustively generating 

all possible subsets. It starts off with an empty set and adds in turn those attributes that result in the 

greatest increase in g  until this produces its maximum possible value for the dataset (usually 1). 

However, it has been proved that this method does not always generate a minimal reduct as g  is not 

perfect heuristic. It does result in a close-to-minimal reduct, which is still useful in greatly reducing 

dataset dimensionality.

In addition to g  being a non-optimal heuristic, the algorithm also suffers due to the information 

lost in the discretization procedure. A method using fuzzy-rough sets should therefore be more 

informed.

    Example 7.8

Example dataset given in Table 7.7 has 8 objects (i = 1, …, 8 ŒU), four features {x1, x2, x3, x4} Œ X 

which are the condition attributes, and one decision attribute yq ; q = 1, 2, 3.

Table 7.7  Example dataset

i Œ U x1 x2 x3 x4 y

1 1 0 2 2 0

2 0 1 1 1 2

3 2 0 0 1 1

4 1 1 0 2 2

5 1 0 2 0 1

6 2 2 0 1 1

7 2 1 1 1 2

8 0 1 1 0 1

For the dataset, we can easily make the following computations.

U/IND(x1) = {{2, 8},{1, 4, 5}, {3, 6, 7}}

U/IND(x2) = {{1, 3, 5}, {2, 4, 7, 8}, {6}}

U/IND(x3) = {{3, 4, 6}, {2, 7, 8}, {1, 5}}

U/IND(x4) = {{5, 8}, {2, 3, 6, 7}, {1, 4}}

B(1) = {1}; B(2) = {3, 5, 6, 8}; B(3) = {2, 4, 7}

None of the elementary sets from family of U/IND(x1) is contained in B(1), B(2) or B(3); therefore,

� � �
B x B x B x
( ) ( ) ( )( ) ( ) ( )1

1
2

1
3

1 0= = =

This gives,

                                                POSx1
(y) = 0; g (x1, y) = 0
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Only the elementary set {6} from the family of U/IND(x2) is contained in B(2); therefore 
�
B( )2 (x2) 

= {6}. It can be verified that 
� �
B x B x
( ) ( )( ) ( )1

2
3

2 0= = .

This gives,

                           POSx2
(y) = {6}; g (x2, y) = 1/8

For the attribute x3, we get,

� � �
B x B x B x y x yx
( ) ( ) ( )( ) ( ) ( ) ; ( ) ; ( , )1

3
2

3
3

3 30 0 0
3

= = = = =POS g

For the attribute x4,

                            
� � �
B x B x B x yx
( ) ( ) ( )( ) ; ( ) { , }; ( ) ; ( ) { , }1

4
2

4
3

40 5 8 0 5 8
4

= = = =POS  

                             g (x4, y) = 2/8.

On similar lines, we obtain the following:

 U/IND(x1, x2) = {{1, 5},{2, 8},{3},{4},{6},{7}}

 U/IND(x1, x3) = {{2, 8},{3, 6},{1, 5},{4},{7}}

 U/IND(x1, x4) = {{1, 4},{3, 6, 7},{2},{5},{8}}

 U/IND(x2, x3) = {{1, 5},{2, 7, 8},{3},{4},{6}}

 U/IND(x2, x4) = {{1},{2, 7},{3},{4},{5},{6},{8}}

 U/IND(x3, x4) = {{3, 6},{2, 7},{1},{4},{5},{8}}

 U/IND(x1, x2, x3) = {{2, 8},{1, 5},{3},{4},{6},{7}}

 U/IND(x1, x2, x4) = {{1},{2},{3},{4},{5},{6},{7},{8}}

 U/IND(x2, x3, x4) = {{1},{2, 7},{3},{4},{5},{6},{8}}

 U/IND(x1, x2, x3, x4) = {{1},{2},{3},{4},{5},{6},{7},{8}}

 POSx1, x2
(y) = {3, 6, 7, 4}

 POSx1, x3
(y) = {3, 6, 4, 7}

 POSx1, x4
(y) = {5, 8, 2}

 POSx2, x3
(y) ={3, 6, 4}

 POSx2, x4
(y) = {1, 2, 3, 4, 5, 6, 7, 8}

 POSx3, x4
(y) = {1, 3, 5, 6, 8, 2, 4, 7}

 POSx1, x2, x3
(y) = {3, 6, 7, 4}

 POSx1, x2, x4
(y) = {1, 2, 3, 4, 5, 6, 7, 8}
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 POSx2, x3, x4
(y) = {1, 2, 3, 4, 5, 6, 7, 8}

 POSx1, x2, x3, x4
(y) = {1, 2, 3, 4, 5, 6, 7, 8}

The degree of dependency of decision attribute y on a set of conditional attributes:

                                                               g (X, y) = 
card POS

card

X y

U

( )

 g (x1, x2; y) = 4/8 = 1/2

 g (x1, x3; y) = 4/8 = 1/2

 g (x1, x4; y) = 3/8

 g (x2, x3; y) = 3/8

 g (x2, x4; y) = 8/8 = 1

 g (x3, x4; y) = 8/8 = 1

 g (x1, x2, x3; y) = 4/8 = 1/2

 g (x1, x2, x4; y) = 8/8 = 1

 g (x1, x3, x4; y) = 1

 g (x2, x3, x4; y) = 1

 g (x1, x2, x3, x4; y) = 1

Note that g  < 1 shows that all the objects i cannot be classified into the decision attribute, given 

condition attributes X. For example, g (x2, x3; y) = 3/8 shows that out of eight objects, only three 

can be classified into decision attribute y, given condition attributes x2 and x3. The other five objects 

represent contradictory information.

The most basic solution to the problem of finding a reduct is to simply generate all possible subsets 

and retrieve those with high degree of dependency. In our example, the maximum dependency 

degree is 1, and the set of all the reducts are:

R = {{x2, x4},{x3, x4},{x1, x2, x4},{x1, x3, x4},{x2, x3, x4},{x1, x2, x3, x4}}

Reducts of minimal cardinality of the condition attribute are {x2, x4} and {x3, x4}. Therefore,

Rmin = {x2, x4},{x3, x4}

If {x2, x4} is chosen, then the dataset can be reduced as in Table 7.8. Clearly, each object can be 

uniquely classified according to remaining attribute values.

Core = {x2, x4} « {x3, x4}

                                                                = {x4}
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Table 7.8  Reduced dataset

i Œ U x2 x4 y

1 0 2 0

2 1 1 2

3 0 1 1

4 1 2 2

5 0 0 1

6 2 1 1

7 1 1 2

8 1 0 1

More on Rough Sets

Concise summaries of rough set theory in data mining are given in [135] and [136]. For use of 

rough sets in feature selection and expert system design, refer to [135], [137] and [138]. Algorithms 

to reduce the computational intensity in finding reducts have been proposed in [139].
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Chapter

8

8.1  INTRODUCTION

A decision tree can be said to be a map of reasoning process. It uses a structure resembling that of 

a tree to describe a dataset and solutions can be visualized by following different pathways through 

the tree. 

It is a hierarchical set of rules explaining the way in which a large set of data can be divided into 

smaller data partitions. Each time a split takes place, the components of the resulting partitions 

become increasingly similar to one another with regard to the target. 

If we had to select a classification method capable of performing well across a wide range of 

situations without the analyst needing to put in effort, and easy for the customer to understand, the 

tree methodology would be the preferred choice. Several types of decision-free learning techniques 

are  available with varying needs and abilities. Decision-tree learning is usually best suited to 

problems with the following features:  

 • Patterns are described by a fixed set of attributes xj; j = 1, 2, …, n, and each attribute xj takes 

on a small number of disjoint possible values (categorical or numeric) vlxj; l = 1, 2, …, dj.

 • The output variable y is a Boolean-valued function (binary classification problems) defined 

over the set S of patterns {s(i)} ∫ {x(i)} ; i = 1, 2, …, N. That is, y takes on values yq ; q = 1, 2. 

If we assume y1 ∫ 0 and y2 ∫ 1, then y : S Æ [0, 1].

 • The training data is described by the dataset D of N patterns with corresponding observed 

outputs:

 D = {s(i), y(i)} = {x(i) y(i)}; i = 1, 2, …, N 

Several practical problems have been observed with these features. Therefore, decision-tree 

learning can be applied to problems, such as learning to categorize medical patients according to 

their ailments/conditions, equipment defects according to their faults, loan applications according 

to their payment failures, and so on.
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Extensions of the basic decision-tree learning algorithm permit the handling of continuous-

valued attributes, and learning functions possessing more than two likely output values (multiclass 

classification problems). Extensions also allow learning target functions with continuous-valued 

outputs (regression problems), though the application of decision trees in this setting is not very 

common. 

J. Ross Quinlan, a machine learning researcher (during the late 1970s and early 1980s), proposed 

a decision-tree algorithm called ID3 [140]. It is so called because it was the third procedure in a 

series of  ‘interactive dichotomizer’  processes. Later, Quinlan’s C4.5 (ID3’s successor), became the 

benchmark with which newer supervised learning algorithms are often compared [141]. In 1984, 

L. Breiman, J. Friedman, R. Olshen, and C. Stone, all statisticians, together authored the book 

Classification and Regression Trees (CART) [142]. ID3 and CART were inventions independent of 

one another, but at almost the same time, they followed a similar  model of learning decision trees 

from training examples. 

Thereafter, there was an active spell of work on decision tree induction. Quinlan’s C4.5 was 

succeeded by his C5.0. Its decision-tree induction seems to be essentially the same as that used 

by C4.5, and tests show some differences but negligible improvements. However, its speed of 

generating rules is high and it employs a different method.

As already mentioned, a decision tree is a hierarchical set of rules. Rule-based classification 

systems have a drawback—they include sharp cutoffs for attributes. For instance, consider the 

following rule for approval of customer credit application:

IF (years_employed ≥ 2) AND (income ≥ 50K) THEN credit = approved  

According to the rule, applications of customers who have been employed for a minimum of 

two years will be eligible for credit if their income is $ 50,000. They will not be eligible if their 

income is say, $ 49,500. Such hard thresholds may appear to be unfair (refer to Chapter 6). To 

overcome this drawback, various researchers have come up with the fuzzy decision tree induction 

algorithms, bringing in softness in these conditions or thresholds. The evaluation of classification 

capabilities of fuzzified attributes is done by all fuzzy decision tree induction methods with the help 

of certain appropriate measure of uncertainty consistent with the human information processing, 

such as vagueness and ambiguity. It is possible to build fuzzy decision trees by incorporating this 

measure in crisp decision tree induction algorithms.

Virtually all tree-based methods incorporate the fundamental techniques of decision-tree learning.

There are strengths and weaknesses of individual methods, of course. Our focus in this chapter 

is not on providing details of many different decision tree algorithms reported in the literature/

commercially available [143], but on the basic building blocks.

We will incorporate the following basic characteristics of decision-tree building:

 • A decision tree is a hierarchical model for supervised learning. An algorithm starts with 

a learning set of instances (patterns) and their associated class labels. The training set is 

partitioned into smaller subsets in a sequence of recursive splits as the tree is being built. The 

tree-building follows a top-down hierarchical approach. 

 • The tree-learning algorithms are said to be greedy, because at every stage, beginning at the 

root with the complete dataset, we search for the best split (nonbacktracking).
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 • For a given training set, there exist many trees which code it with no error, and for simplicity, 

we are interested in finding the smallest tree where tree size is measured as the number of 

nodes in the tree. This is achieved through local search procedures based on heuristics that 

give reasonable trees (accuracy-complexity trade-off) in reasonable time.

 • Divide-and-conquer, a frequently used heuristic, is the tree-building strategy.

This chapter opens up with an example of a decision tree for a binary classification task. This 

simple example with categorical attribute values, highlights the way decision trees can provide 

insight into a decision problem, and how easy decision trees are to understand. The chapter 

continues with more technical detail on how to create decision trees. It ends up with a discussion 

on fuzzy decision trees.

8.2  EXAMPLE OF A CLASSIFICATION DECISION TREE 

The decision tree shown in Fig. 8.1 was created from entirely fictitious tiny weather dataset which 

supposedly concerns the conditions that are suitable for playing tennis. The sample is shown in 

Table 8.1. The input variables are: x1 = Outlook, x2 = Temperature, x3 = Humidity, and x4 = Wind; 

and the target variable y = PlayTennis. The task is to predict the value of PlayTennis for an arbitrary 

Saturday morning, based on the values of its attributes. 

The target function to be learnt is 

ŷ  : S Æ [0, 1]

ˆ ˆ ( )
( ) ( )

y y s
i i
∫ =1, if PlayTennis = Yes; ˆ( )

y
i = 0, if PlayTennis = No

The set S of patterns has 14 data samples:

S = {s(i)}; i = 1, …, 14

Outlook

Yes

overcast

Humidity Wind

YesNo

high normal

YesNo

weak

rain

strong

sunny

Figure 8.1  Decision tree for weather data



Decision Tree Learning  407

Table 8.1  The weather data

Instance Outlook x1 Temperature x2 Humidity x3 Wind x4 PlayTennis y

s(1) sunny hot high weak No

s(2) sunny hot high strong No

s(3) overcast hot high weak Yes

s(4) rain mild high weak Yes

s(5) rain cool normal weak Yes

s(6) rain cool normal strong No 

s(7) overcast cool normal strong Yes

s(8) sunny mild high weak No

s(9) sunny cool normal weak Yes

s(10) rain mild normal weak Yes

s(11) sunny mild normal strong Yes

s(12) overcast mild high strong Yes

s(13) overcast hot normal weak Yes

s(14) rain mild high strong No

The circle at the top of the diagram in Fig. 8.1 is the root node, which contains all the training 

data used to grow the tree. The tree begins from the root node and grows downwards by dividing 

the data at each level into new daughter nodes. The root or parent node comprises the whole data 

and the internal nodes or daughter nodes carry the respective data subsets. All nodes are connected 

by branches shown by the line segments in the figure. The nodes that are at the end of the branches 

are called terminal nodes or leaf nodes, shown by boxes in the figure. The leaf nodes in this figure 

are class labels.

The classification of instances by decision trees is done by sorting them down the tree from 

the root to some leaf node, which offers the classification of the instance. Each node in the 

tree stipulates a test of some attribute of the instance, and each branch descending from that

node tallies with one of the possible values of this attribute. Classification of an instance begins 

at the root node of the tree, where the specified attribute is tested and then it moves down the tree 

branch corresponding to the value of the attribute in the example stated. This procedure is iterated 

for the subtree rooted at the new node.

Consider the instance (from the training set): (Outlook = sunny, Temperature = hot, Humidity = 

high, Wind = strong). This instance would be sorted down the leftmost portion of the decision tree; 

the tree predicts that 

PlayTennis = No
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The tests on attributes Outlook and Humidity have determined the class.

Consider another example (not from the training set): (Outlook = overcast, Temperature = cool, 

Humidity = normal, Wind = weak). The tree predicts that 

PlayTennis = Yes

Here, only the test on Outlook attribute has determined the class.

If there are sufficient attributes, a decision tree can be constructed that will accurately classify 

each object in the training set, and generally, there are several such correct decision trees for a 

learning task. Induction is all about moving beyond the training set, that is, constructing a decision 

tree that accurately categorizes not just the patterns from the training set but from other unseen 

patterns also. To make this happen, the decision tree has to capture certain meaningful relationships 

between the class of the object and the values of its attributes. Suppose, there is a set of examples 

of y—the task of induction is to return a hypothesis (decision tree) that approximates y. Learning 

is tough, conceptually speaking, as it is difficult to decide whether a specific hypothesis is a ‘good’ 

approximation of y. A hypothesis is good if it is able to predict unseen examples accurately, that is, 

is able to generalize well. 

If one is asked to select between two hypotheses (decision trees), both of which are correct 

over the training set, it makes sense to opt for the simpler one because the likelihood of its 

capturing structure inherent in the problem is more. Therefore, it is expected that the simpler tree 

will accurately classify more objects outside the training set. Seeking the most simple hypothesis 

(smallest decision tree) that generalizes well is the goal, but it is an interactable problem. We can 

do a good job with some heuristic effort. 

Figure 8.1 shows a decision tree with each branch growing just deep enough to correctly classify 

the training examples. This is quite a reasonable strategy, but may not work always. At times, it 

may result in  difficulties if there is noise in the data or if the number of training examples is too 

small to give rise to a representative sample of the tree target function. Whatever the case may be, 

this strategy can generate trees that overfit the training examples. A decision tree (hypothesis) is 

said to overfit the training examples if there is another decision tree, which does not fit the training 

examples that well, but actually ends up performing better over the entire distribution of instances 

(i.e., including instances beyond the training set).

The practical difficulty of ‘overfitting’  is of significance in decision tree learning (similar to 

other learning techniques). We will talk about the various approaches for avoiding overfitting in 

decision-tree learning later.

The fundamental idea of the decision-tree learning algorithm is to test the most significant 

attribute first. The most important attribute is the one that impacts the classification of an example 

the most. This will ensure that we obtain the accurate classification with a small number of tests— 

wherein all paths in the tree are short and the tree, in general, is a small one.

The most important attribute is placed at the root node. Then, we create a branch for each likely 

value of this attribute. This divides the dataset into smaller subsets—one subset for each value of 

the attribute. The procedure can now be iterated recursively for each branch or daughter node, with 

the help of only those examples that actually reach the branch. At any point of time, if all instances 

at a node end up with the same classification, it indicates that the leaf node has been reached and it 

is time to stop developing that portion of the branch. Therefore, tree construction is a divide-and-

conquer procedure.
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The only thing left is how to determine which attribute to split on, given a set of examples with 

different classes. Referring to Table 8.1, there are four candidates for the most important attribute 

(root node): Outlook, Temperature, Humidity, Wind. These four attributes produce the trees at the 

top level as shown in Fig. 8.2. Which is the best choice?

Temperature

hot
mild

Yes : 2

No : 2

Yes : 4

No : 2

Yes : 3

No : 1

Outlook

sunny rain
over-
cast

Yes : 2

No : 3

Yes : 4

No : 0

Yes : 3

No : 2

Humidity

high normal

Yes : 3

No : 4

Yes : 6

No : 1

Wind

weak strong

Yes : 6

No : 2

Yes : 3

No : 3

cool

(a) (b)

(c) (d)

Figure 8.2  Tree stumps for the weather data

Because we seek small trees, we would like the leaf nodes (all instances at the node having same 

classification, Yes or No) to come up as soon as possible. Therefore, we would choose the attribute 

whose daughter nodes achieve this objective as close as possible (so that further splits are reduced). 

When evaluating the attribute Outlook, we see that the number of Yes and No classes in daughter 

nodes are [2, 3], [4, 0], and [3, 2], respectively. For Temperature, the numbers are [2, 2], [4, 2], and 

[3, 1]. For Humidity, we have [3, 4] and [6, 1]; and for Wind, [6, 2] and [3, 3]. Therefore, we select 

Outlook as the splitting attribute at the root of the tree. Intuitively, this is the best one to use because 

it is the only choice for which one daughter node becomes a leaf node. This gives it a considerable 

advantage over other choices. The next best choice is Humidity because it produces a daughter node 

that has large number of instances of only one classification. Figure 8.3 gives the data distribution 

at the root node and daughter nodes when Outlook is selected as the root node.
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Outlook

??

Yes

sunny rain
overcast
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[s , ](1) s , … s , s(2) (13) (14),

Figure 8.3  Partially learned decision tree : Training examples are sorted to the corresponding descendant 

nodes

Then we continue, recursively. Figure 8.4 shows the possibilities for further branching at the 

node reached when Outlook is sunny. Treating the data samples [s(1), s(2), s(8), s(9), s(11)] as if these 

were ‘root node’, we repeat the procedure described earlier. There are three candidates for the most 

important attribute for this node: Temperature, Humidity, Wind. The corresponding Yes and No 

classes for the descendant nodes are shown in Fig. 8.4. Again, intuitively, Humidity is the best to 

select.

Outlook

Temperature

sunny

hot coolmild

No : 2

Yes : 0

No : 1

Yes : 1

Yes : 1

Outlook

Humidity

sunny

high normal

No : 3

Yes : 0

Yes : 2

No : 0

Outlook

Wind

sunny

weak strong

Yes : 1

No : 2

Yes : 1

No : 1

(a) (b) (c)

No : 0

Figure 8.4  Expanded tree stumps for the weather data
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Continued application of the same idea leads to the decision tree of Fig. 8.1 for the weather data.

The scheme with the help of which attributes are selected in decision tree learning is designed 

to reduce the depth of the final tree. The objective is to choose the attribute that provides as far 

as possible the precise classification of the examples. A perfect attribute splits the examples into 

sets that are either all Yes or all No. An attribute will be of no use if the example sets are left with 

somewhat the same proportion of Yes and No examples as the original set.

Then, all that is required is a formal measure of ‘fairly good’ and ‘really useless.’ A measure 

with its maximum value when the attribute is perfect, and its minimum value when the attribute 

is useless, is a candidate for our choice. One suitable measure is the expected impurity reduction 

provided by the attribute.

The process of growing decision trees, repeatedly splits the data into smaller and smaller groups 

in such a way that each new set of daughter nodes has greater purity than its ancestors with respect 

to the target variable. A pure node has maximum homogeneity (e.g., leaves with all Yes or No). An 

impure node has heterogeneity, which is maximum when Yes and No are in equal numbers. The root 

node in Fig. 8.1 is an impure node having nine data samples with Yes as output value and five data 

samples with No as output.

The measure to evaluate a potential split is impurity of the target variable in the daughter nodes. 

High impurity means that the distribution of the target in the daughter nodes is similar to that of 

parent node, whereas low impurity means that members of a single class predominate. The best  

split is the one that decreases impurity in the daughter nodes by the greatest amount. 

The next section is devoted to measures of impurity for evaluating splits in decision tree.

8.3  MEASURES OF IMPURITY FOR EVALUATING SPLITS IN DECISION TREES

An impurity measure is a heuristic for selection of the splitting criterion that best seperates a given 

dataset D of class-labeled training tuples into individual classes. If we divide D into smaller parti-

tions as per the outcome of the splitting criterion, each partition should ideally be pure, with all the 

tuples falling into each partition belonging to the same class. We choose the criterion that is closest 

in terms of outcome to this ideal scenario.

Evaluation of potential splits may be done with the help of various criteria. Alternate splitting 

criteria may result in trees appearing very different from one another, but having similar 

performance. Diverse impurity measures choose different splits, but since all the measures attempt 

to seize the same idea, the resulting models end up behaving in the similar manner. In this section, 

we explain three popular impurity measures—information gain, gain ratio, and Gini index.

8.3.1  Information Gain/Entropy reduction

Information gain uses a clever idea for defining impurity, borrowed from the world of information 

theory (revisiting Section 3.9 will be helpful). If a leaf is entirely pure, then the classes in the leaf 

can be described very easily—there is only one. On the other hand, if a leaf is highly impure, then 

describing the classes in the leaf is much more complicated. Information theory has a measure for 

this, called entropy, which measures how disorganized a system is.
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The root node holds the entire dataset D which describes the patterns s(1), s(2), …, s(N) with 

their corresponding classes y1 or y2 (for a binary classification task). Imagine selecting a pattern 

at random from the dataset D and announcing that it belongs to class yq. This message has the 

probability 

                                                             Pq = 
freq yq( , )

| |

D

D

 (8.1)

where freq (yq, D) stands for the number of patterns in D that belong to class yq and |D | denotes the 

total number of patterns in D (|D | = N ). 

The expected information needed to classify a pattern in D is given by 

 Info (D) = – P Pq q

q

log ( )2

1

2

=

Â  (8.2)

A log function to the base 2 is used because information is encoded in bits (refer to Section 3.9). 

Info (D) is just the average amount of information needed to identify the class label of a pattern in 

D. Note that at this point, the information we have is solely based on the proportions of patterns in 

each class. Info (D) can also be expressed as entropy of D, denoted as Entropy (D).

 Entropy (D) = – P Pq q

q

log2
1

2

=

Â  (8.3)

Associated with root node of the decision tree, Info (D) represents the expected amount of 

information that would be needed to specify whether a new instance should be classified as y1 or 

y2, given that the example reached the node. Info (D) is 0 if all patterns in D belong to the same 

class (P1 = 0, P2 = 1): – P1 log2 P1 – P2 log2 P2 = 0 (note that 0log20 = 0). Info (D) is 1 when the 

collection D contains an equal number of Class 1 and Class 2 patterns P P1
1

2 2
1

2
= =( ),  representing 

maximum heterogeneity (randomness) in the dataset: – P1 log2 P1 – P2 log2 P2 = 1. If the collection 

D contains unequal number of Class 1 and Class 2 patterns, Info (D) is between 0 and 1. It is, thus, 

a measure of impurity of the collection of examples. More the impurity (more the heterogeneity in 

the dataset), more the entropy, more the expected amount of information that would be needed to 

classify a new pattern; more the purity (more the homogeneity in the dataset), less the entropy, less 

the expected amount of information that would be needed to classify a new pattern. 

To illustrate, we consider training set of Table 8.1 (Weather Data). It has nine examples of class 

Yes, and five examples of class No. Therefore, 

 Info(D) = Entropy(D) = - -

9
14 2

9
14

5
14 2

5
14

log log

  = 0.94 bits

Root node with dataset D will therefore be a highly impure node. 

The training set D contains instances that belong to a mixture of classes (high entropy). In this 

situation, the idea of ‘divide-and-conquer’ strategy is to divide D into subsets of instances that are, 

or seem to be, heading towards single-class collection of instances.
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Suppose we select attribute xj for the root node. xj has distinct values vlxj
; l = 1, …, dj, as 

observed from the training data D. Attribute xj can be used to split data D into l; l = 1, …, dj, 

partitions or subsets {D1, D2, …, Dd j
}, where Dl contains those patterns in D that have values vlxj

of xj. These partitions would correspond to branches grown from the node. Ideally, we would like 

this partitioning to produce an exact classification, i.e., we would like each partition to be pure. 

However, it is quite likely that partitions will be impure (i.e., a partition may contain a collection 

of patterns from different classes rather than a single class). How much more information we still 

need (after the partitioning) in order to arrive at an exact classification? This amount is measured by 

 Info (D , xj) = 
| |

| |
( )

D

D

D
l

l

l

d

Info
j

¥

=

Â
1

 (8.4)

The term |Dl |/|D | acts as the weight of l th partition. 

Info(Dl) is given by 

 Info (Dl) = – P Pql

q

qllog2
1

2

=

Â  (8.5)

where Pql is the probability that the arbitrary sample in subset Dl belongs to class yq, and is estimated 

as 

 Pql = 
freq yq l

l

( , )

| |

D

D

 (8.6)

Info(D, xj) is expected information required to classify a pattern from D based on the partitioning 

by xj. The smaller the expected information (still) required, the greater the purity of the patterns. 

The basic idea is to pick the attribute xj ;  j = 1, …, n, that goes as far as possible toward providing 

exact classification of the patterns. A fairly good attribute divides the data into subsets with each 

subset Dl containing large number of examples belonging to the same class yq (low entropy). A really 

useless attribute leaves the subsets of data with roughly the same proportion of class examples as 

in the original dataset (high entropy).

Reconsider the dataset of Table 8.1: x1 = Outlook, x2 = Temperature, x3 = Humidity, x4 = Wind; 

v
x1 1

= sunny, v
x2 1

= overcast, v
x3 1

= rain; v
x1 2

= hot, v
x2 2

= mild, v
x3 2

= cool; v
x1 3

= high, v
x2 3

= 

normal; v
x1 4

= weak, v
x2 4

= strong. For these four choices of attribute at the root node, the tree 

stumps for the weather data are shown in Fig. 8.2.

Consider the attribute x1 = Outlook (Tree stump of Fig. 8.2a). Refer to Figs (8.3) and (8.2a). Five 

patterns belong to the value sunny; out of which two belong to Yes class and three belong to No. 

Four patterns belong to the value overcast; all of them belong to Yes class. Five patterns belong to 

the value rain; out of which three belong to Yes class and two belong to No. 

 Info(D, x1) = 
| |

| |
( );

D

D

D
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Similarly, for other tree stumps of Fig. 8.2, we obtain

 Info(D, x2) = 0.911 (Temperature) 

 Info(D, x3) = 0.788 (Humidity) 

 Info(D, x4) = 0.892 (Wind)

We see that expected required information for classification is the least if we select attribute 

Outlook for the root node. Humidity is the next best choice.

Information gain is defined as the difference between the original information requirement (i.e, 

based on the partition of classes in the entire dataset D) and the new requirement (i.e., obtained after 

partitioning on xj). That is, 

 Gain(D, xj) = Info(D) – Info(D, xj) (8.7) 

In other words, Gain (D, xj) tells us how much would be gained by branching on xj. It is the expected 

reduction in information requirement (expected reduction in entropy) by partitioning on xj. The 

attribute xj with the highest information gain, Gain (D, xj), is chosen as the splitting attribute at 

the root node. This is equivalent to saying that we want to partition on the attribute xj that would 

do the best classification so that the amount of information still required (i.e., Info (D, xj)) to finish 

classification task is minimal. 

We have selected x1 = Outlook as the splitting attribute at the root node, for which

 Gain (D, x1) = 0.94 – 0.693 = 0.247

Gains for other attributes are: 

 Gain (D, x2) = 0.029

 Gain (D, x3) = 0.152

 Gain (D, x4) = 0.048

Obviously, Outlook provides the maximum gain.

The same strategy is applied recursively to each subset of training instances. Figure 8.4 shows 

the possibilities for a further branching at the node reached when Outlook is sunny. The information 

gain for the three attributes at the daughter nodes are: 
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 Gain (Temperature) = 0.571

 Gain (Humidity) = 0.971

 Gain (Wind) = 0.020 

Therefore, we select Humidity as the splitting attribute at this point. There is no need to split these 

nodes any further; so this branch has reached the leaf nodes. Continued application of the same idea 

leads to the decision tree of Fig. 8.1 for the weather data. 

Note that information gain, Gain (D, xj), measures the expected reduction in entropy, caused by 

partitioning the patterns in dataset D according to the attribute xj. 

 Gain (D, xj) = Entropy(D) – Entropy (D, xj) (8.8a)
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and 
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When the output in dataset D belongs to M distinct classes, i.e., y takes on values yq; q = 1, 2, …, 

M, the defining equations for Gain/EntropyReduction become:

 Gain(D, xj) = Info(D) – 
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and 
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The first term in Eqn (8.8a) is just the entropy of the original dataset D, which represents the 

level of randomness in the dataset with respect to target variable. The second term in Eqn (8.8a) 

is the expected value of entropy after D is partitioned using attribute xj. The expected entropy 

described by this term is simply the sum of the entropies of each subset Dl, weighted by fraction of 

patterns |Dl | / |D |, that belong to Dl (Eqn (8.8b)). Gain (D, xj) is, therefore, the expected reduction in 

entropy caused by the partitioning. 

 Entropy Reduction (D, xj) = Entropy(D) – 
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where 
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8.3.2  Gain Ratio 

For ID3, a decision-tree tool developed by Quinlan, the selection of partitioning was made on the 

basis of the information gain/entropy reduction. It gave quite good results, and became part of 

several commercial data mining software packages. It, however, ran into trouble for applications 

having some attributes xj with large number of possible values vlxj
; l = 1, ..., dj; giving rise to 

multiway splitting with many daughter nodes. Just by breaking the larger dataset into large number 

of small subsets, the number of classes represented in each node tends to go down; so each daughter 

node increases in purity. The information gain criterion has, thus, a serious deficiency—it has a 

strong bias in favor of attributes with large number of values. The attribute with large number 

of values will get selected at root itself and may lead to all leaf nodes, resulting in a too simple 

hypothesis model unable to capture the structure of the data. 

C4.5, a successor of ID3, uses an extension of information gain, known as gain ratio, which 

attempts to overcome this bias. It applies a kind of normalization to information gain using a ‘split 

information’ value defined analogously with Info(D, xj) as 

 SplitInfo(D, xj) = – 
| |

| |
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| |
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This value is representative of the potential information derived from the division of the dataset, 

D, into dj partitions matching with the dj values of the attribute xj. For each value of xj, the number 

of tuples possessing that value is considered with respect to the total number of tuples in D. This 

is different from information gain, which measures the information with respect to classification 

obtained on the basis of same partitioning. 

The gain ratio is defined as 

 GainRatio(D, xj) = 
Gain x

SplitInfo x

j

j

( , )

( , )

D

D

 (8.12)

The attribute with the maximum gain ratio is selected as the splitting attribute. Note that SplitInfo 

term discourages the selection of attributes with many uniformly distributed values dj. SplitInfo is 

high when dj is large. 

One practical issue that arises in using GainRatio in place of Gain to select attributes is that the 

denominator in Eqn (8.12) can be zero or very small when |Dl |  |D | for one of the Dl. This either 

makes the GainRatio undefined or very large for such attributes. A standard fix is to choose the 

attribute that maximizes the gain ratio, provided that the information gain for that attribute is at 

least as great as the average information gain for all the attributes examined. That is, a constraint is 

added whereby the information gain of the attribute selected must be large.
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Returning to the tree stumps of the weather data in Fig. 8.2, x1 = Outlook splits the dataset into 

three subsets of size 5, 4, and 5 (refer to Fig. 8.3); and thus the SplitInfo is given by 

 SplitInfo(D, x1) = – 
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  = 1.577

without paying any attention to the classes involved in the subsets. We can normalize the information 

gain by dividing by the split info value to get the gain ratio:

 GainRatio(D, x1) = 
Gain x

SplitInfo x
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The results of these calculations for the tree stumps of Fig. 8.2 are summarized as follows:

Outlook : Gain (D, x1) = 0.247, SplitInfo (D, x1) = 1.577, GainRatio (D, x1) = 0.156

Temperature : Gain (D, x2) = 0.029, SplitInfo (D, x2) = 1.362, GainRatio (D, x2) = 0.019

Humidity : Gain(D, x3) = 0.152, SplitInfo(D, x3) = 1.000, GainRatio(D, x3) = 0.152

Wind : Gain (D, x4) = 0.048, SplitInfo (D, x4) = 0.985, GainRatio(D, x4) = 0.049

Outlook still comes out on top, but Humidity now is a much closer contender because it splits the 

data into two subsets instead of three.

8.3.3  Gini Index

Another popular splitting criterion is named Gini, after the 20th century Italian statistician and 

economist Corrado Gini. Gini index is used in CART.

 Gini (D) = 1 – Pq
q

M
2

1=

Â  (8.13)

where Pq is the probability that a tuple in D belongs to class yq, and is estimated by 

 Pq = 
freq yq( , )

| |
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D

Gini index considers a binary split for each attribute. Let us first consider the case where xj is 

continuous-valued attribute having dj distinct values vlxj
; l = 1, 2, …, dj. It is common to take 

mid-point between each pair of (sorted) adjacent values as a possible split-point (It is a simple 

policy, although something might be gained by adoping a more sophisticated policy. One such 

policy will be discussed in the next section). The point giving the minimum Gini index for the 

attribute xj is taken as its split-point.
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For a possible split-point of xj, D1 is the number of tuples in D satisfying xj £ split-point, and D2 

is the set of tuples satisfying xj > split-point. The reduction in impurity that would be incurred by 

a binary split on xj is 

 DGini(xj) = Gini(D) – Gini(D, xj) (8.14a)

 Gini(D, xj) = 
| |

| |
( )

| |

| |
( )

D

D

D
D

D

D
1

1
2

2Gini Gini+  (8.14b)

The attribute that maximizes the reduction in impurity (or equivalently, has the minimum Gini 

index) is selected as the splitting attribute. Then one of these two parts (D1, D2) is divided in a 

similar manner by choosing a variable again and a split value for the variable. This process is 

continued till we get pure leaf nodes (refer to Example 8.3). 

Let us now consider the case where xj is a categorical attribute, for example, categorical variable 

Outlook with categories {sunny, overcast, rain} occurring in D of Table 8.1. To determine the 

best binary split on Outlook, we examine all possible subsets that can be formed using categories 

of Outlook: {sunny, overcast, rain}, {sunny, overcast},{sunny, rain}, {overcast, rain}, {sunny}, 

{overcast}, {rain}, and {}. We exclude the powerset {sunny, overcast, rain}, and the empty 

set {} from consideration since, conceptually, they do not represent a split. Therefore, there are 

2g – 2 possible ways to form two partitions of dataset D, based on the binary splits on xj having 

g categorical values. Each of the possible binary splits is considered; the subset that gives the 

minimum Gini index for attribute xj is selected as its splitting subset. 

8.4  ID3, C4.5, AND CART DECISION TREES

Virtually all tree-based classification techniques incorporate the fundamental techniques described 

in earlier sections. Our discussion so far was based on the core ideas of implementation of ID3 

decision tree. ID3 is intended for use with nominal (categorical) inputs only. If the problem 

involves real-valued variables, they are first binned into intervals, each interval being treated as 

an unordered nominal attribute. Every split has a branching value vlxj
, l = 1, 2, …, where vlxj

are 

discrete attribute bins of the variable xj chosen for splitting. In practice, these are seldom binary and 

thus a GainRatio impurity should be used.

The C4.5 algorithm, a successor and refinement of ID3, is the most popular in tree-based 

classification methods. In C4.5, multiway splits for categorical variable are treated the same way as 

in ID3. Continuous-valued attributes have been incorporated by dynamically defining new discrete-

valued attributes that partition the continuous-attribute values into a binary set of intervals. In 

particular, a new attribute zj is created that is true if zj < vz j

th  and false otherwise. The only question 

is how to select the best value for the threshold vz j

th . 

It has been found that an entropy impurity works acceptably in most cases and is a natural default. 

However, CART, which uses Gini index as impurity measure, provides a general framework that 

can be instantiated in various ways to produce different classification (and regression) trees. 

The CART approach restricts the splits to binary values for both categorical and continuous-

valued attributes. Thus, CART is a binary tree.

In the following, we consider an example of implementation for each of the three decision trees. 
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    Example 8.1

The ID3 Decision Tree

In the collection of data D of Table 8.2, there are 12 instances. The attributes x1, x2, x3, and x4 have 

two/three distinct unordered numeric values; these attributes will be treated as nominal attributes. 

The variable y gives the class information. 

To select an attribute as the root of the decision tree, we need to compute the information gain of 

each of the four attributes xj; j = 1, 2, 3, 4.

 Info(D) = Entropy(D) = – P Pq q

q

log2
1

2

=

Â ; Pq = 
freq yq( , )

| |

D

D

The dataset D of Table 8.2 has nine examples of class y1 and three examples of class y2. Therefore, 

 Info(D) = Entropy(D) = – 9
12 2

9
12

3
12 2

3
12

log log-

Attribute x1 has two nominal values: v
x1 1

= 1, and v
x2 1

= 2. x1 can be used to split data D into two 

partitions or subsets {D1, D2} where Dl; l = 1, 2, contains those examples in D that have values v
lx1

 

of x1. These partitions would correspond to branches grown from the root node.

Table 8.2  Toy data with numerical values of attributes

s(i) x1 x2 x3 x4 y

1 1 2 2 1 1

2 1 2 3 2 1

3 1 2 2 3 1

4 2 2 2 1 1

5 2 3 2 2 2

6 1 3 2 1 1

7 1 2 3 1 2

8 2 3 1 2 1

9 1 2 2 2 1

10 1 1 3 2 1

11 2 1 2 2 2

12 1 1 2 3 1
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 Info(D, x1) = 
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From data D of Table 8.2, we find that 

 freq(y1, D1) = 7, freq(y2, D1) = 1 

 freq(y1, D2) = 2, freq(y2, D2) = 2

Therefore, 

 Info(D1) = – 78 2
7
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1
8 2
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log log-

 Info(D2) = – 2
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  = 0.696 bits 

 Gain(D, x1) = Info(D) – 0.696

The information gains of the other three attributes are calculated on similar lines:

 Gain(D, x2) = Info (D) – 3
12

2
3 2
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                                                     = Info(D) – 0.784 

Gain (D, x3) = Info(D) – 8
12

6
8 2

6
8

2
8 2
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                    = Info(D) – 0.771

Gain(D, x4) = Info(D) – 4
12

3
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1
4 2

1
4

6
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2
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- -( )È
Î + - -( )˘˚log log log log

                    = Info(D) – 0.729

Hence, attribute x1 is chosen as the root node of the decision tree (Fig. 8.5), after which, two 

branches of root node are tested respectively in the same manner on the other three attributes, and 

a whole decision tree can be built as depicted in Fig. 8.6.
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Figure 8.5  Partially learned decision tree

It is clear from the decision tree that there are seven leaves; so seven classification rules in total 

can be obtained. It should be mentioned here (the reader is encouraged to verify) that during the 

test of branch x1 = 1, the information gains of attributes x3 and x4 are equal; but the number of 

classification rules would be eight if attribute x4 were selected (In Fig. 8.6, x3 has been selected). 

Also note that branch x3 = 1 does not appear on the path x1 = 1 because in the training data, when x1 

= 1, x3 never takes the value 1. Similar argument applies for x4 = 3 branch missing on the path {x1 

= 1, x3 = 3}; and the branch x3 = 3 missing on the path {x1 = 2, x2 = 3}.

If the test example has x1 = 1, x3 = 1 (missing branch with respect to training data), then what 

happens on test data? D contains no cases; the decision tree is a leaf and the class associated is the 

most frequent class of data D with x1 = 1.

x1

x3 x2

1 2

1

2

y1 x4

y2
y1

3
1

2

3

y1 y2

1
2

x3

y1y2

31

2
3

Figure 8.6  Decision tree for data of Table 8.2.
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    Example 8.2

The C4.5 Decision Tree

To illustrate the process of implementation of C4.5 decision tree, we consider the (toy) training 

set of Table 7.3, in which there are four attributes: x1 (Outlook), x2 (Temperature), x3 (Humidity), 

x4 (Wind); and two classes for the output variable PlayTennis: Yes, No. The attributes x1 and x4 

have categorical values, and the attributes x2 and x3 have continuous numeric values. Attribute x1 

(Outlook) has three categorical values: sunny, overcast and rain, and therefore the node labeled 

Outlook will have three branches. The node for categorical variable x2 (Wind) will have two 

branches. The other two variables are continuous-valued, and as per the strategy followed in C4.5, 

the corresponding nodes will have binary splits. This will require discretization of these variables. 

We will use here the entropy-based method for attribute discretization discussed earlier in Section 

7.8.

There are four choices of attribute at the root node: Outlook, Temperature, Humidity, and Wind. 

Tree stumps for the attribute Outlook (x1) are shown in Fig. 8.7(a); a three-way split corresponding 

to the three categorical values of x1.

Temperature (x2) has continuous numeric values. For this attribute, we will select the best 

cut-point T
x2

from its range of values by evaluating every candidate cut point. Examples are first 

sorted by increasing value of the attribute, and interval between each successive pair of values in 

the sorted sequence gives a potential cut-point. However, as stated in Section 7.8, the cut-point 

that minimizes the entropy will never occur between two patterns of the same class. Therefore, 

it is necessary to consider potential divisions that separate patterns of different classes. For the 

weather data of Table 7.3, this gives us eight potential cut-points: {64, 65, 70, 71, 72, 75, 80, 

83}. Note that boundary points of the intervals between classes have been taken as the potential 

cut-points (Example 7.3). Entropy for each of these cut-points is evaluated and the one that results 

in maximum information gain/gain ratio is selected as the split-value for the attribute x2. It follows 

from Example 7.3 that x2 = 83 is the selected split-value.

 Entropy (D) = 0.9402

 Entropy (D, T
x2

= 83) = 0.8268

 Gain (D, T
x2

= 83) = 0.9402 – 0.8268 = 0.1134

 SplitInfo (D, T
x2

= 83) = 0.3711

 GainRatio (D, T
x2

= 83) = 
0 1134

0 3711

.

.
 = 0.3053 

Tree stump for x2 (Temperature) is shown in Fig. 8.7(b). Evaluating all the four candidate root 

node variables, Outlook turns out to be the best choice with respect to entropy reduction/gain ratio 

measure. 
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Outlook

sunny over-
cast

Temperature

> 83£ 83rain

(a) (b)

Figure 8.7  Tree stumps for weather data of Table 7.3.

Table 8.3 shows the dataset for the branch sunny, obtained from the data D of Table 7.3. Repeating 

the process described above on this dataset, we select Humidity as the daughter node with split-

value = 70.

Table 8.3  Dataset corresponding to the branch sunny.

s(i) Temperature Humidity Wind Class

1 75 70 strong Yes 

2 80 90 strong No 

3 85 85 weak No

4 72 95 weak No

5 69 70 weak Yes

The fully-grown C4.5 decision tree from the data of Table 7.3 is shown in Fig. 8.8.

Outlook

Yes
WindHumidity

sunny rainovercast

YesNo

£ 70 > 70 weakstrong

Yes No

Figure 8.8  Decision tree for the weather data of Table 7.3
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    Example 8.3

The CART Decision Tree

Consider the data sample shown in Table 8.4, for training a binary CART tree. Note that there are 

N = 24 points in two dimensions given by the data sample; a pilot random sample of households 

in a city with respect to ownership of a lawn tractor [20]. The dataset is set up for a predictive 

model—a lawn-tractor manufacturer would like to find a way of classifying households in a city 

into those likely to purchase a lawn tractor and those not likely to buy one. Input variables, x1 = 

Income and x2 = Lawn size, are recorded for 24 households, and the target variable y = Ownership 

of a lawn tractor, is assigned to each household. The dataset is balanced, containing equal numbers 

of Owner/Nonowner households. 

When searching for a binary split on a continuous-valued input variable, midpoints between the 

consecutive values may be treated as candidate values for the split. The candidate split points for 

the variable x1 (Income) are {38.1, 45.3, 50.1, …, 109.5}, and those for x2 (Lawn size) are {14.4, 

15.4, 16.2, …, 23}. We need to rank the candidate split points according to how much they reduce 

impurity (heterogeneity) in the resulting subsets after the split. Note that the total dataset D given 

in Table 8.4 has the highest impurity. With respect to Gini index as impurity measure, 

 Gini(D) = 1 – P P
freq y

q q

q

q

2

1

2

;
( , )

| |
=

=

Â
D

D

  = 1 – (0.5)2 – (0.5)2

  = 0.5

It can easily be verified that the Gini index impurity measure is at its peak when Pq = 0.5, i.e., 

when the data is perfectly balanced.

Calculating Gini index for all the candidate split points for both x1 and x2 variables, and ranking 

them according to how much they reduce impurity, we choose x2 (Lawn size) for the first split with 

a splitting value of 19. The (x1, x2) space is now divided into two rectangles, one with x2 £ 19 and 

the other with x2 > 19. This is illustrated in Fig. 8.9.

Table 8.4  A pilot random sample of households in a city with respect to ownership of a lawn 

tractor

Household s(i) 
Income

($ thousands) x1

Lawn size

(thousands ft2)x2

Ownership of a 

lawn tractor y 

1 60 18.4 Owner

2 75 19.6 Nonowner

3 85.5 16.8 Owner

Contd.
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4 52.8 20.8 Nonowner

5 64.8 21.6 Owner

6 64.8 17.2 Nonowner

7 61.5 20.8 Owner

8 43.2 20.4 Nonowner

9 87 23.6 Owner

10 84 17.6 Nonowner

11 110.1 19.2 Owner

12 49.2 17.6 Nonowner

13 108 17.6 Owner

14 59.4 16 Nonowner

15 82.8 22.4 Owner

16 66 18.4 Nonowner

17 69 20 Owner

18 47.4 16.4 Nonowner

19 93 20.8 Owner

20 33 18.8 Nonowner

21 51 22 Owner

22 51 14 Nonowner

23 81 20 Owner

24 63 14.8 Nonowner

 Gini(D, x2) = 
| |

| |
( )

| |

| |
( )

D

D

D
D

D

D
1

1
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(b) Scatter plot after the first split

Figure 8.9  First level of recursive partitioning for data of Table 8.4

Thus, the Gini impurity index decreased from 0.5 before the split to 0.375 after the split. Each 

of the rectangles created by the split is more homogeneous than the rectangle before the split. The 

upper rectangle contains points that are mostly Owners and the lower rectangle contains mostly 

Nonowners.

By comparing the reduction in impurity across all possible splits in all possible attributes, the 

next split is chosen. The next split is found to be on the x1 (Income) variable at the value 84.75. 

Figure 8.10 shows that once again the tree procedure has actually chosen to split a rectangle to 

increase the purity of the resulting rectangles. The left lower rectangle (x1 £ 84.75, x2 £ 19) has all 

points that are Nonowners with one exception, whereas the right lower rectangle (x1 > 84.75, x2 £ 

19) consists exclusively of Owners.
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(a) Tree stumps after first three splits

(b) Scatter plot after first three splits

Figure 8.10  First two levels of recursive partitioning for data of Table 8.4.

If we continue partitioning till all the branches hit leaf nodes, each rectangle will have data 

points from just one of the two classes.

8.5  PRUNING THE TREE

The fundamental algorithm for decision trees continues to grow the tree by splitting nodes as long as 

new divisions generate daughter nodes that increase purity. Such a tree has undergone optimization 

for the training set. Therefore, elimination of any leaf nodes will simply lead to an increase in the 

error rate of the tree on the training set. But this certainly does not mean that the entire tree with 

pure leaf nodes also performs the best on new data!

The algorithm explained earlier grows each branch of the tree just to a depth sufficient for 

perfect classification of the training examples. This strategy can result in problems when there 

is random noise in the data (Noise, in fact, exists in all real-world datasets). Problems can result 

even when the training data is bereft of noise, particularly when small numbers of training data are 
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associated with leaf nodes. In such a situation, there are chances of coincidental regularities taking 

place, wherein certain attributes are able to partition the examples correctly, even though they are 

unrelated to the actual target function. 

It is said that a decision tree overfits the training examples if there is some other tree that doesn’t 

fit the training examples that well actually ends up performing better over the entire distribution of 

instances (that is, including instances beyond the training set).

There are many approaches that help in avoiding overfitting in decision tree learning. These can 

be divided into two classes—prepruning and postpruning.

 • Prepruning models stop growing the tree earlier, before it achieves a point where it perfectly 

categorizes the training data.

 • Postpruning models permit the tree to overfit the data to correctly categorize the training 

examples, and then post-prune the tree.

Even though the prepruning approch may appear to be more direct, the postpruning approach has 

seen more success when practiced. This is because the first approach finds it difficult to estimate 

accurately as to when the growing of the tree can be stopped.

While building a tree, the quality of a split can be measured with the help of measures like 

Information Gain, Gain Ratio and Gini Index. If the partitioning of tuples at a node results in a 

division that meets prespecified threshold, then no more partitioning of the subset takes place. On 

stopping the growth, the node turns into a leaf, which may hold the most frequent class among the 

subset tuples. However, it is not easy to select an appropriate threshold. While high thresholds may 

lead to oversimplified trees, low thresholds may hardly result in any simplification at all.

Irrespective of whether the accurate tree size is discovered by prepruning or postpruning, the 

main question is, ‘What is the criterion for deciding on the right final tree size?’ 

Some of the approaches which have been used are:

 • Make use of the training and test set approach, wherein data available is separated into two 

groups of examples: (i) a training set, with the help of which the learned decision tree is 

formed, and (ii) a separate test set, with the help of which the evaluation of accuracy of this 

tree over subsequent data is done, especially, evaluation of the effect of pruning this tree 

(refer to Section 2.6). The approach is effective when huge volumes of data are available.

 • Instead of pruning trees on the basis of estimated error rates, we can prune trees according to 

adjusted error rate, which is equal to the misclassification error of a tree plus a penalty factor 

on the tree size.

The CART algorithm develops binary trees and goes on splitting as long as new divisions 

can be discovered that enhance purity [142]. Within a complicated tree, there are several simpler 

subtrees, and each of them is representative of a different trade-off between how complex and 

how accurate a model is. The CART algorithm recognizes a group of such subtrees as candidate 

models. On applying these candidate subtrees to the test set, the tree showing the lowest test set 

misclassification error is chosen as the final model. The chosen model may have leaf nodes, which 

are impure, whereas the original tree had pure leaf nodes.
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The identification of candidate subtrees by the CART algorithm is done via a procedure of 

repeated pruning. The aim is to first prune those branches that offer the least additional predictive 

power per leaf. These least useful branches are identified by CART with the help of a concept 

known as cost complexity, which is a measure that increases each node’s misclassification error on 

training set by the imposition of a complexity penalty on the basis of the number of leaves on the 

tree. Cost complexity measure is used to identify weak branches and mark them for pruning.

For a tree T that has L(T) leaf nodes, the cost complexity can be written as

 CC(T) = Err(T) + a L(T)

where Err(T) is the fraction of training data observations that are misclassified by tree T and a is 

a penalty factor for tree size. When a = 0, the fully grown unpruned tree is the best tree. If a is 

too large, the best tree may merely be the tree with the root node. Therefore, the idea is to begin 

with a full-grown tree and then raise the penalty factor slowly till a point is reached where the 

cost complexity of the full-grown tree is more than that of the subtree obtained by replacing an 

internal node at the next higher level with a leaf node. The same process is then repeated on the 

subtree. The process continues and as a result, a succession of trees is generated with a decreasing 

number of nodes. From the sequence of trees, it appears natural to select the one that gives the least 

misclassification error on the test dataset. 

The trees grown by C4.5 resemble those grown by CART (although, unlike CART, C4.5 makes 

multiway divisions on categorical variables).

C4.5 makes use of a technique known as pessimistic pruning, which is like the cost complexity 

technique—it also makes decisions related to pruning subtree with the help of error rate estimates 

[141]. However, the pruning strategy is rather different because C4.5 makes no use of a test set to 

select from among candidate subtrees. The data employed to grow the tree is also used to decide 

the manner in which the tree should be pruned. Remember, an estimation of accuracy or error, on 

the basis of the training set is excessively optimistic and, hence, strongly biased. Therefore, the 

pessimistic pruning technique regulates the error rates received from the training set through the 

addition of a penalty, so that the bias incurred can be countered.

The postpruning technique in C4.5 is based on unstable statistical assumptions, and often does 

not prune enough. However, it is very fast and therefore, popular. But in several applications, it 

is useful to spend more computational effort on achieving compactness in a decision tree. In such 

situations, it may be more appropriate to use the conventional cost-complexity pruning technique 

from the CART learning system [143].

8.6  STRENGTHS AND WEAKNESSES OF DECISION-TREE APPROACH 

In this section, we present important strengths and weaknesses of tree methodology. Some 

extensions to the basic building blocks described so far in this chapter (variants of basic decision-tree 

technique) will also be introduced. 

Feature Extraction using Trees

A decision tree does its own feature extraction. It only uses the necessary variables, and after the 

tree is built, certain features may not be used at all. Features closer to the root are more important 

globally. For example, the decision tree given in Fig. 8.1 uses x1, x3, and x4 but not x2.
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When faced with dozens or hundreds of unfamiliar variables, we can use a decision tree to direct 

our attention to a useful subset; with the most important variables usually showing up at the top of 

the tree. In fact, decision trees are often used as a tool for selecting variables for use with another 

modeling technique: we build a tree and then take only those features used by the tree as inputs to 

another learning method.

In general, decision trees do a reasonable job of extracting a small number of fairly independent 

features, but because each splitting decision is made independently, it is possible for different nodes 

to choose correlated variables.

There is no need for transformation of variables for decision free learning; any monotone 

transformation will result in the same tree. 

Rule Extraction from Trees

Interpretability is yet another benefit of decision trees. The conditions carried by decision nodes are 

easy to comprehend. Each trail from the root to the leaf corresponds to conjunction of tests, as it is 

essential to satisfy all these conditions to reach the leaf. Together, these paths can be laid down as 

a set (rule-base) of IF-THEN rules. For instance, the decision tree of Fig. 8.8 can be written down 

as the following set of rules:

R1 : IF (Outlook is sunny) AND (Humidity £ 70) THEN Class = Yes

R2 : IF (Outlook is sunny) AND (Humidity > 70) THEN Class = No 

R3 : IF (Outlook is overcast) THEN Class = Yes

R4 : IF (Outlook is rain) AND (Wind is strong) THEN Class = No 

R5 : IF (Outlook is rain) AND (Wind is weak) THEN Class = Yes

There is a rule associated with each leaf—conjunction of the individual decisions from the root 

node through the tree to the specific leaf. Therefore, a set of rules can describe the entire tree—one 

for each leaf. This complete set of rules can be easily comprehended by users. They definitely have 

a more transparent logic than the use of weights in neural networks. 

To find high level of accuracy in a decision tree, a method known as rule post-pruning, has been 

used with great success in practice. A variant of this pruning technique is used by C4.5. Conversion 

into rules permits distinguishing among the various contexts in which a decision node is employed. 

Since each separate path through the decision-tree node generates a decision rule, the pruning 

decision pertaining to that attribute test can be created differently for each path. On the contrary, if 

the tree itself was pruned, there could be two selections—total removal of the decision node or its 

retention in the original form.

The steps involved in rule post-pruning are:

 1. Induce the decision tree from the training set, and grow the tree allowing overfitting till the 

training data is fit as well as possible. 

 2. Change the learned tree into an equivalent set of rules through the creation of one rule for 

each path from the root node to the leaf node. 

 3. Given a specific rule, each of its condition is considered for removal by temporarily deleting 

it, figuring out which of the training examples are now covered by this rule, calculating from 
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this a pessimistic estimate of the error rate of the new rule, and comparing this with the 

pessimistic estimate for the original rule. In case the new rule is found to be better, remove 

that condition and proceed, looking for other conditions to remove. After all the rules have 

been pruned in this manner, check for duplicates, if any, and delete them from the rule set.

 4. Sort the pruned rules on the basis of their estimated accuracy, and take them into account in 

this sequence during classification of subsequent instances. 

Note: Once the rules are pruned, it may be impossible to write them back as a tree.

Regression Trees

A regression tree is built in a manner almost similar to that of the classification tree. The only 

difference is that the impurity measure required for classification is substituted by a measure 

suitable for regression. In regression, the goodness of split is measured by the mean square error 

from the estimated value [6].

A regression tree can only generate as many distinct output values as there are leaf nodes in the 

tree (a discreate approximation of continuous function). Using methods like neural networks for 

regression problems seems more natural. Decision trees are more often used for classification than 

for regression.  

Multivariate Trees

So far we have considered univariate trees wherein at each internal node, the test makes use of only 

one of the input dimensions. In case the used input dimension xj is discrete, taking one of dj possible 

values, the decision node checks the value of xj and takes the corresponding branch, implementing 

a dj-way split. In a multivariate tree, at a decision node, all input dimensions can be used, and thus 

it is more general [6].

Multivariate tree induction techniques gained popularity in recent times. You will find a review 

and comparison on many datasets in reference [144]. Several studies have shown that the univariate 

trees are rather precise and capable of interpretation, and the additional complexity brought by 

multivariate nodes is hardly justified. Refer to [145] for a recent survey. 

Decision Tree is a Nonlinear Classifier 

A decision tree uses a hierarchical approach for supervised learning, wherein we split the input 

space into local regions via a sequence of recursive splits. It comprises internal decision nodes 

and terminal nodes. A test function is implemented by each decision node, with discrete outcomes 

labeling the branches. Considering an input at each node, a test is applied and one of the branches 

is taken on the basis of the outcome. The procedure begins at the root and is recursively repeated 

until a leaf node is reached.

In a univariate tree, at each internal node, the test uses only one of the input dimensions xj. In case 

of a binary division, a decision node splits the input space into two areas. Decision nodes occurring 

successively on the path from the root to the leaf, further split these areas into two with the help of 

other attributes and create splits orthogonal to each other. The leaf nodes define hyperrectangles in 

the input space (see Fig. 8.10).
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Decision trees are a way of carving the space into regions, each of which can be labeled with a 

class. Any new pattern that falls into one of the regions is classified accordingly. This horizontal 

and vertical splitting of the attribute space results in a nonlinear model for the classification task. 

However, there is an element of weakness as well in this nonlinear model created by a 

univariate decision tree. Since the splits are done on single attributes rather than in combinations of 

attributes, the tree is likely to miss relationships between attributes, in particular linear structures. 

A classification tree is, therefore, expected to have lower performance than methods such as SVM, 

in some applications. 

Decision Tree is a Non-parametric Model 

In parametric estimation, we define a model over the whole input space and learn its parameters 

from all of the training data. Then, we use the same model and the same parameter set for any test 

input. The decision tree is a non-parametric technique, similar to k-NN discussed in Chapter 3, but 

many differences exist as follows:

 • Each leaf node corresponds to a ‘bin’; however, bins may not necessarily comprise an equal 

number of training instances, such as in k-NN.

 • The bins are not divided on the basis of similarity in input space (some distance measure), but 

by supervised output information through entropy. Also, it is possible to find bin (leaf) much 

faster with a smaller number of comparisons.  

 • Once the decision tree is constructed, it does not store all the training datasets. It only stores 

the structure of the tree; this implies that the space complexity is much less, as opposed to 

k-NN method that stores all training examples. 

Handling Missing Values and Outliers 

The best part about decision trees is that they are capable of handling missing values in attributes 

by using null as an allowable value [146]. This approach is preferred to throwing out the data with 

missing values or attempting to impute missing values. Throwing out data may produce a biased 

set as the data with missing values is probably not a random population sample. Replacement of 

missing values with imputed values runs the risk that important information provided by the fact 

that the value is missing, will be ignored in the model.

Trees are intrinsically robust to outliers, since we choose a path (a split) based on ordering of the 

values of a pattern and not on the absolute magnitudes. But their oversensitivity to changes in data 

can cause extremely different splits. 

When are Decision Trees Appropriate?

In addition to the performance issues raised earlier in this section, computational complexity issues 

need be considered. From a computational perspective, trees may be relatively costly to grow, 

owing to the multiple sorting in computing all possible splits on each variable. Pruning of the tree 

with the help of the test set adds further computation time. Since decision trees need a huge dataset 

for construction of a good and accurate classifier, the computational issues are rather significant. 
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An essential practical benefit of trees is the transparent rules generated by them. This kind of 

transparency is often beneficial in managerial applications. Decision tree classifies are better suited 

when such a requirement is important. 

This book primarily focuses on pattern recognition, on the basis of feature vectors of real-valued 

and discrete-valued numbers. In these cases, there has been a natural measure of distance between 

vectors. For example, in the nearest-neighbors classifier, the notion forms the core of the method—

while for neural networks, the notion of similarity emerges when two input vectors suitably ‘close’ 

result in similar outputs. Most practical pattern recognition techniques address problems of this 

nature, where feature vectors are real-valued and there exists some notion of metric.

Tree-based classifiers handle nonmetric data, such as discrete descriptions that do not have any 

natural notion of similarity or ordering. Tree-based classifiers are, therefore, an important tool in 

pattern recognition research [147].

The general recommendation is that a decision tree should be tested so that its accuracy can be 

considered to be the benchmark for other algorithms, before they are used. 

8.7  FUZZY DECISION TREES

There exist many techniques for decision analysis; some of the frequently applied ones have been 

presented in earlier chapters. We have observed that each technique has its own strengths and 

weaknesses. In data mining, decision tree analysis is one of the most popular techniques for making 

classification decisions in pattern recognition applications [148].

The decision tree analysis approach has been effectively applied to various fields—financial 

management, business rule management, banking and insurance environmental science and even 

medical science.

A very important practical strength of trees is the transparent rules they generate. Such 

transparency is often useful in managerial applications. When faced with dozens or hundreds of 

unfamiliar variables, we can use a decision tree to direct our attention to a useful subset, with 

the most important variables usually showing up at the top of the tree. There is no need for 

transformation of variables in the decision tree learning. Decision trees are able to handle missing 

values in attributes and they are intrinsically robust to outliers. 

Of course, there are weaknesses as well in decision tree analysis. Since the splits in widely-used 

univariate trees are done on a single attribute rather than in combinations of attributes, and also only 

horizontal and vertical splitting of the attribute space is achieved, a decision tree is likely to miss 

linear/nonlinear relationships between attributes having potential of giving better performance. 

Computational issues also need to be considered. A strong weakness of decision tree is in its 

instability; it is recognized as highly unstable classifier with respect to miner perturbations in 

training set. Because of the gracefulness of the fuzzy sets and approximate reasoning methods 

used, fuzzy decision trees can deal with noise and uncertainties in the data collected [149 – 151].

Fuzzy decision tree induction requires fuzzification of all the attributes in the training set. The 

fuzzification process can be performed manually by experts or can be carried out automatically 

using some sort of clustering algorithm. The fuzzy K-means clustering algorithm, described in 

Section 7.5, gives a simple procedure to generate a set of membership functions on numerical data.
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As in the case of crisp decision trees, we will focus on basic building blocks for inducing fuzzy 

decision trees. We will use minimal fuzzy entropy criterion to select expanded attributes. 

The fuzzy decision tree learning procedure comprises the following steps: 

 • Fuzzification of attributes in the training set

 • Induction of a fuzzy decision tree

 • Simplification of the decision tree

 • Classification of new instances

Let a set of learning patterns {s(i); i = 1, ..., N} be described by a collection of attributes {xj, j = 1, 

…, n}. Decision attribute, y, classifies each pattern to a single class from M classes of concern. That 

is, y takes on values yq; q = 1, …, M. The training data is described by the dataset D of N patterns 

with corresponding observed outputs:

 D = {s(i), y(i)}; i = 1, …, N

 s(i) = {xj
(i)}; j = 1, …, n

For a crisp dataset D (refer to Eqn (8.10b)),
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Crisp dataset D can be viewed as a specific case of fuzzy dataset with unity membership grade 

for each input example, i.e., mD(s(i)) = 1; i = 1, …, N. Sometimes, a priori knowledge about the 

data provides membership information on all input examples s(i). This a priori knowledge can be 

effectively utilized in the fuzzy decision tree learning process. 

Consider a fuzzy dataset D with membership grades mD(s(i)), i = 1, …, N (0 < mD £ 1) given for all 

input examples s(i). Each class q = 1, …, M, can be modeled as a fuzzy set with membership degree 
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Fuzzy entropy for the fuzzy dataset D, is defined as 
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The root node holds the entire dataset D which describes the patterns s(1), s(2), …, s(N), with 

their corresponding membership grades mD(s(i)), and the class q = 1, 2, …, or M. Entropy (D) is a 

measure of the impurity of the root node.

Now we have to divide the dataset D into fuzzy subsets D1, … , Dk, …, DKj
, on some attribute 

xj; j = 1, …, n. Each attribute xj is represented by a set of fuzzy linguistic terms { Fkxj
, k = 1, …, Kj}; 

Fkxj
refers to the kth fuzzy set of xj and Kj is equal to the number of fuzzy sets on xj. mk(xj

(i)) is the 

membership degree of the ith value of attribute xj on the fuzzy set Fkxj
. The fuzzy sets Fkxj

would 

correspond to the branches grown from the root node.

The entropy after partitioning D on xj is given by (the definitions run parallel to decision tree 

induction, review of earlier sections will be helpful)

 Entropy (D, xj) = 
k
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mk(xj
(i)) represents the membership grade of ith value of xj in the fuzzy set Fkxj

. wk represents the 

weight of the kth fuzzy set of jth attribute; bqk is the membership concerning the qth class induced by 

fuzzy set Fkxj
; and Dk is the data subset resulting due to partitioning induced by fuzzy set Fkxj

. For 

each data sample s(i) in Dk, the membership value m
Dk

(s(i)) is the product of its membership value 

mD(s(i)) in D and membership value mk(xj
(i)) of ith value of xj in the fuzzy set Fkxj

.

Information gain, Gain (D, xj), measures the expected reduction in entropy caused by partitioning 

the patterns in dataset D according to the attribute xj:

 Gain(D, xj) = Entropy(D) – Entropy(D, xj) (8.19)

We calculate information gain, Gain(D, xj), for all attributes xj;  j = 1 …, n, and select the one that 

yields maximum gain. The dataset D is then divided into fuzzy subsets Dk, k = 1, …, Kj and Kj new 

nodes for these subsets are generated. We label the fuzzy sets Fkxj
; k = 1, ..., Kj, to edges (branches) 

that connect the new internal nodes to the root node.



436  Applied Machine Learning

Replacing D by Dk; k = 1, …, Kj, further tree expansion is carried out. If the recursive partitioning 

continues until all the sample data in each leaf node belong to one class, the resulting tree will be 

poor in accuracy. In order to improve the accuracy, the learning is stopped early (in crisp decision 

trees, pruning is more common). As a result, two thresholds are defined. 

Fuzziness control threshold qth1: If the proportion in a node data of a class q is greater than or 

equal to a threshold qth1, stop expanding the tree from that node. For example, if in a node data, 

the proportion of Class 1 examples is 90%, Class 2 examples is 10% and qth1 is 85%, then stop 

expanding that node.

Leaf decision threshold qth2: If the number of data samples in a node is less than a threshold 

qth2, stop expanding. For example, a dataset has 600 examples where qth2 is 2%. If the number of 

samples in a node is less than 12 (2% of 600), then stop expanding that node.

    Example 8.4

With the help of (toy) dataset given is Table 8.5, we describe the complete procedure of fuzzy 

decision tree building.

The data sample D in Table 8.5 corresponds to a sample of s(i); i = 1, …, 8, beach goers. The 

classification problem is to predict sunburns at the beach. The attributes in the data sample are 

Height (x1), Weight(x2), and Hair Color (x3); the class labels y are sunburned (y1) and not_sunburned 

(y2). Based on a priori knowledge, a membership grade mD(s(i)) is given for all input examples s(i);

i = 1, …, 8.

Table 8.5  Sunburn at the beach 

Person s(i)
mD (s(i)) Height x1 Weight x2 Hair Color 

x3

Sunburned 

(y) 

s(1) 1 160 60 Blond yes 

s(2) 0.8 180 80 Black no 

s(3) 0.2 170 75 Black no

s(4) 0.7 175 60 Red yes

s(5) 1 160 75 Black no

s(6) 0.3 175 60 Red no

s(7) 1 165 60 Blond no

s(8) 0.5 180 70 Blond yes

Note that the input examples s(4) and s(6) are inconsistent; the decision is different for the same 

values of the attributes. Ideally, the crisp decision tree growing procedure should terminate once all 

leaf nodes are pure, i.e., once they hold all examples possessing the same classification. However, 

such an ideal situation cannot be reached for the given dataset (Data cleansing step in preprocessing 

of data often gets rid of inconsistencies. In the given dataset, an additional feature: x4 = lotion used 

or not, may result in a more complete description of the classification problem). 
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Fuzzification to create the decision tree: Fkxj
represents fuzzy sets for the attribute xj; k = 1, 

2, …, Kj. For the given data sample, x1 = Height, x2 = Weight, x3= Hair Color. Through this simple 

toy dataset, we will illustrate manual process for fuzzification.

We assume K1 = 3 (Low, Middle, High), K2 = 3 (Light, Middle, Heavy), and K3 = 2 (Light, Dark). 

The membership functions for the fuzzy sets F
x1 1

(Low), F
x2 1

(Middle), and F
x3 1

(High) of x1 (Height) 

are assumed to be triangular and are graphically represented in Fig. 8.11. Table 8.6 gives the 

membership values m1(x1
(i)), m2(x1

(i)), and m3(x1
(i)) for x1 values in the training data.

160
x1

Fkx1

F1x1
F2x1

F3x1

165 170 175 180

1

Figure 8.11  Membership functions of x1

Table 8.6  Membership values for x1

s(i) x1(Height) m1(x1
(i)) (Low) m2(x1

(i)) (Middle) m3(x1
(i)) (High)

s(1) 160 1 0 0

s(2) 180 0 0 1

s(3) 170 0.5 1 0.5

s(4) 175 0.2 0.5 0.8

s(5) 160 1 0 0

s(6) 175 0.2 0.5 0.8

s(7) 165 0.8 0.5 0.2

s(8) 180 0 0 1
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Now consider the attribute x2(Weight). The membership functions for the fuzzy sets F
x1 2

(Light), 

F
x2 2

(Middle), and F
x3 2

(Heavy), of x2 are again assumed to be triangular; Fig. 8.12 shows a graphical 

representation. Table 8.7 gives the membership values for m1(x2
(i)), m2(x2

(i)), and m3(x2
(i)) for x2 values 

in the training data. 

60
x2

Fkx2

F1x2
F2x2

F3x2

65 70 75 80

1

Figure 8.12  Membership functions of x2

Table 8.7  Membership values for x2

s(i) x2 (Weight) m1(x2
(i)) (Low) m2(x2

(i)) (Middle) m3(x2
(i)) (Heavy)

s(1) 60 1 0 0

s(2) 80 0 0 1

s(3) 75 0.2 0.5 0.8

s(4) 60 1 0 0

s(5) 75 0.2 0.5 0.8

s(6) 60 1 0 0

s(7) 60 1 0 0

s(8) 70 0.5 1 0.5

x3(Hair Color) has categorical values, unlike x1 and x2 which have numerical values. Triangular 

membership functions, F
x1 3

(Light), and F
x2 3

(Dark) of x3 gives us the values of m1(x3
(i)) and m2(x3

(i)) 



Decision Tree Learning  439

for x3. Table 8.8 gives the membership values; x3 = Red being between x3 = Blond (Light) and x3 = 

Black (Dark), suitable values of m1(x3
(i)

) and m2(x3
(i)

) have been assumed for x3 = Red.

Table 8.8  Membership values for x3

s(i) x3(Hair color) m1(x3
(i)) (Light) m2(x3

(i)) (Dark)

s(1) Blond 1 0

s(2) Black 0 1

s(3) Black 0 1

s(4) Red 0.3 0.6

s(5) Black 0 1

s(6) Red 0.3 0.6

s(7) Blond 1 0

s(8) Blond 1 0

Table 8.9 shows membership values for all the three attributes x1
(i), x2

(i), and x3
(i) given in Tables 

8.6–8.8, after multiplication with mD(s(i)).

Table 8.9  Membership values for expansion of root node 

s(i) x1 m1(x1
(i)) m2(x1

(i)) m3(x1
(i)) x2 m1(x2

(i)) m2(x2
(i)) m3(x2

(i)) x3 m1(x3
(i)) m2(x3

(i))

s(1) 160 1 0 0 60 1 0 0 Blond 1 0

s(2) 180 0 0 0.8 80 0 0 0.8 Black 0 0.8

s(3) 170 0.1 0.2 0.1 75 0.04 0.1 0.16 Black 0 0.2

s(4) 175 0.14 0.35 0.56 60 0.7 0 0 Red 0.21 0.42

s(5) 160 1 0 0 75 0.2 0.5 0.8 Black 0 1

s(6) 175 0.06 0.15 0.24 60 0.3 0 0 Red 0.09 0.18

s(7) 165 0.8 0.5 0.2 60 1 0 0 Blond 1 0

s(8) 180 0 0 0.5 70 0.25 0.5 0.25 Blond 0.5 0
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Fuzzy  Entropy  and  Information  Gain: Next we have to calculate the fuzzy entropy and 

information gain of the fuzzy data in Table 8.9, to expand the tree. 

b1 = 

min{ ( ), ( )}

( )

.

( ) ( )

( )

m m

m

D

D

s y

s

i i

i

i

i

1

1

8

1

8

1 0 0 0 7 0 0 0 0=

=

Â

Â

=
+ + + + + + + ..

. . . . .

5

1 0 8 0 2 0 7 1 0 3 1 0 5+ + + + + + +
 = 

2 2

5 5

.

.

             b2 = 
0 0 8 0 2 0 1 0 3 1 0

5 5

3 3

5 5

+ + + + + + +
=

. . .

.

.

.

 Entropy(D) = – b1 log2 b1 – b2 log2 b2

  = – 
2 2

5 5

2 2

5 5

3 3

5 5

3 3

5 5
2 2

.

.
log

.

.

.

.
log

.

.
-

  = 0.971

Entropy after partitioning D on x1

b11 = 

min{ ( ), ( )}

( )

.

( ) ( )

( )

m m

m

1 1 1

1

8

1 1

1

8

1 0 0 0 14 0 0
x y

x

i i

i

i

i

=

=

Â

Â

=
+ + + + + + 00 0

1 0 0 1 0 14 1 0 06 0 8 0

1 14

3 1

+

+ + + + + + +
=

. . . .

.

.

             b21 = 
1 96

3 1

.

.

Entropy(D1) = – b11log2 b11 – b21log2 b21 = 0.949

               b12 = 
0 35

1 2

0 85

1 2
22

.

.
,

.

.
b =

Entropy(D2) = 0.8709

               b13 = 
1 06

2 4

1 34

2 4
23

.

.
,

.

.
b =

Entropy(D3) = 0.990



Decision Tree Learning  441

                w1 = 

m

m

1 1

1

8

1

1

8

1

3

3 1

3 1 1 2 2 4

3 1
( )

( )

.

. . .

.

( )

( )

x

x

i

i

k

i

ik

=

==

Â

ÂÂ
Ê

Ë
Á

ˆ

¯
˜

=
+ +

=
66 7.

               w2 = 
1 2

6 7

.

.

               w3 = 
2 4

6 7

.

.

Entropy(D, x1) = w1 ¥ Entropy(D1) + w2 ¥ Entropy(D2) + w3 ¥ Entropy(D3)

                         = 
3 1

6 7
0 949

1 2

6 7
0 8709

2 4

6 7
0 990

.

.
.

.

.
.

.

.
.¥ + ¥ + ¥

                         = 0.950

      Gain(D, x1) = Entropy(D) – Entropy(D, x1)

                          = 0.971 – 0.950

                         = 0.021

Entropy after partitioning D on x2 

Following the procedure given above for x1, we obtain 

 Entropy(D, x2) = 0.8542

 Gain(D, x2) = 0.1168

Entropy after portioning D on x3

 Entropy(D, x3) = 0.8072

 Gain(D, x3) = 0.1638

The Information Gain of the attribute x3 (Hair Color) has the highest value. We use it to expand 

the tree. 

Figure 8.13 shows the partitioning of data at the root node. The root node is x3 (Hair Color) 

that has a fuzzy set of all D with membership values mD(s(i)). We generate two sub-nodes with the 

input examples where the membership values m
Dk

at these sub-nodes are the product of the original

membership values mD(s(i)) and the membership values of F
x1 3

and F
x2 3

of the attribute x3. The 

example is omitted if its membership value m
Dk

is null. The node datasets in Fig. 8.13 follow from 

Table 8.9.

Thresholds: If the proportion of a node dataset of a class q is greater than or equal to threshold qth1, 

we stop expanding the tree from that node. Also, if the number of data samples in a node is less than 

threshold qth2, we stop expanding that node.
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Hair Color
x3

Light Dark

{ , }s(2) s s s s(3) (4) (5) (6), , ,{ , }s(1) s s s s(4) (6) (7) (8), , ,

Data D1 Data D2

m
D1

x1 x2 y m
D2

x1 x2 y

1 160 60 yes 0.8 180 80 no

0.21 175 60 yes 0.2 170 75 no

0.09 175 60 no 0.42 175 60 yes

1 165 60 no 1 160 75 no

0.5 180 70 yes 0.18 175 60 no

Figure 8.13  Expansion of tree at root node

The level of these thresholds has great influence on the result of the tree. We define them at 

different levels in our experiment to find optimal values. 

Furthermore, if there are no more attributes for classification, the algorithm does not create a 

new node.

Building fuzzy decision tree: The procedure followed for root node needs to be followed for 

the two sub-nodes with D replaced with D1 = Dsub1 and D2 = Dsub2, respectively. We leave the 

calculations as an exercise for the reader; only the results are given. 

Dataset Dsub1 has three examples of Class 1, and two examples of Class 2. Membership values 

bq are 0.6 and 0.4, respectively, for q = 1, 2. Dataset Dsub2 has one example of Class 1, and four 

examples of Class 2. Membership values bq are 0.1615 and 0.8385, respectively, for q = 1, 2.

We see that proportion of dataset for Class 2 in Dsub2 is high; with appropriate choice of qth1, we 

may declare Dsub2 as a leaf node. Membership values of bq confirm this decision.

Sub-node Dsub1 needs further expansion. We now have two attributes for expansion: x1 and x2. 

We calculate entropy and information gain corresponding to these attributes. Referring to Dsub1 as 

D, we repeat the procedure illustrated earlier. 
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 Entropy(D, x1) = 0.8901

 Gain(D, x1) = 0.0742

 Entropy(D, x2) = 0.7610

 Gain(D, x2) = 0.2033

Weight (x2) is selected as the sub-node. 

Continuing with the same procedure, we get a fuzzy decision tree for the given dataset. 

Figure 8.14 shows the tree with membership values at the leaf nodes. 

Hair Color
x3

Weight
x2

Height
x1

Light Dark

b1 = 0.1615

= 0.8385b2

b1 = 1

b2 = 0

b1 = 1

b2 = 0

Light
Middle

Heavy

b1 = 0.5602

= 0.4398b2

b1 = 0.1615

= 0.8385b2

b1 = 0.6058

= 0.3942b2

Low High

Middle

Figure 8.14  A fuzzy decision tree for dataset of Table 8.5

Fuzzy  classification  rules: A fuzzy classification rule can be written in the form (refer to

Fig. 8.14)

IF (x3 is Light) AND (x2 is Middle) THEN (Class is 1)

IF (x3 is Light) AND (x2 is Heavy) THEN (Class is 1)

IF (x3 is Light) AND (x2 is Light) AND (x1 is Low) THEN (Class is 1 with membership 0.5602)



A fuzzy classification rule with composite fuzzy set FE can be written as 
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IF (x is FE) THEN (Class is q with membership bq)

The composite fuzzy set FE is called the fuzzy evidence. For the third example rule given above,

 FE = F1(x3) ∩ F1(x2) ∩ F1(x1)

“x is FE” is the premise or antecedent of the rule, and “Class is q with membership bq” is the 

consequent of the rule.

Classification of new instances: A crisp decision tree consists of a single path (rule) which can 

be applied for every instance. In a fuzzy decision tree, many paths (rules) are applicable for one 

instance. For classification of an unlabeled instance, perform the following steps:

 1. Compute the membership of the instance for the condition part of each path (rule). This 

membership will be associated with the label (class) of the path.

 2. Compute the maximum membership obtained from all the rules, for each class.

 3. It is possible to classify an instance into many classes with different degrees on the basis of 

the membership computed in Step 2.

To illustrate, we take the example s(1) in the dataset. There are six possible paths (rules), as seen 

from Fig. 8.14:

R1 : Hair Color (Dark) Æ bq

R2 : Hair Color (Light) AND Weight (Heavy) Æ bq

R3 : Hair Color (Light) AND Weight (Middle) Æ bq

R4 : Hair Color (Light) AND Weight (Light) AND Height (High) Æ bq

R5 : Hair Color (Light) AND Weight (Light) AND Height (Middle) Æ bq 

R6 : Hair Color (Light) AND Weight (LIGHT) AND Height (Low) Æ bq

Using product rule for intersection of fuzzy sets and implication operation, we get the maximum 

class membership for s(1), obtained from all the rules. 

Membership of Class 1 given by all the rules 

= m m m
F F Fx x x2 3 1 3 3 2

0 1615 1¥ + ¥ ¥ +. m m m m m
F F F F Fx x x x x1 3 2 2 1 3 1 2 3 1

1 0 6058¥ ¥ + ¥ ¥ ¥ .

   + m m m m m m
F F F F F Fx x x x x x1 3 1 2 2 1 1 3 1 2 1 1

0 1615 0 5602¥ ¥ ¥ + ¥ ¥ ¥. .

= 0 ¥ 0.1615 + 1 ¥ 0 ¥ 1 + 1 ¥ 0 ¥ 1 + 1 ¥ 1 ¥ 0 ¥ 0.6058 + 1 ¥ 1 ¥ 0 ¥ 0.1615 + 1 ¥ 1 ¥ 1 ¥ 0.5602

= 0.5602

Membership of Class 2 given by all the rules

= 0.4698

References [149–153] are useful for detailed study of the subject.
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9.1  AN INTRODUCTION TO ANALYTICS

In today’s public and private organizations, decision making is an ongoing process. These decisions 

are usually quite significant when it comes to the impact on the organization, whether in the short- 

term or long-term. The decision-making process involves people as well as rules at different levels 

in the organization’s hierarchy. A person’s capability to make the right decisions at the right time 

plays a significant role in an organization’s performance and competitive strength.

In many organizations, decision making uses easy and spontaneous techniques based on the 

experience, awareness of the application domain, and the existing information, and other such 

elements. This model is not ideal for the unstable conditions owing to repeated and fast changes 

that take place in the economic environment. In fact, decision-making processes in today’s 

organizations are rather complicated and dynamic. Therefore, they cannot be handled properly 

using an intuitive model. Rather, they require a scientific approach. 

A lot has been invested on business infrastructure in the last fifteen years, due to which the data 

collection capability has become better across the enterprise. Each and every facet of business is 

now geared up/equipped to collect data, be it marketing,  operations, supply-chain management, 

manufacturing or even customer management. Also, information related to industry happenings, 

movement of competition, market trends, and other external events is now easily available. Due to 

ease of accessing data, many meaningful scenarios and opportunities have arisen. The question is, 

whether it is possible to transform such diverse data into meaningful information and knowledge, 

which can be employed in making the right decisions at the right time, in order to gain an edge over 

competition [154].

‘Analytics’ is the term widely used in business for data-driven analyses employed in the decision-

making process. The term refers to the application of different methods of analysis of data to solve 

problems. It cannot be called a technology in itself, rather, a set of ‘data science’ processes and 

techniques are used together to obtain information, analyze it, forecast diverse possible actions 
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towards a solution, and quantify the impact of these likely decisions of the future on optimizing 

business [155, 156].

A world that is becoming more and more complex with each passing day, rapidly increasing 

data, collection, and the urgency to overtake competition, have all made the use of data analytics 

(analytics-driven data analyses) very significant within organizations. With data analytics, 

enterprises are able to get a ‘360 degrees’ view of their operations and customers. The insight thus 

gained is useful in directing and optimizing, and automating their decision making to fulfil their 

organizational goals. Business analytics (data-driven analyses of business data) helps in strategic, 

operational and tactical decision making through the industry verticals including telecom, retail 

and financial services. 

There are many subgroups in the field of analytics. Figure 9.1 depicts the field along with its 

subfields.

Data

Analytics

Business
Intelligence

Predictive
Analytics

Queries
Reporting,
Monitoring,
Alerting

Statistical
Methods,
Data

Visualization

Descriptive
Modeling

Predictive
Modeling

Optimization
and

Simulation

Figure 9.1  Analytics and relevant sub-fields

  Analytics covers the skills, technologies, applications, and practices that are required for 

repeatedly exploring and investigating data to gain insight and drive business planning. Its two 

primary areas are business intelligence and predictive analytics.

Business Intelligence (Insight into the past)

A group of architectures and technologies capable of transforming raw data into information that 

can be used for business purposes by making it meaningful, is called Business Intelligence (BI). 

Using basic BI tools, businesses can easily interpret huge volumes of data, and measure past 
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performance. They cannot only summarize and describe various faces of business but also help 

business managers comprehend all that is happening within the organization and with the business.  

Computation of summary statistics is the basic building block of data analysis. We should select 

summary statistics paying attention to the business problem, and the way the data being summarized 

is distributed. It depicts things, such as total stock in inventory, average dollars spent per customer, 

year over year alterations in sales, and so on. Reports reveal historical information pertaining to 

organization’s  production, financial status, operations, sales, inventory and customers. 

The term ‘business intelligence’ is often inclusive of the creation and maintenance of data 

warehouses. It is essential to collect and integrate the varied /diverse data stored in various primary 

and secondary sources, most of which are part of operational systems. A significant amount of 

effort is needed for the purification and integration of the data sources.

Data warehouses gather and merge together data from various transaction-processing systems, 

from across an enterprise, with its own database. It is possible for analytical systems to access data 

from data warehouses. Data warehousing is a facilitating technology for exploring data. BI tools that 

help explore data comprise query and reporting systems, as well as statistical and data visualization 

techniques. These are called passive methodologies as the decision makers are required to create 

prior hypotheses and then employ the tools of analysis to arrive at the answers and confirm what 

they had originally perceived.  

Query is a particular request for a subset of data or a request for statistics from data, framed in 

the form of a technical language and posed to a database system. Tools capable of answering these 

queries are generally front ends to database systems, based on Structured Query Language (SQL) 

or with a Graphical User Interface (GUI) to facilitate the framing of queries. Database queries 

that use SQL/GUI are ideal for an anlayst who is already aware of what could be an interesting 

population of data and wishes to explore this population or confirm a hypothesis pertaining to it. 

This activity is basically different from data mining as it does not involve the prediction of any 

patterns, or models.

Query tools are usually capable of executing sophisticated logic, which includes computing 

summary statistics over subpopulations, sorting, joining together multiple tables and related data, 

and more. On-Line Analytical Processing (OLAP) offers a user-friendly GUI for the purpose of 

querying voluminous  data collections in order to explore data. ‘On-line’ processing takes place 

in real-time; therefore, analysts and those who are responsible for making decisions can derive 

answers to their queries fast and with great efficiency.

Besides the querying and visualization of data, traditional BI environments make it possible 

to implement rule-based alerts to inform decision makers about important events or changes. 

However, the actions in BI are always defined through human interaction and are performed by 

humans.

Predictive Analytics (Understanding the Future)

Predictive Analytics goes beyond BI by using sophisticated quantitative techniques (for example, 

descriptive modeling, predictive modeling, simulation and optimization) to produce insights that 

traditional approaches to BI (such as query, reporting, summary statistics, data visualization) are 

unlikely to discover. It deals with automatic discovery of meaningful patterns in structured as well 

as unstructured data.
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Predictive analytics is capable of predicting what can happen. These analytics pertain to the 

understanding of the future, and offer data-based insights to companies.  They also estimate the 

possible future outcome. Predictive analytics can be employed across the organization—to predict 

client behavior and buying patterns, and also to identify trends in sales-related activities. They also 

facilitate the prediction of demands for inputs from the supply chain, operations and inventory. 

Financial services use the credit score produced by predictive analytics to determine the likelihood 

of customers making timely credit payments in future.

The main sub-fields of predictive analytics are: descriptive modeling, predictive modeling, and 

optimization and simulation. Descriptive modeling refers to the use of active methodologies to 

extract information and knowledge from data. Unlike the tools described for Business Intelligence, 

models of an active kind do not require decision makers to formulate prior hypothesis to be later 

verified. Their purpose is, instead, to expand the existing knowledge and use it for predictive 

modeling. Exploratory data analysis includes basic statistical descriptions (measures of central 

tendency of data: mean, median and mode; measures of dispersion of data: variance, standard 

deviation), correlation analysis, cluster analysis and data visualization through graphs and plots. 

Active data exploration is an exercise to bring out something new, unknown to the analyst, which 

can then be exploited to improve the success of predictive modeling.

Predictive modeling is the practice of analyzing data to make statistically accurate predictions 

about the future. In business environments, predictive models automatically find and exploit patterns 

found in historical and transactional data in order to extrapolate to future events, and by that means, 

predict the most likely future. Models describing these patterns capture relationships among many 

factors that human beings are unable to handle. This allows, for example, the identification of 

previously unknown risks and opportunities.

Predictive modeling gives out a number of possible solutions for the business problem. 

Optimization and simulation sub-field attempts to quantify the effect of future decisions based on 

possible solutions to the problem, in order to determine possible outcomes before the decisions 

are actually made. Big business organizations have been efficiently employing these methods to 

optimize production, scheduling and inventory in supply chain to deliver the right products on time 

and optimize the customer experience.

Even on successful adoption of these analytical techniques, the decision is taken by decision 

makers, on the basis of the informal and unstructured information available to alter and adopt the 

recommendations and conclusions using analytics.

9.1.1  Machine Learning, Data Mining, and Predictive Analytics

Methodologies and technologies from both statistics and computer science have played an 

important role in the development of predictive analytics. The main contributions to the discipline 

of predictive analytics come from Machine Learning and Data Mining.

The set of techniques for extraction of predictive models from data is now known as machine 

learning. Data mining is actually derived from machine learning as a research field, which focuses 

on concerns raised in research on real-world applications. As such, research concentrated on 

commercial applications and business-related problems of data analysis tend to drift in the direction 
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of data mining. Both the fields are related to each other, and also share methods and algorithms. 

They pertain to the analysis of the data to seek informative patterns. 

Looking forward, the main challenge ahead is applications. Applications-related issues will not 

come from machine learning experts but from people who work with the data and the problems 

from which it arises. Machine learning research will respond to the challenges thrown by new 

applications and will create new opportunities in decision making.

Even though machine learning forms the crux of the data mining process, it also includes other 

significant steps — data formatting, data cleansing, data exploration (visualization, summarization), 

and use of human expert knowledge to frame the inputs for the machine learning algorithm.

The ever increasing complexities of the world, the explosion of data, and the urgency to 

overtake competition, have pushed the enterprises to seek a 360 degrees view of their operations 

and customers—insights into the past and understanding of the future. Predictive analytics tools 

predict different possible actions towards a solution and quantify the effects of these possible future 

decisions on business optimization. Machine learning/data mining technologies are central to the 

toolkit of predictive analytics.

The three fields: machine learning, data mining, and predictive analytics, do not have precise 

boundaries for the spectrum of their functions; their functions overlap. Any quantitative description 

of the three terms: machine learning, data mining, predictive analytics, is really not meaningful. 

The qualitative description of these terms given here should suffice—understanding the essence of 

these tools for data-driven decision making is all that is important [157–160].

9.1.2  Basic Analytics Techniques

The following are the commonly used basic technologies in analytics.

 • Data warehousing

 • Naive Bayes classifier, k-Nearest Neighbor algorithm, linear and logistic regression

 • Support vector machines

 • Neural networks

 • Fuzzy inference systems

 • Decision trees

 • Data clustering

 • Data transformations

 • Learning associations

 • Optimization algorithms

All of these techniques have earlier been covered in this book except the following two:

 1. Data warehousing

 2. Learning associations

To make our toolkit complete and ready for business environments, we give brief presentation of 

these two techniques in this chapter; Section 9.3 on data warehousing and Section. 9.4 on mining 

frequent patterns and association rules.
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In addition to industry verticals like Financial Services analytics, Sales analytics, Customer 

Relationship Management (CRM) analytics, Telecom analytics, Manufacturing analytics, and so 

forth, recent advances have led to the newest and the hottest trends in business analytics—text 

analytics and multimedia analytics

 • Text analytics allows users to derive insights from unstructured text data collections.

  Unstructured text data is transformed into a structured format that can be used as the base for 

predictive and descriptive analytics.

 • Multimedia analytics uses various technologies to derive insights from unstructured data 

that comes together in multiple modalities including images, audio, video and text.

In the last ten years, the Internet has opened up many new avenues and presented great 

opportunities for businesses and organizations to reach out to their customers, promote their 

products, close deals and carry on transactions. In a well-established business approach, companies 

fully run and regulate their image and reputation on the Web via the content that appears on their 

websites.

The focus of discussions pertaining to various facets of a company’s product portfolio nowadays 

is shifting from individual company websites to blogs, forums and other collaborative sites—in 

other words, the social media. This new media allows everyone to post comments and opinions 

about companies and their products, which may impact the perceptions and buying behavior of 

innumerable (likely) buyers. Marketing companies are concerned about this because it is not easy 

to check the spread of negative information, nor is it easy to find out or identify the same in large 

spaces, such as forums, blogs and social networking sites.

While conventional marketing techniques have to face a major challenge in the form of expanding  

user-generated content in the blogosphere, it also offers opportunities to marketing companies to 

design their strategy taking advantage of the social media. However, to do this, there is a need for 

new thought processes, modern automated analytics-based capabilities that define the social media 

analytics, a discipline that is fast emerging [161].

Technologies that can process unstructured data provide better analytics models. We give an 

overview of text, image and audio analytics in Section 9.5. Section 9.6 describes various business 

applications of analytics, and lastly an overview of big data issues and emerging analytical methods 

(big-data analytics) is given in Section 9.6.

Data science is yet another commonly used term today. Meaning data-driven science, the term 

refers to an interdisciplinary field which pertains to scientific processes, techniques and systems 

used for the extraction of knowledge from structured or unstructured data. It is a collective term 

for all the methods used in an effort to extract insights and information from data—the methods 

to manipulate data, analyse data with statistics and machine learning, communicate data with 

information visualization, and work with Big Data.

Data analytics is the science that examines raw data in order to draw conclusions about that 

information. The focus of data analytics is on inference.

We conclude this section with the comment that various terms introduced here have no precise 

boundaries for the spectrum of their functions; their functions overlap. Any quantitative description 

of these terms is really not meaningful. The qualitative description given here should suffice. 
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9.2  THE  CRISP-DM  (CROSS  INDUSTRY  STANDARD  PROCESS  FOR  DATA  MINING) 

MODEL

Data mining requires the application of science and technology in significant amounts, and 

productive application involves art as well. It involves a process that identifies a structure in the 

problem, and allows consistency, repeatability, and objectiveness. 

The CRoss-Industry Standard Process for Data Mining (CRISP-DM) codifies the data mining 

process. Details of CRISP-DM can be downloaded free of cost from www.crisp-dm.org, the 

CRISP-DM Consortium’s website.

Figure 9.2 depicts the process. From the diagram, it is quite clear that iteration is the rule and 

not the exception. Going through the process once without obtaining a solution to the problem is 

not actually a failure. The entire process explores the data, and once the first iteration is over, the 

analysts are more aware, and therefore, the next iteration will be a lot more informed.

Data

Business
Understanding

Data
Understanding

Data
Preparation

Deployment

Modeling

Evaluation

Figure 9.2  The CRISP-DM Process Model

It would be ideal to consider the data mining process as a set of nested loops rather than a 

feedforward process. The steps do have a natural order, but completely finishing with one before 

moving on to the next is neither needed nor desired. Things learned in later steps will result in the 

revisiting of the earlier ones.
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There are six phases of the CRISP-DM process model (Fig. 9.2). Underneath each phase will be 

several generic tasks—high-level descriptions of activities that need to be carried out for nearly all 

projects. Each of these generic tasks is then made project-specific through the specification of one 

or more specialized tasks.

Let us now discuss the phases in detail.

Business Understanding 

In the beginning, it is important to understand the business problem that needs to be solved. While 

this may appear quite obvious, business projects rarely show up as pre-packaged and clear data 

mining problems. Many a time reorganizing the problem and designing a solution is a repetitive 

process of discovery—cycles within a cycle, as depicted in Figure 9.2. 

The generic tasks of this phase are:

 1. Determine business objectives

 2. Assess the situation

 3. Determine data mining goals

 4. Produce a project plan

The specialized tasks to address generic task (1) might include review of the annual marketing 

plan for product X for each of the past three years; scheduling and conducting an interview with 

Executive Vice President of Marketing; and scheduling and conducting an interview with Product 

Manager for product X.

The generic task (2) requires additional fact-finding to determine the resources, constraints, 

assumptions, and other factors that potentially influence both the data mining goals and the project 

plan.

The generic task (3) involves translating the business objectives into a set of data mining project 

goals in technical terms.

The generic task (4) of producing a project plan should be comprehensive and detailed. In 

particular, the plan should specify the anticipated steps in order, along with potential dependencies. 

The plan should also specify all inputs and output.

Data Understanding 

If the objective is to solve the business problem, the data must consist of the available raw material 

from which the solution will be created. It is crucial to comprehend the strengths and boundaries 

of the data as it is difficult to arrive at an exact match with the problem. Different information is 

contained in a customer database, a transaction database, and a marketing-response database. They 

may also  pertain to varying overlapping populations, and may have different levels of reliability.

The costs of data also commonly differ. While certain data will be almost free, others can be 

obtained with some effort. Certain data can be bought, while other data is non-existent and can only 

be collected  using entire ancillary projects. A crucial component of the data-understanding stage is 

the estimation of the costs and benefits of each data source before determining whether it is feasible 

to invest any further. Once all datasets are obtained, some extra effort is needed to collate them.  
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The four generic tasks related to this phase are:

 1. Collection of initial data

 2. Description of data

 3. Exploration of data

 4. Verification of data quality

The first generic task pertains to the location, assessment, and obtaining of the required data 

from internal as well as external sources.  

The second generic task involves the examination of ‘surface’ properties of the data collected—

the format of the data (e.g., relational database table versus a text file); the amount of data (in terms 

of the number of variables and records); data types (e.g., categorical or numeric), coding schemes, 

and definitions of the variables of the data. A key objective of this task is to determine whether the 

collected data will answer the identified data mining question(s).

The generic task (3) involves the use of frequency distributions, cross-tabulations, means, 

correlations, and other simple descriptive statistics of the variables of interest, along with a number 

of other variables of interest initially thought to influence the variables of interest. In addition, 

graphical tools such as histograms, scatter plots, and other simple plots of the data are useful at 

this stage. These analyses may help refine the data description, lead to a better understanding of 

the potential data quality issues, and help gain a basic understanding of the nature of relationships 

between different variables that will be of use in modeling phase.

The generic task (4) addresses the important questions of whether the data is complete (i.e., all 

the relevant cases we hope to examine are covered or not), whether all the variables are correct 

(e.g., variables that should be all numbers may contain some character entries), whether there are 

missing values in the data, etc.

Data Preparation

While the analytic methods are powerful, they inflict particular requirements on the data they use. 

They often require data to be in a different form from the one naturally provided, and require some 

data conversion. The stage of preparing data often progresses with data understanding, involving 

manipulation and conversion of data into forms capable of giving better results.

The five generic tasks of this phase are:

 1. Select data

 2. Clean data

 3. Construct data

 4. Integrate data

 5. Format data

The generic task (1) relates to both what variables to have in the dataset to be used in actual 

data mining, as well as the nature of data records to be used in analysis (e.g., skewed data in 

classification problems).

The generic task (2) involves how to deal with data with missing values (removing or inferring 

missing values). Variables with values that are likely to be incorrect must also be dealt with.

The generic task (3) typically involves creating new variables through transforming original 

variables. Attribute reduction techniques, if employed, result in new variables in the reduced 
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dataset. Also, transformation may involve creation of new variables through conversion of data 

—categorical to numerical and vice versa, discretizing continuous numeric values of variables, 

normalizing or scaling so that numerical values are compatible, are some conversions that may be 

of interest in specific problems. The other thing this task may involve is creating completely new 

records.

The generic task (4) involves merging different data tables together (say the transaction history 

of a customer, that is contained in the transactions database table, with the customer’s personal 

information, contained in the customer information table) in order to create a single dataset that can 

be used by the data mining tools. 

The generic phase (5) primarily refers to potential minor changes in the structure of variables or 

the order of variables in the database so that they match with what is expected by a particular data 

mining method.

Modeling

In the modeling phase, the actual models are constructed and assessed. The generic tasks associated 

with this phase are:

 1. Select modeling technique(s)

 2. Generate a test design

 3. Build model

 4. Assess model

Modeling has been the subject of earlier chapters and we have observed that selection of an 

appropriate modeling method(s) is dependent on the nature of the application. However, for most 

applications, there is more than one appropriate method. In generic task (1), a decision is made as to 

which of the possible methods that can be used should be used. The decision could be made to use 

all possible tools, and then select the model that is best among the set of possible models as part of 

the generic task (4), which, in turn, relies on the testing procedures developed in generic task (2).

The generic task (2) needs to be done prior to building any models (generic task (3)). The main 

purpose of the test environment is to assess the quality and validity of different models. This is 

typically accomplished by taking the dataset created in the data preparation phase and dividing 

it into three different samples. The first of these samples, the training sample, is used to actually 

build the model(s). The second sample, the validation sample, is used to examine the accuracy and 

validity of particular model, and to provide a basis for comparing the accuracy of different models. 

Based on the validation sample, a best model can be selected. However, to get an unbiased estimate 

of the likely impact of the use of this best model, a third sample, a hold out or test sample, is needed 

to make this assessment (which actually occurs in evaluation phase of the process). The generic 

task (3) is where the data mining methods discussed in earlier chapters are applied to the dataset. 

In the generic task (4), the focus is on assessing a model on its technical merits as opposed to its 

business merits. The main concern at this point is the accuracy and generality of the model. An 

assessment with respect to the business problem being addressed is done in the evaluation phase. 

The assessment of a model can result in the conclusion that the model can be improved upon, and 



Business Intelligence and Data Mining: Techniques and Applications  455

also suggest ways of making an improvement, resulting in a new model building task (nested loop 

in Fig. 9.2).

Evaluation

The evaluation stage aims to thoroughly assess the data mining results and to make sure of their 

validity and reliability before proceeding further. This can be partially achieved for predictive 

models, by making use of the holdout for developing an estimation of the returns from use of the 

model. This evaluation phase also ensures that the approach fulfills the original business goals. 

Remember, the main aim is to support the decision-making process for the business, and the 

process began with focus on the business problems that require resolution. A data mining solution 

is usually just a part of the larger solution, and requires evaluation. In addition, even if the approach 

passes rigid technical evaluation tests, certain external factors may render it unfeasible. 

Different stakeholders have different interests in the business decision-making that can be 

accomplished or supported by resultant approaches/models. In several cases, these stakeholders 

require to ‘sign off’ on the use of the approaches/models, and therefore, require to be satisfied by 

the quality of the model’s decisions. Very often, stakeholders try to find out whether the approach 

is really useful or whether it is doing harm, and whether it is good enough to avoid huge mistakes.  

A complete evaluation framework is essential as obtaining detailed information on the model’s 

performance may be tough or quite impossible.

The generic tasks of this phase are:

 1. Evaluate results

 2. Review process 

 3. Determine next steps 

The generic task (1) activities have been discussed in the prior paragraphs.

The generic task (2) is really a quality assurance assessment, which addresses concerns such 

as: Was the model correctly built? Were the variables defined in a way that is consistent with the 

variables available in the actual database? Will the variables used in this analysis be available for 

future analyses?

In generic task (3), the project team needs to decide whether to finish the project and move on 

to deployment (if appropriate) or to revisit certain phases of the project in an attempt to improve 

upon them.

Deployment

To position a model in a production system, it has to be re-coded for the production environment, 

so that it has better speed and is compatible with the current system. This could be a costly process 

and may require significant expenditure.

Irrespective of the success or failure of deployment, the procedure often goes back to the Business 

Understanding phase. The data mining process results in a lot of insight into the business problem 

and the challenges of its solution. If repeated a second time, it can give a better solution.
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Failure in deployment is not necessary for the cycle to begin again. The evaluation stage may 

indicate that results are not satisfactory for deployment, and the problem definition requires to be 

adjusted or there is a need to obtain different data (see Fig. 9.2).

In order to successfully deploy a data-mining based solution, four generic tasks may (depending 

on the type of project) need to be undertaken:

 1. Plan deployment

 2. Plan monitoring and maintenance

 3. Produce a final report

 4. Review project

The generic task (1) involves winning confidence of all stakeholders. This requires assessment 

of possible deployment pitfalls.

The generic task (2) involves assessment of what changes could occur in future which would 

trigger an examination of the deployed model (the entrance of a major new competitor, or a sharp 

rise in interest rates, may trigger an assessment of model’s current predictive accuracy). In addition, 

a maintenance schedule to periodically test whether a model is still accurate, along with criteria to 

determine the point at which a model needs to be ‘refreshed’ (i.e., rebuilt using more recent data), 

needs to be developed.

The generic task (3) requires producing a final written report at the end of the project.

The generic task (4) is an assessment of what went both right and wrong with the project.

Data mining is, in fact, a continuous process for exploring large amounts of data to discover 

meaningful patterns. The process does not have a beginning and an end; it is ongoing. Data mining 

starts with data, then through analysis, inspires action, which in turn, creates data that begets more 

data mining.

We have used the term ‘data mining’ in describing the model of Fig. 9.2. It may be noted that this 

figure represents a business analytics process model.

9.3  DATA WAREHOUSING AND ONLINE ANALYTICAL PROCESSING

In Section 9.1, we highlighted the importance of analytics in today’s competitive business world. 

The technologies which support winning analytics were also listed. It was pointed out that data 

warehousing is crucial for today’s requirements of data-driven decision making. 

Since the main focus of this book has been on applied machine learning algorithms, the target 

here is to provide only an overview of data warehousing technology. This will help the reader to 

appreciate the relevance of the subject. Lot of literature giving detailed account of the subject is 

available. The reader may refer to [17, 19] as an initial seed.

9.3.1  Basic Concepts

Since the time computers were introduced to the data processing centers a few decades ago, there 

are hardly any operational systems that have not been  computerized. Almost all of them are capable 

of generating huge volumes of data along the way. Record of each product bought by a customer, 
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each and every bank transaction, each visit to a web page, every credit card purchase, every 

package delivered, each telephone call exists in a minimum of one operational system. Computer-

based automation has led to new markets and revolutionized current ones: online retailing, social 

networking, automated tellers, just-in-time inventory control, frequent flier/buyer clubs, to name a 

few. 

Data-Base Management Systems (DBMS), comprising a database along with a group of 

software programs, offer mechanisms to store interrelated data and manage data access. Online 

operational database systems perform online transactions and query processing. These systems are 

known as On-Line Transaction Processing (OLTP) systems, and include a majority of daily/routine 

operations of an organization pertaining to purchase, inventory, manufacture, banking, payroll, and 

accounts. A typical organization has many different operational databases.

OLTP systems offer answers to frequent queries, such as ‘What is the address of customer 

Jones?’; ‘What is the total price of all the products in the box?’; or ‘What is the balance in account 

no. 980?’ 

The most widely used query language is SQL (Structured Query Language), which facilitates 

data manipulation and also helps retrieve stored data from the database. It calculates the aggregate 

functions such as averages, sum, min, max, and count. For data analysis, the queries that can be 

asked are, ‘List  all the items sold in the previous quarter’, ‘Give the total branchwise sales last 

month’, ‘Show the number of sales transactions in the month of November?’, ‘List the total sales 

achieved by each sales person?’, ‘Name the salesperson with the maximum sales’, and so on.

Huge volumes of data can be collected from transactional systems. A fast-food restaurant is 

able to sell hundreds of thousands of meals annually, while a chain of supermarkets has hundreds 

of thousands of transactions daily. Big banks process millions of cheques, credit cards, and debit 

cards purchases everyday. Large websites experience millions of hits every day. A web-based ad 

server can keep track of billions of views daily. An OLTP system is able to manage current data, 

which is extremely detailed and can be easily employed to make decisions. With rising competition 

in every industry, business executives require data science techniques for systematic organization, 

understanding and use of data for strategic decision making. Data warehousing offers tools and 

architectures for storing and managing decision-support summary data.  

A data warehouse is a database system created by integrating various sources for the purpose 

of decision support. It is maintained in isolation from the operational databases of organizations.

For a retailer, a data warehouse may cover information from the database of the market, or the 

database of a supplier, or that of the customers. In other words, a data warehouse may include 

information related to not just sales, but customer billing, customer service, and so on. The data in 

the payroll database may not exist in the data warehouse if it is not found to be essential for decision 

support. 

Merely dumping data from diverse databases onto one disk cannot lead to the creation of a 

data warehouse. Diverse operational systems employ diverse styles of keeping records, various 

conventions, varying time periods, diverse degrees of aggregation, and will have various types of 

error. There is a need for the assembly, integration and cleaning of data. To build data warehouses 

is an expensive exercise—manual intervention is required as well as a thorough understanding of 

the operational databases.
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A data warehouse, therefore, offers a single steady point of access to an organization’s data 

for decision support. Instead of focussing on day-to-day operations and transaction processing, 

it concentrates only on data analysis and data modeling for making decisions. It offers a modest 

and compact view of specific subject issues as it excludes useless data in the decision support 

procedure. Data warehouse systems are called On-Line Analytical Processing (OLAP) systems.

Decision support tasks need various kinds of queries. For instance, ‘What is the monthly 

region-wise sales of products?’ or ‘What is the difference in sales this year and last year?’ are typical 

queries for decision support. ‘Online analytical processing’ is the term used for the employment of 

databases to obtain data summaries, with the main mechanism being aggregation.

An OLTP system is used to manage current data, which is typically extremely detailed for use in 

decision making. An OLAP system is used for management of huge volumes of historic data, for 

facilitation of summarization and aggregation, and for storage and management of information at 

varying levels of granularity. With these features, it is convenient to use the data to make informed 

decisions. 

The requirements of OLTP and OLAP from the database management system are different. The 

former requires the latest and updated data, and lets the queries make changes to the database, 

permits simultaneous execution of various transactions without disturbing each other, and expects 

fast responses, and so on. The queries and updates, themselves, in case of OLTP are rather simple.

On the other hand, the OLAP queries tend to be rather complex, and are executed one at a time. 

OLAP queries do not make changes to the data, and while they may seek information about previous 

sales, it is not essential to have the latest sale details. Given the differences in requirements, it is 

sensible to use diverse types of database systems to handle the two applications.

The design of data structures by OLAP systems takes into account the users and their reporting 

requirements. It begins with the definition of a set of dimensions—say month, geography, and 

product. It stores important measures, say total sales and total discounts pertaining to each 

combination of dimensions. Additionally, OLAP systems offer handy analysis functions, which are 

difficult/impossible to express in SQL.

OLAP tools, therefore, support multidimensional data analysis and decision making with 

functionalities, such as summarization, consolidation and aggregation. To set up the multidimensional 

structure, data analysis and an analysis of user requirements is a must. This is usually achieved by 

specialists who are aware of the data and the tool, through a procedure known as dimensional 

modeling. Although some initial investment is required to design and load an OLAP system, the 

result offers informative and rapid access to users. Response times are usually measured in seconds 

facilitating exploration of data by the users.

In the past, several organizations have spent millions of dollars to build enterprise-wide data 

warehouses. Many are of the opinion that with increasing competition in every industry, data 

warehousing is a weapon that one must possess.

9.3.2  Databases

We live in the information age, where everyone believes that information ensures success. Therefore, 

we gather a range of data: from business transactions and scientific data to satellite images, text 
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reports, as well as military intelligence. Creating structured databases and effective Data-Base 

Management Systems (DBMS) have proven to be essential assets when it comes to managing huge 

volumes of data, particularly to retrieve specific information efficiently from a large collection 

whenever required.

Today, we are playing with information that is too much for us to manage or deal with. Mere 

information retrieval will not suffice for decision-making any more. Faced with large volumes of 

data, we have created the need for automatic data summarization. We have made it essential to 

extract the ‘essence’ of stored information, and find patterns in raw data.

While the spread of DBMS has led to more information gathering, the introduction of data 

mining has encouraged information harvesting. Due to the varying nature of complex data types, 

different types of data are stored in different types of repositories. It is certainly not realistic to hope 

for an adaptable data mining technique, which will give satisfactory mining results on all types 

of repositories in an efficient and effective manner. Different types of data repositories demand 

diverse algorithms and techniques. Some examples of the schemes are as follows:

 • Flat Files: These are the most commonly found data source for data mining algorithms, 

particularly at the research level. A flat file is a simple data table—a collection of N data 

objects, each comprising a fixed set (n) of data fields (attributes). The values of attributes 

could be numerical or categorical.

 • Relational Databases: A set of tables, with each of them having been assigned a unique 

name which represents an entity, is called a relational database. Each table comprises a group 

of attributes (table columns) and generally stores a huge set of tuples or rows of the table—

the data corresponding to the entity. Each of the tuples in a relational table is representative 

of an object which is recognized by a unique key and is described by a set of attribute values.

A semantic data model, such as an Entity-Relationship (ER) data model, is often built for 

relational databases. It denotes the database as a set of entities and their relationships.

For instance, a store is typically described by the following relational tables—customer, item, 

employee, and branch. The entity, customer, consists of a collection of attributes (cust-ID, name, 

address, age, occupation, annual_ income, credit_ information, category, and so on). In the same 

way, each of the entities item, employee, and branch comprises a set of attributes that describe 

their properties. Tables can even be employed to represent relationships that exist among several 

entities. In this particular instance, these include purchases (customer purchase items, creating a 

sales transaction managed by an employee), items_ sold (in a given transaction), and works_ at (the 

branch the sales person belongs to).

 • Transactional Databases: Each product bought by a customer, each bank deal, each visit 

to a web page, each credit card purchase, each flight sector, each package delivered, and each 

phone call is recorded in at least one operational system. Such data pertaining to transaction 

levels forms the  raw material for comprehension of customer behavior.

It is possible to store transactions in a table—one record per transaction. The transactional 

database for a store, for instance, may contain just two columns—one for trans_ID, and one for 
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list_ of items_ IDs. The transactional database may have additional tables associated with it, which 

contain other information regarding the sale, such as the date of transaction, the customer ID 

number, the ID number of the sales person, and of the branch at which the sale occurred, and so on.

 • Data warehouses: These provide architectures and business tools for executives to enable 

them to organize, comprehend and make use of data in a systematic way for strategic decision-

making. Organizations utilize data warehouses to support business activities, such as to 

increase customer focus through an analysis of customer buying behavior; by repositioning 

products and managing product portfolios through a comparison of the sales performance 

quarterly, yearly, or region-wise; by an analysis of operations and looking for sources of 

profit, and so on. Data warehousing is significant when it comes to integrating heterogeneous 

databases. Data from operational databases and external data feeds are stored in warehouses 

once data has been extracted, cleaned, integrated and transformed. A lot of effort has been 

invested in the database industry and research community to attain this objective. Data 

warehouses are widely employed in banking and financial services, customer goods and 

retail distribution sectors, and controlled manufacturing such as demand-driven production.

For years now, the business world has been familiar with generation of automated reports, which 

fulfill  business requirements. Production of such reports is the main task of IT departments. Even 

small alterations in these reports require modification of the code. As a result, there is considerable 

delay between a user making a request for changes, and the user viewing the new information, 

measured in weeks and months. Organizations are drifting away from such old technology.

Query generation packages can be bought off the shelves and are popularly used to access data. 

These are capable of generating queries in SQL and talking to not just local but remote data sources 

as well using a standard protocol. Business analysts are generally able to produce the reports they 

need, and the response time is measurable in minutes or hours. Compared to the report-generation 

packages of the past, these respond faster but they continue to make it tough to exploit the data.

OLAP systems (data warehouses) are a considerably improved version of other systems as these 

systems design the data structure keeping in mind the users and their reporting requirements.

We will soon see how data is organized in a warehouse in a multidimensional structure, around 

primary subjects—customer, supplier, product, sales, and so on. OLAP operations (roll-up, and 

drill-(down, across, through), slice-and-dice, and pivot (rotate)) permit users to navigate through 

summarized and detailed data. This reduces response times to business queries to seconds, making 

the decision-making process very efficient.

The data warehouse evolves with continuous usage. In the beginning, the data warehouse is 

primarily utilized to generate reports, answer queries, perform fundamental statistical analyses, 

analyze summarized and detailed data and reporting, using crosstabs, tables, charts or graphs. This 

is referred as usage of data warehouse for information processing. Later, the data warehouse is 

utilized for analytical processing with the use of OLAP operations. Finally, the data warehouse 

may be used to make strategic decisions employing data mining tools.
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Data mining can gain from SQL in terms of selecting, transforming and consolidating data. It 

goes beyond what SQL could provide, such as prediction, comparison, detection, deviation, and so 

on.  

The functionalities of OLAP and data mining are also disconnected. OLAP tools aim to simplify 

and support interactive data analysis, whereas the objective of data mining tools is to automate as 

much of the process as possible, but at the same time permit the users to direct the process. Data 

mining involves more automated and deeper analysis than OLAP, as it has broader applications.

Researchers of database systems have established well-known principles in data models, query 

languages, query processing and optimization techniques, data storage, indexing and accessing 

methodologies, and ensuring consistency and security of the information stored even if systems 

develop snags, crash or attempts are made to access them by unauthorized means.

 • Multimedia Databases: Video data, image data, and even audio and text data are all part 

of multimedia databases. Since multimedia objects may need gigabytes of storage, there 

will be need for specialized storage as well as search methodologies. These methods require 

integration with standard mining techniques. Promising models include creating multimedia 

data cubes, extracting multiple features from multimedia data, and matching patterns based 

on similarity.

  Data mining from multimedia repositories may require computer vision, computer graphics, 

image interpretation, and natural language processing methodologies.

 • Spatial Databases: Over and above the usual data, spatial databases store geographical 

information, such as maps, and global and regional positioning. For data mining algorithms, 

such spatial databases are full of challenges.

 • Time-Series Databases: Time-series databases comprise sequential data (time-related 

attributes), and generally have new data flowing in continuously, for instance, stock market 

data. This, at times, leads to the need for versatile real-time analysis. In such databases, 

data mining usually involves the study of trends and correlations between the evolution of 

different variables, as well as the predictions of trends and movements of the variables in 

time.

 • World Wide Web: The World Wide Web is the most diverse and dynamic repository 

available. Conceptually, the World Wide Web consists of three primary parts: the content of 

the Web, encompassing available documents available; the structure of the Web, covering 

the hyperlinks and the relationships between documents; and the utilization of the Web, 

describing how the resources are accessed and when. It is possible to add a fourth dimension 

pertaining to the dynamic nature or evolution of the documents. Data mining in the World 

Wide Web, or Web Mining, attempts to address all these problems.

9.3.3  Data Warehousing: A General Architecture, and OLAP Operations

Data warehouses often adopt a three-tier architecture [17], as described in Fig. 9.3.
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Figure 9.3  A three-tier data warehousing architecture [17]

The Bottom Tier

The bottom tier is a data warehouse server that is usually a relational database accessed through 

some variant of SQL. This central repository is the heart of the data warehouse.

The origin of data lies in the source systems, which are operational systems, and external data 

feeds. Their design ensures efficiency in operation, not decision support. Data warehouse systems 

extract data, clean data and also perform data integration and transformation using back-end 

devices/utilities. Back-end devices and utilities carry out load and refresh functions also in order to 

shift data from source systems to the data warehouse or the bottom level.

The Middle Tier

The middle tier is an OLAP server implemented with the use of a multidimensional data model. 

This approach  looks at data in the form of a data cube. Cubes are conveniently stored in relational 

databases with the help of a data structure known as the star schema.
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A data cube permits multidimensional views of data, and is defined by dimensions and facts. 

Generally speaking, dimensions are entities or viewpoints according to which an organization 

wishes to maintain records. For instance, a retail store may construct a sales data warehouse for 

the purpose of maintaining  sales records of the store in terms of dimensions: item, time, location, 

branch, supplier, etc. These dimensions facilitate the tracking of periodic sales of products, branch 

wise or location wise.  

It is possible for each dimension to have diverse attributes. For instance, item as a dimension 

may possess the attributes item_name, brand, and type. Such attributes are stored in reference 

tables, known as dimension tables.

Figure 9.4 depicts a 3D data cube as per item, time, and location. Each grouping of entity 

(dimension) values (one value for every entity) defines a cell of the multidimensional array. Each 

cell contains what is representative of a value of the fact—the value of the target variable, which 

corresponds to the central theme we wish to analyze. The values of facts are numeric, because 

a primary goal of multidimensional data analysis is to find aggregate quantities, such as totals 

or averages. Examples of facts for a sales data warehouse include dollars_sold (sale amount in 

dollars), units_sold (number of units sold), and amount_budgeted. The data cube in Fig. 9.4 depicts 

dollars_sold as the fact. Each cell comprises a value for dollars_sold for that item, during that 

quarter (time), in the store in that city (location).

Although, we think of cubes as 3D geometric structures, in data warehousing the data cube is 

n-dimensional. A simple 2D data cube is, in fact, a table or spreadsheet. Suppose we want to view 

the data according to two dimensions: item and time, for a particular location. The data will be 

represented by a table with dollars_sold (the selected fact) values displayed.

Now suppose we want to view the data with three dimensions: item, time, and location. The 3D 

data is representative of a series of 2D tables. The conceptual representation of the data can be done 

in the form of a data cube, as shown in Fig. 9.4.
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dollars_sold)
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By adding the fourth dimension, for instance, branch, we can consider 4D cubes as being a series 

of 3D cubes: one cube for branch 1, another for branch 2, and so on. By continuing this way, we 

can represent any n-dimensional data as a series of (n – 1)-dimensional cubes. The data cube is a 

metaphor for multidimensional storage of data. The actual physical storage of such data may be 

different from the way it is logically represented.

Cubes can be conveniently stored in relational databases with the use of a data structure known as 

the star schema. One benefit of the star schema is its utilization of the standard database technology 

to attain the power of OLAP.

In a star schema (Fig. 9.5), the data warehouse comprises a fact table, which is simply a huge 

central table and a group of attendant dimensional tables, one table for each dimension. The schema 

graph looks much like a starburst, wherein the dimension tables are represented in a radial pattern 

around the central fact table, which lists the names of the facts, as well as the keys to each of the 

related dimensional tables.
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Figure 9.5  Star schema of sales data warehouse [17]

Data cubes are suitable for navigation of data at various abstraction levels, thereby offering rapid 

interactive querying and analyses. Indexing can make query processing more efficient. The bulk of 

data warehouse systems lend support to the index structures.  

OLAP creates an environment which users can use easily for interactive data analysis. The 

following are certain typical OLAP operations for multidimensional data. At the center of Fig. 9.6 

is a data cube for a retail store (refer to Fig. 9.4). 



Business Intelligence and Data Mining: Techniques and Applications  465

The roll-up operation achieves aggregation on a data cube by climbing up a concept hierarchy 

(from low-level concept of city to higher-level concept of country), instead of grouping the data by 

city; the resulting cube groups the data by country. Figure 9.6 shows roll-up climbing up a concept 

hierarchy for location from the level of city to the level of country.
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The navigation of drill-down takes place from less detailed to more detailed data, which is the 

opposite of roll-up. This can be achieved by stepping down a concept hierarchy for a dimension. 

Figure 9.6 depicts the result of a drill-down operation by stepping down a concept hierarchy for 

time from the level of quarter to the more detailed level of month.

The slice operation selects one dimension of a given cube, giving rise to a subcube. Figure 9.6 

indicates the result of a slice operation by selecting the data for dimension time with the use of the 

criterion time = “Q1”. 

The dice operation defines a subcube by selecting two or more dimensions. Figure 9.6 shows a dice 

operation based on selection criteria on three dimensions: (location = “Toronto” or “Vancouver”) 

and (time = “Q1” or “Q2”) and (item = “TV” or “Computer”).

Pivot (rotate) is a visualization operation that rotates the data axes in view to provide an 

alternative data presentation (refer to Fig. 9.6).

Other OLAP operations may include drill-across, drill-through, ranking, computing moving 

averages, trend analysis, statistical functions, etc. An OLAP engine is a powerful data analysis tool 

(many of the OLAP features are available in Microsoft Excel).

A data warehouse is set apart from a data mart (Fig. 9.3) in data warehousing. A data warehouse 

gathers information on subjects spread across the whole organization. A data mart is a specialized 

database system required for a department of the organization and/or on chosen subset of subjects.

The Top Tier

It is a front-end client layer which contains query and reporting tools, analysis tools, and so on 

(Fig. 9.3).

9.3.4  Data Mining in the Data Warehouse Environment

Data mining has a significant role to play in the environment of a data warehouse. The value 

of a data warehouse, initially, is obtained from information processing—that supports querying, 

basic statistical analysis, and reporting using crosstabs, tables, charts, or graphs—and analytical 

preprocessing (that supports basic OLAP operations, including slice-and-dice, drill-down, roll-up, 

and pivoting). 

The most valuable returns are obtained from better access to clean data, which can lead to 

innovation and creativity—and these come from data mining tools that improve understanding and 

stimulate creativity on the basis of the data observed.

A proper warehousing environment acts as a catalyst for data mining.

 • Most data mining tools require to work on integrated, consistent and cleaned data, which 

involves expensive preprocessing steps including cleansing, integration and transformation 

of data. A data warehouse, created by such preprocessing, acts as an important source of 

high-quality data for OLAP and also for data mining. Data mining may act as an important 

device for data cleansing and also for data integration.

 • Exploratory analysis is required for effective data mining. OLAP and data visualization 

processes offered by the data warehouse environment serve to improve the power and 

flexibility of data mining.
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 • Data mining algorithms are capable of taking advantage of big volumes of data in a data 

warehouse. While seeking patterns that identify rare events, possessing huge amounts of data 

guarantees that there is appropriate amount of data for analysis.

We can force the data into main memory, and access efficiently by the data mining algorithms or 

use special-purpose algorithms for disk access.

Some applications may demand typically much smaller dataset for mining. We can create a 

pseudo dataset that is statistically relevant; it can be accessed (e.g., in main memory) by the data 

mining algorithms.

Figure 9.7 shows how data mining and database technology interact. Data warehousing deals with 

the  issue of managing data, which is characteristically not addressed clearly in most descriptions of 

data mining algorithms. It is the usual practice to run the data mining algorithms repeatedly several 

times, as part of the overall data mining process, using various approaches, different variables, and 

so on, in an exploratory way before settling on a final result. The iterative process comprises:

 1. Data cleansing and data integration—This encompasses removal of noisy and unrelated 

data and combination of several data sources, often diverse (construction of data warehouse).

 2. Data selection—This encompasses identification of useful data related to the analysis and its 

retrieval from data warehouse.

 3. Data transformation—This involves transformation of the chosen data into appropriate 

forms suited to the process of pattern recognition.

 4. Pattern recognition and evaluation—This is an important step wherein clever methods are 

used for the extraction of patterns which are potentially useful.

 5. Knowledge representation—The knowledge discovered is presented in visuals, for better 

interpretation by the user.

Data warehousing is different from data mining, but the former complements the latter and vice 

versa. Data mining is not limited to analysis of data stored in data warehouses. It may also analyze 

transactional, spatial, textual and multimedia data which are not easy to model using existing 

multidimensional database technology.

9.4  MINING FREQUENT PATTERNS AND ASSOCIATION RULES

Pattern classification and Regression are both concerned with model building using supervised 

learning methods. Another data mining application is concerned with cluster analysis. Unlike 

classification and regression, clustering analyzes data objects using unsupervised learning methods. 

All of these data mining applications have been discussed in the earlier chapters of the book.

Here we are concerned with yet another application of data mining: frequent patterns detection 

and generating association rules, using unsupervised learning. Mining frequent patterns is originated 

with the study of customer transactions databases to determine association between purchases of 

different items/service offerings. This popular area of application is called market basket analysis, 

which studies customers’ buying habits for products that are purchased together. This application is 

commonly encountered in online recommender systems where customers examining product(s) for 

possible purchase are shown other products that are frequently purchased in conjunction with the 

desired product(s); display from Amazon.com, for example.
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Figure 9.7  Interaction of data mining and database technology

Other than market basket data, association analysis can also be applied to web mining, medical 

diagonosis, text mining, scientific data analysis, and other application domains. A medical 

researcher wishes to find out about the symptoms that match the confirmed diagonosis. While 

analysing Earth science data, the association patterns often disclose interesting links among the 

ocean, land and atmospheric pressures. The association approach, in terms of text documents, can 

be used to discover word co-occurrence relationships (used to find linguistic patterns). Association 

analysis can be used to discover web usage patterns.

Even though association analysis is generally applicable to a wider variety of datasets, for 

illustrative purposes, our discussion will focus mainly on market basket data. A manager of a retail 
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outlet would want to know details about his customers’ purchase habits—to be specific, ‘which are 

the products sought after by the customers on a visit to the outlet?’. To arrive at the answer, market 

basket analysis may be done on the retail data of customer dealings at the outlet. Marketing can be 

planned, and advertising strategies formulated on the basis of the results. The results can also be 

utilized to design new catalogs or to modify store layouts. With the help of market basket analysis, 

retailers can plan which products need to be offered on sale at discounted rates.

There are two stages in the market basket analysis. The first stage proceeds by mining frequent 

patterns in customers’ transactions (sets of items/service offerings that are frequently purchased 

together). The second stage takes frequent patterns and generates association rules from them. In 

this section, we first introduce the basic concepts of the two-stage procedure, and then present the 

basic methods for detection of frequent patterns and generation of association rules.

9.4.1  Basic Concepts

Market basket data is transaction data that typically describes the transactions (purchase of one 

or more items or service offerings), and some additional information such as product/service 

description, information about the sales person and branch, customer identity, date and time of 

purchase, cash or credit card payment, and so on. For the purpose of analysis, the products or 

service offerings are referred to as items, and the set of items sold together in transactions as 

itemsets. Frequent itemsets are sets of items that are frequently sold together. Detection of such 

frequent patterns from transactional data is our task.

Let X = {xj}; j = 1, ..., n be the set of items available at a store. Let D, the task-relevant data, be a 

set of database transactions {s(i)}; i = 1, 2, …, N; where each transaction s(i) is a non-empty itemset 

X(i) such that X(i) Õ X. Table 9.1 illustrates an artificial example of basket data with N = 9, and n = 5.

Table 9.1  An artificial example of basket data

Transactions

s
(i)

Items purchased

s(1) x1, x2, x5

s(2) x2, x4

s(3) x2, x3

s(4) x1, x2, x4

s(5) x1, x3

s(6) x2, x3

s(7) x1, x3

s(8) x1, x2, x3, x5

s(9) x1, x2, x3
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Each of these transactions gives information about which products are purchased with which 

other products. The mining task is to detect frequent patterns—itemsets that are frequently 

purchased together.

The toy example of basket data, provided in Table 9.1, can be depicted in binary format as 

in Table 9.2. While the rows are representative of the transactions of individual customers, the 

columns depict the items in the store. A ‘1’ in the location (i, j) implies that customer i bought item 

j; and a ‘0’ is indicative of the fact that the item was not bought. Each item xj is a Boolean variable, 

representative of the existence or absence of the items inside a basket. Each basket can then be 

depicted using a Boolean vector of values assigned to these variables.

The binary-format general representation of data is offered by a data matrix with N rows 

(corresponding to transactions/baskets), and n columns (corresponding to the items held in the 

store). Matrices such as this may be large with N in millions and n in the tens of thousands; and is 

generally very sparse because a typical basket holds very few items.

The existence of an item in a transaction is taken to be rather more significant than its 

non-existence. Therefore, an item is asymmetric binary variable. Each transaction comprises a 

subset of items selected from X; the number of items existing in an itemset may range from 1 to n. 

If the itemset has k items, it is called k-itemset.

Table 9.2  Binary format representation of basket data given in Table 9.1

Transactions

s
(i)

x1 x2 x3 x4 x5

s(1) 1 1 0 0 1

s(2) 0 1 0 1 0

s(3) 0 1 1 0 0

s(4) 1 1 0 1 0

s(5) 1 0 1 0 0

s(6) 0 1 1 0 0

s(7) 1 0 1 0 0

s(8) 1 1 1 0 1

s(9) 1 1 1 0 0

A major challenge in mining frequent itemsets from a large dataset is computational complexity. 

Any given set of transactional data is going to have many possible itemsets. To find frequent 

patterns, the brute-force method requires executing a linear scan of the data once for every possible 

itemset. For a few hundred products, the number of possible itemsets quickly climbs to millions. The 

challenge is to detect frequent itemsets in a large data matrix in a relatively efficient computational 

manner.
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Let us represent detected frequent pattern sets by Xfl; l = 1, …, m. Let Z and Y be two sets of 

items. A frequent itemset Xfl is said to contain Z and Y if Z Ã Xf l, Y Ã Xf l, Z π ∆, Y π ∆, and Z ∩ Y 

= ∆. An association rule is an implication of the form ‘If a customer purchases Z set of items, then 

the customer also purchases Y set of items’. This implication can be captured in the form of rules

  IF Z THEN Y

or    (9.1)

         Z fi Y

(The presence of items in antecedent Z implies the presence of items in consequent Y)

The rule structure is rather simple and easy to interpret, which explains why the association 

rules are generally found to be appealing. However, such rules consist of a relatively weak form 

of knowledge. They are merely co-occurrence patterns in the observed data instead of strong 

statements that characterize the population as a whole. Indeed, in a sense that the term ‘rule’ usually 

indicates a causal interpretation (from the left hand to the right hand side), the term ‘association 

rule’ is, strictly speaking, a misnomer since these patterns are inherently correlational but need not 

be causal.

9.4.2  Measures of Strength of Frequent Patterns and Association Rules

Association rule mining consists of finding frequent itemsets first, from which strong association 

rules are generated. Frequent itemsets are often interesting themselves, and there is no need to 

generate association rules from them. In other cases, the goal is to turn the frequent itemsets into 

association rules.

The search for detecting frequent patterns is the major goal of association rule mining algorithms. 

Data mining can discover a very large number of patterns/rules; in some cases, the number can 

reach the millions. Algorithms for mining are designed specifically to operate on very large sparse 

datasets in a relatively efficient manner in terms of storage and computation requirements. These 

algorithms explicitly try to minimize the number of linear scans through the database. Restricting 

to ‘strong’ patterns/rules is not only helpful in reducing computational complexity, but also is more 

useful from users’ perspective.

Let us defer discussion of how to mine frequent itemsets/association rules, and instead ask 

another question: Which patterns/rules are useful or interesting? Whether the knowledge discovered 

is useful or interesting, is very subjective and depends upon the application and the user. In the 

following, we present traditionally used pattern evaluation measures that reflect the strength of 

patterns/rules in terms of usefulness.

The transactional datasets have usually skewed distributions; most of the k-itemsets have 

relatively low to moderate frequencies, but a small number of them have very high frequencies. 

Restricting to high frequency itemsets that apply to relatively large number of baskets (called 

patterns with high coverage or support), results in strong patterns and therefore strong rules may be 

derived. If Z and Y are two nonempty subsets of frequent itemset Xfl such that Z ∩ Y = ∆ and Z ∪ Y 

= Xfl, then the coverage or support of Xfl is also coverage or support of the rule Z fi Y.

In addition to coverage or support, another traditionally used measure for a strong association 

rule is its accuracy (also called confidence) which measures the proportion of baskets to which the 

rule applies.
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It is common for association rule mining algorithms to use a support-confidence framework. 

Even though this framework helps to remove unwanted exploration of a certain number of rules 

that are not interesting to the users, several of the generated rules are yet not interesting. It is 

possible to supplement the support-confidence framework with additional interesting measures on 

the basis of correlation analysis. One such common measure is Lift.

Support: The support of a rule measures the number of transactions including both the antecedent 

and consequent itemsets. It is referred to as ‘ support’ as it is used to measure the degree to which 

the data ‘supports’ the validity of the rule.

Given an association rule:

  IF Z THEN Y

or

         Z fi Y

the antecedent itemset is Z and consequent itemset is Y. Frequency of itemset Z, fr(Z), is the number 

of transactions (baskets) that contain Z. Support_count is fr(Z ∪Y), i.e., number of baskets that 

contain both Z and Y. We define the support of association rule (9.1) as

  Support (Z fi Y ) = 
f Z Y

N

r ( )∪
 (9.2)

Confidence: Besides  support, there is another measure to convey the level of uncertainty about 

the IF-THEN rule. This is called the confidence of the rule—a measure, which makes a comparison 

between  the co-occurrence of the antecedent and consequent itemsets in the database, and the 

occurrence of the antecedent itemsets. Confidence is the ratio of the number of transactions including 

all the antecedent and consequent itemsets (the support_count) to the number of transactions 

including all the antecedent itemsets.

 Confidence (Z fi Y) = 
f Z Y

f Z

r

r

( )

( )

∪
 (9.3)

To view the relationship between support and confidence from a different perspective, let us 

express these measures in terms of probability functions. We can express support as the (estimated) 

probability that a transaction selected randomly from the database will contain all items in the 

antecedent and the consequent, i.e., fr(Z ∪Y)/N can be viewed as empirical estimate of P(Z ∪Y). 

On similar lines, confidence may be expressed as the (estimated) conditional probability that a 

transaction selected randomly will include the item in the consequent given that the transaction 

includes all the items in the antecedent, i.e., we can view

 fr(Z ∪Y )/fr(Z) = 
f Z Y N

f Z N

r

r

( )/

( )/

∪
 (9.4a)

as an empirical estimate of   

 P(Y |Z) = 
P Z Y

P Z

( )

( )

∪
 (9.4b)
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Note that instead of a simple frequency-based estimate, we could use more robust estimate of 

probability functions P(Z ∪Y) and P(Y |Z) for small sample sizes. However, since association rules 

are typically used in applications with very large datasets, the simple frequency-based estimates 

will be quite sufficient in such cases.

Also note that the inference made by an association rule does not necessarily imply causality. 

Causality requires knowledge about cause and effect attributes in the data; a model is derived from 

this data (like a decision tree) that predicts what an unknown output will be for a given input. 

Association rules do not predict uniquely what the consequent item will be for a given antecedent 

itemset. Various rules are in force (not a single rule) for an antecedent itemset that give various 

values of the consequent.

Therefore, there is no consistent and global description of the dataset offered by the set of 

association rules. However, the collection of association rules or frequent itemsets can be considered 

as providers of an alternative representation of the original dataset. In the condensed form, this 

representation will be of use.  

The collection of association rules can be very easily condensed by discarding the rules with 

support and confidence measures lesser than certain thresholds. 

The model structure for association rules is the set of all possible conjuctive probabilistic 

rules that satisfy the constraint that the support and the confidence are greater than or equal to 

the user-specified minimum support (denoted by minsup) and minimum confidence (denoted by 

minconf), respectively. These thresholds constitute the ‘score function’ used in association rule 

searching (minsup = 0.1 means we want only those rules that cover at least 10% of the data. 

Minconf = 0.9 means that we want rules that are at least 90% accurate). A pattern gets a score of 1 

if it satisfies both the threshold conditions, and a score of 0 otherwise. The goal is to find all rules 

(patterns) with a score of 1.

Lift: Yet another way to gauge the power of an association rule is by comparing the confidence of 

the rule with a benchmark value, wherein it is assumed that the antecedent and consequent itemsets 

are independent. When independence is assumed, the support would be P(Z ∪Y ) = P(Z) ¥ P(Y); and 

the benchmark confidence would be P(Z) ¥ P(Y)/P(Z).

Lift (also called improvement) is the ratio of the confidence of the rule and the benchmark 

confidence.

 Lift (Z fi Y) = 
Confidence

Benchmark confidence
 (9.5)

A lift value greater than 1.0 suggests that there is some usefulness to the rule. The larger the lift, 

the greater the strength of association.

9.4.3  Frequent Item Set Mining Methods

Several efficient algorithms have been developed for frequent itemset mining, which may result 

in association rules. The Apriori algorithm [162] is an important algorithm used to mine frequent 

itemsets. The algorithm is named on the basis of fact that it makes use of prior knowledge of 

frequent itemset characteristics/features. It explores the Apriori property that all nonempty 

subsets of a frequent itemset must also be frequent. Variations that include hashing and reducing 
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transactions (a transaction which does not hold any frequent k-itemsets cannot contain any frequent

(k + 1)-itemsets, and can be removed from further data scans) can be employed to ensure the 

efficiency of the process. Partitioning (mining on each partition and then combining the results) and 

sampling (mining on a data subset) of the data are some of the other variations capable of reducing 

the number of data scans.

As we will shortly see, the Apriori algorithm is a generate-and-test method; it generates candidate 

itemsets using Apriori property, and then tests the candidates with respect to minsup, the minimum 

support threshold. Though there is significant performance gain in comparison to determining the 

support of all possible combinations of items, candidate generation process can be quite costly.

Is it possible to design a technique that mines the complete set of frequent itemsets without an 

expensive candidate generation procedure? One technique in this endeavor is known as  frequent 

patterns growth, or merely FP growth; it mines the entire set of itemsets without candidate 

generation. It encodes the dataset with the help of a compact data structure referred to as an FP-tree, 

and directly takes out the frequent itemsets from this structure.

In the following section, we limit our discussion to basic Apriori algorithm employing support-

confidence framework for pattern evaluation [162].

Apriori Algorithm

Apriori makes use of a repetitive approach called level-wise search, wherein (k + 1)-itemsets 

are explored using k-itemsets. First, the set of frequent 1-itemsets is discovered by scanning the 

database to gather the count for each item, and gathering the items that satisfy minimum support. 

The set that results is depicted by S1. S1 is then used to find S2—the set of frequent 2-itemsets that 

satisfy minimum support, with the help of which S3 is found, and so on, until we frequent itemsets 

of all sizes has been generated. To look for each frequent k-itemset, one complete scan of the 

database is necessary.

To make the level-wise generation of frequent itemsets more efficient, the search space is 

reduced using Apriori property. According to Apriori property, the nonempty subsets of a frequent 

itemset should also be frequent. This property is formed on the basis of following observation. In 

case an itemset Z does not fulfill the minimum support threshold, minsup, then Z is not frequent. 

On adding an item xj to the itemset Z, the occurrence of the resultant itemset Z ∪ xj cannot be more 

frequent than Z. Therefore, Z ∪ xj is not frequent either. To comprehend this, examine how Sk for

k ≥ 2 is found with the help of Sk–1. It follows a two-step process comprising join and prune.

 1. Join: To find Sk, a set of candidate k-itemsets is generated by joining Sk–1 with itself, 

represented as Sk–1  Sk–1. The candidate itemset, obtained after the join step, is denoted by 

Ck, i.e.,

Ck = Sk–1  Sk–1

  To see how the ‘join’ step works, let Xf l and Xf 2 be two itemsets in the set of frequent itemsets 

Sk–1. The jth item, xj, in the itemset Xfl is denoted as Xf l( j), e.g., Xf l(k–2) refers to the second 

last item in Xf l.

 • Frequent itemsets Xf1 and Xf 2 of Sk–1 are joinable if their first (k – 2) items are in common, 

i.e., Xf1(1) = Xf 2(1), Xf1(2) = Xf 2(2), …, Xf 1(k–2) = Xf 2(k–2).
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 • Another condition imposed on the join step is

Xf1(k–1) < Xf2(k–1)

  That is, if (k –1)th item in Xf1 is xp; p = 1, …, n, and (k–1)th item in Xf 2 is xq; q = 1, …, n, 

then p < q. This condition ensures that no duplicates are generated.

   The resulting itemset formed by joining Xf1 and Xf 2 is {Xf 1(1), Xf1(2), …, Xf1(k –1), 

Xf 2(k –1)}.

 2. Prune: Ck is a superset of Sk; its members may or may not be frequent, but all of the frequent 

k-itemsets are included in Ck. A database scan to determine the frequency of each candidate 

in Ck would result in the determination of Sk (i.e., all candidates having support no less than 

minsup are frequent by definition, and therefore belong to Sk).

But, Ck  can be large, which could involve weighty computation. With the use of Apriori property 

as shown below, the size of Ck can be reduced.

No (k–1)-itemset, which is not frequent, can form a subset of a frequent k-itemset. Therefore, if 

any (k–1)-item subset of a candidate k-itemset is not in Sk–1, then the candidate cannot be frequent 

either and hence, can be deleted from Ck. This testing of subset does not require time, and can be 

performed by maintaining a hash tree of all frequent itemsets.

Let us now demonstrate the concepts using the basket data of Table 9.1 [17].

 1. In the first iteration of the algorithm, each item xj; j = 1, …, n, is a member of candidate 

1-itemsets C1. The algorithm simply scans all the transactions in order to count the number 

of occurrences, fr(xj), of each item (Fig. 9.8). 

 C1 S1

    Scan
for frequency

D

æ Ææææææ

Itemset Frequency

Compare candidate
support with minsup
æ Æææææææææ

Itemset Support

x1 6 x1 6/9

x2 7 x2 7/9

x3 6 x3 6/9

x4 2 x4 2/9

x5 2 x5 2/9

Figure 9.8

 2. We assume that minsup = 2/9 = 22%. The set of frequent 1-itemsets S1 consists of the 

candidate itemsets satisfying minsup (Fig. 9.8).

 3. To determine the set of frequent 2-itemsets S2, the algorithm uses the join step C2 = S1  S1; 

C2 is the set of candidate 2-itemsets.
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  During the prune step, no candidates are removed from C2 as each subset of the candidates 

is frequent. In the next step, scanning of the transactions in D takes place followed by the 

accumulation of the frequency of each candidate itemset in C2 (Fig. 9.9).

 4. The set of frequent 2-itemsets S2 consists of candidate 2-itemsets with support ≥ 2/9

(Fig. 9.9).

 C2 S2

Generate candidates
from and scan for

frequency

2C

S1 D

æ Ææææææææææ

Itemset Frequency

Compare candidate
support with minsup
æ Æææææææææ

Itemset Support

{x1, x2} 4 {x1, x2} 4/9

{x1, x3} 4 {x1, x3} 4/9

{x1, x4} 1 {x1, x5} 2/9

{x1, x5} 2 {x2, x3} 4/9

{x2, x3} 4 {x2, x4} 2/9

{x2, x4} 2 {x2, x5} 2/9

{x2, x5} 2

{x3, x4} 0

{x3, x5} 1

{x4, x5} 0

Figure 9.9

 5. The generation of the set of candidate 3-itemsets C3 is done as follows:

Join : C3 = S2  S2

                     C3 = [{x1, x2}, {x1, x3}, {x1, x5}, {x2, x3}, {x2, x4}, {x2, x5}]

                        [{x1, x2}, {x1, x3}, {x1, x5}, {x2, x3}, {x2, x4}, {x2, x5}] 

                         = [Xf1, Xf2, Xf3, Xf4, Xf5, Xf6]  [Xf1, Xf2, Xf3, Xf4, Xf5, Xf6]

 • Xf1 is not joinable with Xf1, since their last item-numbers are equal; we require that last 

item-number of the first set to be less than that of the second set.

 • Xf 1  Xf 2 = {x1, x2}  {x1, x3} = {x1, x2, x3}

 • Xf1  Xf 3 = {x1, x2}  {x1, x5} = {x1, x2, x5}

 • Xf 1  Xf 4 = {x1, x2}  {x2, x3}; not joinable because their first item-numbers are not 

equal

 • Xf 1  Xf 5 = {x1, x2}  {x2, x4}; not joinable because their first item-numbers are not 

equal

 • Xf 1  Xf 6 = {x1, x2}  {x2, x5}; not joinable because their first item-numbers are not 

equal
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 • Xf 2  Xf 1 = {x1, x3}{x1, x2}; not joinable because the last item-number of the first 

set is not less than that of the second set

 • Xf2  Xf2 = {x1, x3}{x1, x3}; not joinable because the last item-number of the first 

set is not less than that of the second set

 • Xf2  Xf3 = {x1, x3}  {x1, x5} = {x1, x3, x5}

                        

                        C3 = [{x1, x2, x3}, {x1, x2, x5}, {x1, x3, x5}, {x2, x3, x4}, {x2, x3, x5}, {x2, x4, x5}]

  Prune: All nonempty subsets of frequent itemsets must also be frequent. Do any of the 

candidates have a subset that is not frequent?

 • The 2-item subsets of {x1, x2, x3} are {x1, x2}, {x1, x3}, and {x2, x3}. All of these subsets 

are members of S2. Therefore, we keep {x1, x2, x3} in C3.

 • The 2-item subsets of {x1, x2, x5} are members of S2; so we keep {x1, x2, x5} in C3.

 • The 2-item subsets of {x1, x3, x5} are {x1, x3}, {x1, x5}, and {x3, x5}. {x3, x5} is not a 

member of S2, and so it is not frequent. Therefore, we remove {x1, x3, x5} from C3.

 • Similarly, we remove {x2, x3, x4}, {x2, x3, x5} and {x2, x4, x5} from C3.

  After pruning, C3 becomes

C3 = [{x1, x2, x3}, {x1, x2, x5}]

  Next, transactions in D are scanned and the frequency of each candidate itemset in C3 is 

accumulated. The scan results are: frequency of {x1, x2, x3} = 2; frequency of {x1, x2, x5} = 2.

 6. The set of frequent 3-itemsets S3 consists of candidate 3-itemsets with support ≥ 2/9. This 

gives

S3 = {{x1, x2, x3},{x1, x2, x5}} = {Xf 1, Xf 2}

 7. The algorithm uses S3  S3 to generate candidate set of 4-itemsets C4. The join step results 

in {x1,  x2,  x3,  x5}. The prune step results in C4 = empty set, since its subset {x2, x3, x5} is not 

frequent.

The algorithm terminates, having found all the frequent itemsets.

9.4.4  Generating Association Rules from Frequent Itemsets

As said earlier, association rule mining works in two stages.

 Stage 1: Generation of all frequent itemsets: A frequent itemset is an itemset with transaction 

support above minsup.

 Stage 2: Generation of all confident association rules from frequent itemsets: A confidence 

association rule is a rule with confidence above minconf.

The first stage usually presents the computational challenge for most association analysis data, 

as was discussed earlier in Section 9.4.3 while describing the Apriori algorithm. In the second 

stage, the computation of the confidence is quite simple.
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For the generation of rules for each frequent itemset Xfl, the nonempty subsets in Xfl are used. 

For each subset Y, we output a rule of the form

 Z fi Y ; Z = Xf l – Y (9.6a)

                                  Confidence (Z fi Y ) = 
f Z Y

f Z

f X

f Z

r

r

r f l

r

( )

( )

( )

( )

∪
=  (9.6b)

All the frequencies or counts required to compute confidence are available. This is because if Xfl 

is frequent, then its nonempty subsets are also frequent, and its support_count is already recorded 

in the mining process (it is possible to store frequent itemsets in hash tables along with their counts 

so that they can be rapidly accessed). Therefore, no data scan is required to generate rules.

But this strategy of generating rules is not efficient. Designing an efficient algorithm leads us 

to observe that support_count of Xfl in the confidence computation aforementioned, does not alter 

with the change of Y. For a rule Xf l – Y fi Y to sustain, all rules of the form Xf l – Ysub fi Ysub will 

also hold, where Ysub is the nonempty subset of Y, as the support_count of (Xf l – Ysub) will have to 

be less than or equal to the support_count of (Xf l – Y).

Therefore, considering a given frequent itemset Xfl, if a rule with consequent Y holds, then so 

will the rules with consequents that are subsets of Y. Hence, from the frequent itemset Xfl, we first 

generate all rules with one item in consequent. Then with the help of the consequents of these 

rules, we generate all likely consequents with two items, which can appear in a rule, and so on. 

This way we can build up from single-consequent rules to candidate double-consequent rules, from 

double-consequent rules to candidate triple-consequent rules, and so on. Each candidate rule should 

be checked against the hash table to ensure it has more than the minimum confidence specified. 

However, this usually involves checking far fewer rules than the brute-force technique. Interestingly, 

this technique of building up candidate (k+1)-consequent rules from actual k-consequent rules is 

identical to building up candidate (k+1)-itemsets from actual k-itemsets, as explained earlier.

Let us look at an example based on the transactional data represented earlier in Table 9.1. The 

data contains frequent itemset Xf 2 = {x1, x2, x5} (refer to Section 9.4.2). From this frequent itemset, 

we get the following candidate association rules (nonempty subsets of Xf 2 are: {x1, x2}, {x1, x5}, 

{x2, x5}, {x1}, {x2}, {x5}).

Rule 1: {x1, x2} fi x5, with confidence = 
f X

f x x

r f

r

( )

({ , })

2

1 2

2

4
=

Rule 2: {x1, x5} fi x2, with confidence = 
f X

f x x

r f

r

( )
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2

1 5

2

2
=

Rule 3: {x2, x5} fi x1, with confidence = 
f X

f x x

r f

r
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2
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Rule 4: x1 fi {x2, x5}, with confidence = 
f X

f x

r f

r
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Rule 5: x2 fi {x1, x5}, with confidence = 
f X

f x

r f

r

( )

( )

2

2

2

7
=

Rule 6: x5 fi {x1, x2}, with confidence = 
f X

f x

r f

r

( )

( )

2

5

2

2
=

If the minimum confidence sought is 70%, only the second, third, and last rules will be reported.

In practice, the amount of computation needed to generate association rules critically depends 

upon specified minsup. The minconf  has less influence as it does not impact the number of data 

scans required to be made. We would, at times, wish to get a certain number of rules—say 50—

with the maximum possible support at a prespecified minimum confidence level. One method of 

doing this is to start by laying down the support to be quite high and then successively reducing 

it, followed by re-execution of the whole two-stage process for each of the support values and 

repetition of the same till the desired number of rules have been generated.

For more details, refer to [17, 163].

9.5  INTELLIGENT INFORMATION RETRIEVAL SYSTEMS

Retrieval of text-based information from a large database has traditionally been termed as 

information retrieval. The proliferation of multimedia data over the years has created a huge demand 

for image-based, audio-based, and video-based information from large databases, in addition to 

text-based information. We will, therefore, use the term ‘information retrieval systems’ for retrieval 

of information from text, image, audio, and video databases.

Owing to plenty of text information, there are several text-based information retrieval systems 

available,  such as on-line library catalog systems, on-line document management systems, and so 

on. Retrieving of information has of late become a subject of discussion, more so with the arrival 

of text search engines on the Internet. Retrieval techniques are used to look for documents on the 

Web through queries (The widely popular example is that of Google system).

Information retrieval, as a subject, has developed along with database systems over several 

years. Database systems have concentrated on querying and transaction processing of structured 

data. On-line transaction and query processing are the primary jobs of on-line operational 

database systems. On-Line Transaction Processing (OLTP) systems cover almost all the daily/

routine operations of an organization, which include accounting, payroll, purchasing, banking, 

manufacturing and inventory. On-Line Analytical Processing (OLAP) systems are capable of 

organizing and presenting data in different formats so that the needs of different users, in terms of 

data analysis and decision-making can be accommodated. A query is merely a particular request 

made in a technical language, for a particular data subset or for statistics from data. A query is posed 

to a database system for the desired processing. These queries can be formulated using Structured 

Query Language (SQL) or a Graphical User Interface (GUI) (refer to Section 9.3). 

In contrast, data mining is used to come up with queries as a pattern or regularity in data in 

information retrieval systems. An information retrieval problem may typically be the location of 

relevant documents in a document pool, on the basis of a user’s query. This is quite often related 
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to certain keywords which describe the need for an information, although it could be an example 

relevant document. Such content-based retrieval systems are referred to as intelligent information 

retrieval systems [23].

The common approach used for intelligent information retrieval systems is the representation 

of objects in the database and querying, both as vectors in a high-dimensional space, and use 

of a proper measure for computation of the similarity between the query vector and the object 

representation vector. The objects can then be ranked based on the similarity values.

The content-based retrieval systems, which operate with domain specific constraints, are likely 

to make real impact in terms of commercial activities. One practical example of such retrieval 

systems is the content-based image retrieval from Biometric databases. Here, the user has a pattern 

of interest (finger print, for example) and wishes to find similar patterns in the dataset. The notion 

of similarity is critical in content-based retrieval systems; however an exact match is not the target. 

Problems of this nature take the following form:

“Find the k objects in the database that are most similar to the specific query pattern”.

In the context of a database, the conventional idea of a query is an operation that returns a set of 

records (or entities) that precisely match a set of specifications demanded. Database management 

systems, traditionally, have been designed to answer specific queries in an efficient manner.

There are several applications wherein we are interested in queries that tend to be more general 

and less precise. For instance, in the medical context, we may have the demographic details of 

a patient—age, gender, nationality, and so on; X-ray reports, blood test details, and information 

pertaining to other routine physical tests, along with biomedical time-series. It will help the physician 

diagnose better if he has information about the treatment approach taken for similar patients from 

the database of the hospital, and the treatment and results, therein. The challenge is to determine the 

similarity among patients on the basis of various data types (in this case, multivariate time-series 

and image data). However, the concept of a precise match is irrelevant here, as the probability of 

any other patient matching the measurements of the patient in question, exactly, will be very low.

Mixed-media information retrieval systems is a research subject of current interest. Substantial 

progress has, however, been made in image-retrieval and text-retrieval systems.

The subject of Information Retrieval is presently at a stage where we are dealing with first-

generation machine learning algorithms, which are of significant value in a range of real-world 

information-retrieval applications that involve text data. To some extent, success has been achieved 

with regard to image/audio data. However, these first-generation algorithms are not without 

important limitations. Typically, they work with the assumption that it is possible to transform the 

text/image/audio data into an N ¥ n structured data matrix with numeric values alone. It is assumed 

that the data has been gathered with care into a single database keeping in mind a particular data 

mining task for a particular retrieval need. 

The next ten years are expected to produce advances of high magnitude. Such advancement 

could be driven by the development of new algorithms that accommodate dramatically more varied 

sources and kinds of unstructured text/image/audio/mixed media data for information retrieval 

applications (refer to Section 9.7). This section aims to familiarize the reader with the various types 

of text, image, audio, video, and audiovisual data, emphasizing features of these data types for 

some limited retrieval applications.
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Measuring Accuracy of Information Retrieval (IR) Systems

There are different measures available for evaluating the performance of retrieval systems. The 

measures are based on how good the system is in retrieving the relevant information from the 

given set of objects and a query. The main objective of the evaluation is to measure the accuracy 

or ability to take the right classification decision. We have earlier described in Section 2.8, the 

well-known Receiver-Operating Characteristics (ROC) used to characterize the performance of 

binary classifiers. The IR community has traditionally been using the Precision-Recall Performance 

curves, which are essentially equivalent (except for relabeling of the axes) to the ROC curves.

Precision and Recall: Suppose we have to evaluate the performance of a particular retrieval 

algorithm in response to a specific query Q on an independent dataset. The objects in the test 

data have already been classified as ‘relevant’ or ‘irrelevant’ to the query Q. The assumption 

is that the test dataset has not been used to tune the performance of the retrieval algorithm. We 

can consider the retrieval algorithm as merely classification of the objects in the dataset (in 

terms of relevance to Q), wherein the true class labels are concealed from the algorithm, but 

are known for test purposes.

  Relevant to Q : +ve class

 Not relevant to Q : –ve class

Suppose that the test dataset has N objects.

 N = TP + FP + FN + TN = total number of labeled objects

 TP = number of correct classifications of +ve test examples (‘true positive’)

 FN = number of incorrect classifications of +ve test examples (‘false negative’)

 FP = number of incorrect classifications of –ve test examples (‘false positive’)

 TN = number of correct classifications of –ve test examples (‘true negative’)

Table 9.3 summarizes the performance of a retrieval system. This form of reporting classification 

results is sometimes referred to as confusion matrix. Through confusion matrix, it becomes convenient 

to introduce the terms precision and recall, which are more suitable measures (than accuracy) in 

such applications, because they measure how precise and how complete the classification is on the 

+ve class (the class we are interested in).

Table 9.3  Performance of a retrieval system

                                                                                                  Retrieved Objects

Actual Objects

Classified +ve Classified –ve

Actual +ve TP FN

Actual –ve FP TN

Precision refers to the fraction of retrieved objects which are relevant, whereas recall is the 

fraction of relevant objects which  are retrieved. Precision is the number of relevant objects retrieved 
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divided by the total number of objects retrieved by that search (number of correctly classified +ve 

examples divided by the total number of examples classified as +ve). Recall is the number of 

relevant objects retrieved divided by the total number of relevant objects in the dataset (number 

of correctly classified +ve examples divided by the total number of +ve examples in the dataset).

 Precision = 
TP

TP FP+

 (9.7a)

 Recall = 
TP

TP FN+

 (9.7b)

If the algorithm makes use of a distance measure for ranking the set of objects, then it is typically 

parametrized by a threshold. Therefore, KT objects will be returned by the algorithm as +ve class. 

KT is a trade-off parameter. With a rise in the number of retrieved objects KT = TP + FP (i.e., as 

we increase the threshold and allow the algorithm to declare more objects to be relevant), Recall 

is expected to increase (in the limit, we can return all objects, in which case Recall = 1), while 

Precision is expected to fall (as KT is increased, it will be tougher to return only relevant objects). 

If we run the retrieval system for different values of the threshold parameter, we will obtain a set 

of pairs of Precision-Recall points. 

Practically speaking, rather than performance evaluation relative to a single query Q, we estimate 

the average recall-precision performance over a set of queries.

Typical plot of recall-precision of various retrieval algorithms relative to the same dataset and 

set of queries is shown in Fig. 9.10. Algorithm A has the maximum level of precision for low recall 

values and low precision for high recall values, while algorithm B has lower precision for low 

recall values, and higher precision for high recall values, compared to algorithm A. A choice cannot 

clearly be made between A and B unless we are operating at a particular recall value.
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High recall-low precision returns many results but most of the predicted labels are incorrect. 

High precision-low recall returns very few results but most of its predicted labels are correct. High 

scores for both precision and recall indicate that the classifier is returning accurate results as well 

as returning a majority of all positive results.

There are a number of schemes we can use to summarize precision-recall performance by a 

single parameter. F-score is the commonly used scheme. F-score is the harmonic mean of precision 

and recall:

                                        F = 
2

1 1

2

Precision Recall

Precision Recall

Precision + Recall
+

=
( ) ( )

 (9.8)

The harmonic mean of two numbers tends to be closer to the smaller of the two. Thus for F-score 

to be high, both Precision and Recall should be high.

9.5.1  Text Retrieval

Text documents are information sources and machine learning techniques are used to retrieve useful  

text from large pools of documents. A lot of research on text retrieval is concentrated on searching 

for general representations for documents that support both the following:  

 • The capability of retention of as much of the semantic content of the data as possible

 • The efficient computation of similarity measures between queries and documents

The text documents should be represented to match the input format of the learning algorithm. 

As a majority of the learning algorithms employ the attribute-value representation, it becomes 

necessary to transform a document into a vector space model [164].

In vector space models widely used in a variety of text applications, documents and queries are 

represented as vectors of terms within documents in a collection. A term can be a word, word-pair 

or phrase within a document. A list of terms (features/attributes) needs to be identified and their 

numeric values (term weights) determined to generate a vector space model.

The process of identifying terms (extraction of features) can by itself  be quite nontrivial, 

including issues such as how to define terms. In-depth domain knowledge, assisted by developed 

software tools for the purpose, is necessary to do a meaningful extraction of features. The following 

presentation has the objective of providing only a basic understanding of the steps involved in 

preprocessing of documents for feature extraction.

Steps of preprocessing include:

 (a) Tokenization

  A token is a basic element of a text document. Set of characters between white spaces 

are treated as tokens. A token often corresponds to a word, but not always, as illustrated:  

Examples of token: “computer”, “mining”, “6457”, “PDP-11/45”, “AT and T”, “up/down”. 

Since complex words PDP-11/45, AT and T, up/down, have related subparts, we consider 

them as single token.
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 (b) Lexical Analysis

 • Numbers and terms comprising digits are deleted in conventional information retrieval 

systems, except certain specific types, such as dates, times, and other prescribed types 

with regular expressions.

 • Hyphens are deleted as a general rule with certain exceptions. In certain words, hyphens 

form an integral part of the word, e.g., PDP-11/45, and are therefore retained.

 • Punctuations are handled just the way as hyphens are.

 • All the letters are usually transformed into either upper case or lower case.

 (c) Stop-words Removal

  Stop-words are those words which have no information and have a non-linguistic view. Their 

removal means removal of non-information words from the documents, such as ‘a’, ‘an’, 

‘the’, this, ‘that’, ‘I’, ‘you’, ‘she’, ‘he’, ‘again’, ‘almost’, ‘before’, ‘after’. Stop-words are 

very common and their removal does not affect the meaning of the sentences.

 (d) Stemming

  Different forms of the same word are often used in documents for grammatical purposes, such 

as categorize, categorizes and categorizing. Additionally, there are families of derivatively 

related words which have same meaning—democracy, democratic and democratization. 

There are often situations where it would be useful for a search for one of these words to 

return documents containing another word in the set.

   The goal of stemming is to reduce inflectional forms and sometimes derivatively related 

forms of a word to a common root called a stem. For instance, the words computer, compute, 

computing, computation, may be mapped to the stem ‘compute’; car, cars, car’s, cars’, may 

be mapped to ‘car’.

   The most common algorithm of stemming English is PORTER STEMMER [165].

 (e) Phrases

  In addition to the words and word-pairs, phrases can also be used as features.

 (f) Term-Weighting

  Varying (largely ad hoc) suggestions have been made about how the term ‘weights’ (values 

of attributes/features) should be set to make retrieval better. These weights should ideally be 

selected in a way that more relevant documents are placed on a higher rank than the irrelevant 

or less relevant ones.

A weighting scheme, called the TF-IDF weighting, has proven to be very useful in practice [23]. 

The TF (term frequency) is the number of occurrences of the term in a document. The information 

bagged by term frequency pertains to how prominent a word is within a given document. The 

higher the term frequency (the more often the word occurs), the more is the probability of that word 

describing the  content of the document.

However, in case of a term featuring regularly in several documents in the document pool, 

the use of TF weights to retrieve may not have much discriminative power. The IDF (Inverse-

Document-Frequency) weight facilitates improvement of discrimination. It is defined as the log of 
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the inverse of the fraction of documents in the whole collection containing the term j. If N is the 

total number of documents, and Nj is the number of documents containing term j, then

 IDF weight = log (N/Nj) (9.9)

The use of the logarithm is motivated by the desire to make the weight relatively insensitive to 

number of documents N.

The TF-IDF weight is simply the product of TF and IDF weights for a particular term in a 

particular document.

Each individual document s(i); i = 1, 2, …, N, is represented by a term vector:

 x(i) = [x1
(i)  x2

(i) … xn
(i)]

comprising of n terms xj
(i); j = 1, 2, …, n. Each vector x(i) can be considered as a surrogate document 

for the original document. The whole set of vectors can be represented as an N ¥ n matrix.

When a document is represented as an n-dimensional term vector, the word order of the original 

document gets lost, along with the syntactic information, for instance, the structure of the sentence. 

In spite of such information loss, term vectors can be quite effectively used in retrieval applications. 

A query is also represented as an (n ¥ 1) vector and compared with the document vectors. The 

most relevant documents for a query are expected to be those characterized by vectors closest to 

the query, i.e., the documents which bear similarity to the query. A commonly used measure of 

similarity in this context is the cosine distance, which is defined as

 dc(s
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This is the cosine of the angle between two vectors. A cosine value of 0 implies that the two vectors 

are at right angles to each other (orthogonal) and, therefore, have no match. The closer the cosine 

value to 1, the smaller the angle and greater the match between two vectors.

The conventional distance measures we have explored earlier may not be appropriate for sparse 

numeric data. Term-weight vectors are typically very long (thousands of attributes) and sparse 

(have many 0 values). Many 0 values in common does not make term weight vectors similar. 

Cosine similarity measure ignores zero-matches.

Classifiers that are both accurate and efficient for high-dimensional vectors (n in thousands), 

representing large collections of documents (N may be 50,000 or more), are usually the methods of 

choice. SVM and Naive Bayes tend to work well for text applications.

The ‘bag-of-words’ approach of representing documents, in practice, is the most naive approach 

where even the basic grammatical constructs are ignored. In this approach, documents are 

considered as merely collection of their words. At the other end of the continuum of approaches 

for representing documents is ‘Natural Language Processing’, where, essentially, the computer 

understands the words, the relationships among them, and the concepts they represent in the real 

world [166].
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Language is obviously a critical component of how people communicate and how information 

is stored in the business world and beyond. Some estimates say that up to 80 percent of important 

information for business is stored in the form of text. Text is data, so data mining process is useful 

in finding and exploiting useful information in text (the application referred to as text analytics). 

There are useful text analytics applications that are not exactly data mining; however, these 

methods are often incorporated into text analytics solutions. Some examples are spell checking and 

grammar checking, translation from one human language to another, search engines, summarizing 

documents, etc. Important information in text data from Social Media is opening up a new challenge 

for text analytics (refer to Section 9.7).

Text analytics has been studied extensively in information retrieval with many textbooks and 

survey articles [167–171]

9.5.2  Image Retrieval

Many decades of research in pattern recognition and computer vision has undoubtedly shown 

that the performance of humans in visual understanding and recognition is extremely difficult to 

replicate with computer algorithms. Particular problems, such as biometric recognition, can be 

handled with success, but research is still to be undertaken on general purpose image-representation 

systems. The capacity to extract semantic content from raw image data remains relatively unique 

to the brain. Therefore, unsurprisingly, most existing techniques for image retrieval are dependant 

on relatively low-level visual clues.

For similarity searching in image data, we take into account two primary families of retrieval 

systems:

 • Description-based retrieval systems, which retrieve objects on the basis of image descriptions, 

such as keywords, captions, size, and time of creation.

 • Content-based retrieval systems, which support retrieval of objects on the basis of the image 

content, such as color histogram, texture, pattern, image topology, and shape of the objects 

and their layouts and locations within the image.

In a content-based retrieval system, there are often two kinds of queries: image sample-based 

queries—to find all of the images that are similar to the given image sample; and image feature 

specification queries—to return images that are close to the specified features (this set of features is 

unable to capture the description of the whole image data but provides salient clues).

The results of description-based retrieval are typically of poor quality. Recent progress in 

web-based image clustering and classification techniques has made the quality of description-

based web image retrieval much better. Image-surrounded text information along with web linkage 

information can help in the extraction of proper description, and group images which describe a 

similar theme together.

Content-based retrieval has wide applications—medical diagnosis, weather forecasts, TV 

production, web search engines for images, and e-commerce.

Some systems, such as QBIC (Query By Image Content)—developed by researchers at IBM—

support both sample-based and image feature specification queries. There are also systems which 

support  retrieval based on both content and description.
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To a certain extent, the image retrieval issue is like solving the general image representation 

problem—the problem of extraction of semantic content from image data.

Color-Histogram Based Representation: A digital image is usually the result of a discretization 

process (sampling) of a continuous image function, and it is stored in the computer as a two-dimen-

sional array {x, y}, with x = 0, 1, …, Nx  – 1; and y = 0, 1, …, Ny  – 1, i.e., it is stored as Nx ¥ Ny 

array (only monochrome images will be considered). Every (x, y) element of the array corresponds 

to a pixel (picture element or image element) of the image, whose brightness or intensity is equal 

to I (x, y).

Furthermore, I (x, y) can take one of the integer values 0, 1, …, 2m  – 1, when quantized using 

m-bits. If m is 8, this gives brightness levels ranging between 0 and 255, which are usually displayed 

as black and white, respectively, with shades of gray in between. Small values of m give fewer 

available levels, reducing the available contrast in an image; 8-bit pixels is a common choice in 

many applications.

Selection of an appropriate value for the image size, Nx ¥ Ny, is more difficult and complex. We 

seek a  size large enough to resolve the needed level of spatial detail in the image. If the size is very 

small, the image will be coarsely quantized, and some details will get lost. Larger values of size 

give more detail but require more storage space and longer processing time.

In this approach of image representation, information about shape, image topology, or texture is 

not included. Therefore, two images with similar color combination but containing diverse shapes 

or textures may be recognized as similar, even if they are totally unrelated semantically.

Multi-Feature Composed Representation: In this model, the image representation is inclusive 

of a composition of various features: color histogram, shape, image topology, and texture. This is 

the highly popular model in practice.

It is essential to consider that (with existing methods at least), we can realistically work only 

with a limited idea of semantic content, based on relatively simple ‘low-level’ measurements—

color, texture, and simple geometric properties of objects, such as edges and corners. ‘High-level’ 

feature extraction deals with searching for shapes in computer images. Extracting a shape implies 

locating their position, orientation as well as size [172–174].

Video Data

While capturing a scene at various times, 3D elements are mapped into corresponding pixels in 

the images. Therefore, if image features are not blocked, they can be connected to each other and 

motion can be featured as a group of displacements in the image plane. The displacement tallies 

with the movement of the object in the scene and is referred to as the optical flow. Suppose you 

consider an image and its optical flow, you should be capable of constructing the next frame in the 

image sequence. 

A video shot is a set of frames or images wherein the video content from one frame to the next 

does not alter all of a sudden. The key frame is the one that is most represented in a video shot. It 

is possible to analyze each key frame with the help of the image feature extraction and analysis 
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techniques. The sequence of key frames will then be used to define the sequence of the events 

taking place in the video clip. Therefore, detecting key shots and extracting key frames from video 

clips becomes the most important task in video mining and retrieval.

It is still the initial stages of video data processing. There are many research issues to be solved 

before it becomes general practice [175].

9.5.3  Audio Retrieval

Audio information retrieval systems are capable of performing various human-computer 

interactions, including voice mining, dialog, and question answering. The primary point to focus 

on when it comes to speech is that the sounds generated by a human are filtered by the shape of the 

vocal tract including tongue, teeth, and so on. The sound emitted is determined by this shape. The 

shape of the vocal tract manifests itself in the envelope of the short-time power spectrum. There 

is a vibration in an organ in the ear, at varying spots as per the frequency of the incoming sounds. 

Based on the spot that vibrates (which wobbles small hair), various nerves send information to the 

brain that certain frequencies are present. Usually, the organ is unable to differentiate between two 

closely-spaced frequencies. This effect becomes more prominent as the frequencies increase. One 

discriminatory factor is the energy in different frequency areas. The bases of automatic (machine) 

speech-recognition systems are the attributes or traits of the audio signals related to human auditory 

system’s response. 

Let us look at the popular approach to the process of feature extraction:

The digitized speech is read into an array x[n]; n = 0, …, N – 1 (N samples). The values correspond 

to audio intensity (amplitudes).

Speech signals are non-stationary and exhibit quasi-stationary (statistically stationary) behavior 

at short durations. For this reason, the audio signal is split into distinct ‘frames’ of 20–40 msec; 

25 msec is standard. This means the frame length for a 16 kHz signal is 0.025 ¥ 16000 = 400 

samples. Frame step is usually something like 10 msec (160 samples), which allows some overlap 

to the frames. The first 400 sample frame starts at sample 0, the next 400 sample frame starts at 

sample 160, etc., until the end of the speech file is reached.

The conversion of each frame of N samples from the time domain to the frequency domain 

requires use of Discrete Fourier Transform (DFT), which is capable of converting the convolution 

of the glottal pulse and the vocal tract impulse response in the time domain into frequency domain. 

From DFT, power spectrum for each frame is calculated. We generally keep 257 power spectrum 

coefficients.

The Discrete Fourier Transform
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Power Spectrum

                                                 P[k] = Re (X [k])2 + Im(X[k])2 (9.12)

Next, we determine the amount of energy existing in different frequency regions, using mel filter 

bank. This is a group of 20–40 (26 is standard) triangular filters applied to the power spectrum 

estimate. The magnitude response of each triangular filter equals unity at the centre frequency and 

reduces linearly to zero at the centre frequency of two adjacent filters. The first is an extremely 

narrow filter, which indicates the amount of energy present near 0 Hz. With the frequencies going 

up, the filters go on becoming wider, and we become less bothered about vibrations. We focus only 

on how much energy exists at each spot. The Mel-Frequency Scale shows us precisely how our 

filters are spaced and how wide they can be made. The term ‘mel’ is derived from ‘melody’ and 

indicates that pitch comparisons forms the basis of scale. A popular formula for frequency to ‘mel’ 

scale conversion is:

 fmel = 2595 log10(1 + f /700) (9.13)

To calculate filter bank energies, we multiply each filter with the power spectrum and then add up 

the coefficients. Once this is performed, we are left with 26 numbers that give us an indication of 

how much energy was in each filter.

We take the log of each of the 26 energies (this is also motivated by human hearing). This leaves 

us with 26 log filter bank energies. Taking the Discrete Cosine Transform (DCT) of the 26 log filter 

bank energies y[k]; k = 0, …, K – 1 (K = 26) gives us 26 cepstral coefficients.
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Only lower 12 of the 26 coefficients are kept. The resulting features (12 numbers for each frame) 

are called Mel Frequency Cepstral Coefficients (MFCCs).

Mel Frequency Cepstral Coefficients are the features widely used in automatic speech and 

speaker recognition. They were introduced by Davis and Mermelstein in the 1980s and have been 

the state-of-the-art ever since.

Cepstrum is the Fourier transformation of the logarithm of a spectrum. It is therefore the 

‘spectrum of a spectrum’. In the original paper, the authors coined the word ‘cepstrum’ by reversing 

the first four letters of ‘spectrum’.

Refer to [176, 177] for speech recognition.

Audiovisual Data

Other than still images, an incommensurable amount of audiovisual information is now available 

in digital form in digital archives, on the World Wide Web, in broadcast data streams and in 

personal and professional databases. The demands for effective content-based data mining and 

retrieval techniques for audio and video data are high. Typical examples include searching for and 

multimedia editing of particular video clips in a TV studio, identifying suspicious individuals or 

scenes in surveillance videos, exploring patterns and outliers in weather radar readings, looking 
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for specific events in a personal multimedia source, and searching for a certain melody or tune in 

audio albums.

To help record, search and analyse audio and video information, there are certain standards 

for describing and compressing multimedia information. Examples of typical video compression 

schemes are: MPEG (developed by Moving Pictures Experts Group) and JPEG (Joint Photographic 

Experts Group). 

Multimedia analytics has been studied extensively. Some useful references are [178–181].

It is essential for the readers to recall that this presentation on information retrieval was not 

aimed at training the readers to deal with projects on the subject, but at creating excitement for 

further exploring the subject. This section focuses on the fact that both the domain knowledge and 

knowledge of machine learning algorithms are critical for the solution of real-life problems. This 

fact becomes all the more essential for text, image, audio, and video data; rather, domain knowledge, 

to change raw data into structured data matrix with numeric values, becomes the primary part of 

the project. 

9.6  APPLICATIONS AND TRENDS

Machine learning is a growing new technology used for knowledge mining from data. It is a 

technology that many people are starting to get serious about. Now we have a first generation of 

machine learning algorithms—for learning decision trees, fuzzy rules, neural networks, Bayesian 

classifications, and logistic regressions—which have shown their significant value in various 

real-world mining applications. Different companies across the globe now offer commercial 

applications of these algorithms (www.kdnuggets.com) in addition to efficient interfaces to 

commercial databases and well-designed user interfaces.  

9.6.1  Data Mining Applications

Several data mining systems have been created for domain-specific applications, including finance, 

the retail industry, telecommunications, healthcare, and so on. These systems are aimed at integrating 

domain-specific knowledge with data analysis methods and offer mission-specific solutions.

Financial Services 

Banks as well as financial institutions usually provide different banking services (e.g., current 

and savings accounts for business or individual customers), credit (e.g., business, mortgage and 

automobile loans), and investment services (e.g., mutual funds). Some provide insurance services 

and stock investment services as well. Financial data gathered by banks and the financial industry 

are very often relatively thorough in terms of reliability and quality. This helps systematic analysis 

of data and also mining of data. A few typical examples are [17]:

 • Designing and constructing data warehouses for multidimensional analysis of data to examine 

the general properties of financial data, and data mining. 

 • Predicting loan payment and analysing customer credit policy.
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 • Classifying and clustering customers for targeted marketing.

 • Detecting crimes such as money laundering.

The Retail Industry

The retail industry is one of the main areas where data mining is applied, because it gathers 

large volumes of data pertaining to sales, customer shopping history, transportation of goods, 

consumption, and service. The amount of data gathered keeps growing fast, particularly because 

of the increasing availability, convenience, and popularity of businesses conducted on the web, or 

e-commerce. In these modern times, many businesses offer the convenience of buying goods online 

to their customers, through their websites.

Retail data mining is capable of identifying the purchase behaviors, discovering customer 

shopping patterns and styles, improving customer service quality, achieving better customer 

retention, designing better policies for transporting and distributing goods, and reducing business 

expenditure.

A few typical examples are [17]:

 • Designing and constructing data warehouses for retail data encompassing a wide spectrum of 

dimensions—sales, customer relations, human resources, goods transportation, consumption, 

and services—to help in efficient data mining.

 • Multidimensional analysis of sales, customers, products, time, and region.

 • Analysis of the effectiveness of sales campaigns using ads, coupons and different types of 

discounts and bonuses.

 • Analysis of customer loyalty.

 • Mining of associations from sales records reveals that a customer who purchases a particular 

item, is likely to purchase another set of products. This associative information can be used 

to promote sales, on the basis of the principle that if users shared similar interests in the past, 

it is highly probable that they will exhibit similar behavior in the future too. Recommender 

systems employ data mining methods to make personalized product recommendations during 

live customer transactions, on the basis of the opinions of other customers.

 • Fraudulent analysis and the identification of unusual patterns.

The Telecommunication Industry

The rapid evolution of the telecommunication industry has led to the availability from local 

and long-distance telephone services to several other complete communication services—fax, 

pager, cellular phone, internet messenger, images, e-mail, computer and web data transmission, 

and similar data traffic. The expansion of the telecommunication market due to the integration 

of telecommunication, computer network, internet, and numerous other means of communication 

and computing, has happened quite rapidly. It is also becoming more competitive, which is 

creating a huge demand for data mining so as to help comprehend the business involved, recognize 

telecommunication patterns, detect fraudulent activities, improve use of resources, and service 

quality. A few typical examples in which data mining can improve telecommunication services are:
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 • Analysis of multiple dimensions of telecommunication data—calling-time, duration, location 

of caller, location of callee, and type of call—with the help of OLAP and visualization devices 

on large data in telecommunication data warehouses.

 • Detection and analysis of fraudulent patterns and identification of rare patterns—recognize 

potentially fraudulent users and their usage patterns, detect attempts to obtain fake entry 

into customer accounts, and learn uncommon patterns that may require special attention, 

such as busy-hour frustrated call attempts, switch and route congestion patterns, and periodic 

calls from automatic dial-out equipment (like fax machines) that has not been programmed 

properly.

 • Analysis of sequential pattern and multidimensional association for the promotion of 

telecommunication services.

 • With more and more integration of mobile telecommunication, web and information services, 

and mobile computing, there is a likelihood of data mining playing a significant role in the 

improvement of services to beat competition.

The Insurance Industry

The insurance databases possess a wealth of data comprising a potential goldmine of important 

business information in the ever-altering insurance environment. Data mining is capable of 

facilitating insurance firms in making crucial business decisions and turning the newly discovered 

knowledge into business practices which can be acted upon—development of products, marketing, 

analysis of claim distribution, management of asset liability and solvency analysis. To be more 

specific, data mining can perform the following tasks:

 • Identify risk factors that are important for predicting profits, claims, and losses

 • Customer level analysis

 • Developing new product lines

 • The selection of policies for reinsurance

 • Estimating outstanding claims provision

 • Predicting fraudulent behavior

Healthcare Services

A few typical examples in which data mining can improve healthcare services are: evidence based 

medicine, comparative effectiveness research, clinical analytics, fraud/waste/abuse management, 

etc.

Supply Chain Management

Conventional data mining methods have been employed in the banking, insurance, retail and 

telecommunication sectors. They are necessary to understand the needs, preferences, and behaviors 

of customers. They are also important in pricing, promotion and product development.

There are several opportunities and applications of data mining in addition to the obvious ones.  

One such area is ‘supply chain management’. Disturbances in the market emerge from factors such 

as rapid introduction and customization of products, tough design specifications, and customer 



Business Intelligence and Data Mining: Techniques and Applications  493

shifts. This makes it important to maintain continuous contact with customers and suppliers through 

integration of supply chain. Given the competition in the global business environment, the agility 

of an organization’s supply chain will directly affect its ability to produce and deliver innovative 

products to their customers not only in a timely manner but also in a cost-effective fashion. Regular 

monitoring of the quality delivered and customer expectations can help bring down costs through 

just-in-time purchasing, scheduling and distribution.

e-Governance

Data mining has also been popularly used for analysis of government and institutional 

administrative data.

Customer Relationship Management (CRM)

Establishing a business around customer relationship is a revolutionary change for most organiza-

tions. Banks have usually been known to concentrate on the maintenance of the spread between 

the rate paid by them to bring in money and the rate charged by them to loan out money. Telephone 

organizations have always focused on the connection of calls through the network. Insurance organi-

zations have focused on claims processing, investment management, and maintenance of loss ratio. 

Progressive and product-focused organizations are now adopting customer-centric models: trying 

to understand each individual customer and making use of that understanding to make it more 

convenient (and more lucrative) for the customer to conduct business with them instead of with the 

competitors. This change in focus from broad market segments to individual customers requires 

changes in all sectors: financial services, retail industry, telecommunication industry, insurance 

industry, and the related businesses. The emergence of new wave of big data (Section 9.7) has made 

customer-centric approach almost essential, with text-mining supporting traditional data mining. 

Customer-centric applications include [19]:

 • Memory-Based Reasoning (MBR) and Collaborative Filtering

  Analogous situations in the past form the basis of MBR results. More information can be 

added through collaborative filtering, with the use of similarities among customers, as well 

as their preferences. One product of collaborative filtering is recommendation systems.

 • Using Survival Analysis to understand Customers

  Survival analysis is crucial to the understanding of customers and their life cycles. Despite the 

origin and terminology being from medical research and failure analysis in manufacturing, 

the ideas are customized for marketing—measuring the likelihood of customers leaving, 

customer value calculations, predicting customer levels, and so on.

 • Using Link Analysis for understanding relationships and connections

  Who has made friends with whom on Facebook? Who makes a call to whom on the telephone? 

Which medicines are prescribed by which doctor to which patients? Who visits whose blogs 

and on what subjects? … These relationships form a treasure trove of information and are all 

visible in data. This need is addressed by the method known as link analysis.
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 • Graph theory

  It is that branch of mathematics which forms the basis of link analysis. It represents 

relationships between various objects in the form of edges in a graph. This has worked well 

in  the identification of authoritative sources of information on the web by an analysis of 

the links between its pages; analysis of telephone call patterns to seek influential customers 

capable of recruiting new subscribers from competing networks; comprehension of doctors’ 

referral patterns to detect insurance fraud; and so on.

 • Building Customer Signatures

  The process of preparation of data for mining requires building of customer signatures, that 

is, collecting the traces left by customers on making purchases, visiting websites, contacting 

call centers, paying bills, responding to offers, and interacting with the organization in other 

ways. These dispersed bits of data are made meaningful in the form of customer signatures, 

which are useful for training data mining models. Building customer signature is, thus, the 

process of finding customers in all kinds of scattered data, and bringing it to one place for 

data mining.

 • Analytics on text data

  Language is obviously a critical component of how people communicate and how information 

is stored in the business world and beyond. A huge volume of valuable business information 

is stored as text—e-mails from customers, notes by customer service representatives, 

transcripts by physicians, dealings (voice-to-text translation) of customer-service calls, 

website comments, articles and stories in newspapers and magazines, professional reports, 

and so on.

  Perhaps the most common technique for text mining is to convert unstructured data into a 

structured one, i.e., extracting structured features. Extracting derived variables is usually a 

matter of looking for specific patterns in the text. We have earlier described ‘bag-of-words’ 

approach (Section 9.5) for representing documents in a structured format.

  Deriving variables from text is one application area, but not the only one. Often we do not 

know the exact features we are looking for. For example, in a study of analyzing incoming 

e-mails, the goal may be to determine whether the e-mail comment is a complaint or a 

compliment. Other examples appear in the media: news articles blogs, and the like.

  There are many useful text analysis applications that are not exactly data mining. Thus 

text mining encompasses various applications of analytics on text, some of which are more 

properly considered data mining, and some of which are just useful applications of text 

analytics. Some examples of text analytics applications, that are not exactly data mining, 

are: spell checking and grammer checking, translations from one human language to another, 

searching the documents, summarizing documents, and sentiment analysis, where the goal is 

to understand the attitude of the writer toward the subject.

  The toughest part of text mining is the management of text itself. At the extreme are two 

different methodologies—the bag-of-words model, which looks at documents as unordered 

lists of words, and at the other extreme, the Natural Language Processing (NLP) approach, 

which considers the meanings and grammatical features of the language.
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  Some estimates say that up to 80 per cent of important information for business is stored 

in the form of text. Text data is mostly unstructured and is the major source for ‘big data 

analytics’ discussed in Section 9.7.

9.6.2  Data Mining Trends

Looking ahead, the major challenge of the future is applications. If data exists, things can be learned 

from it. If there is excess data, the mechanics of learning will have to be automatic. Applications 

will not come from machine learning experts, but from those who handle data and issues related 

to the same. New applications will pose challenges and machine learning research will respond to 

these creating new opportunities in business decision making.

The diverse nature of data, and data-mining tasks and models present several challenges in 

data mining. Some of the significant tasks for data mining researchers and application developers 

include the development of efficient and effective data mining techniques, systems and services; 

interactive and integrated data mining environments, and utilization of data mining methods for the 

resolution of sophisticated application problems. Let us look at some of the data-mining trends that 

reflect the overcoming of these challenges [182].

The first generation of machine learning algorithms—for learning decision trees, Bayesian 

methods, rules, neural networks, and logistic regressions—that have proved to be important in 

various data mining applications, work on the assumption that the data comprises only numeric 

and symbolic features, and no text, image, or audio features. The assumption is that data has 

been gathered with care, into a single database, which has specific data mining purpose. The first-

generation algorithms are of extreme significance when the data is structured [34].

Today, data mining is used in a vast array of areas. Numerous commercial data mining systems 

and services are available. Many challenges, however, still remain. Probably, the most difficult 

challenge is mining large volumes of data we are collecting today that is semi-structured or 

unstructured. Such mining includes mining multimedia data, graphs and networks, spatiotemporal 

data, cyber-physical system data, web data, and data streams. 

In Section 9.5, use of first-generation algorithms for text, image, and audio data was discussed. 

However, that discussion was limited to specific tasks of data mining where the data can be 

preprocessed in a structured format. Mining multi-structured or unstructured multimedia data is a 

frontier for research community.

Some of the trends in data mining applications are as follows that reflect the persuit of these 

challenges [17, 18].

Mining Sequence Data 

A sequence is referred to as an ordered list of events. Time-series data sequences comprise numeric 

data, which is recorded at equal time intervals; for instance, data generated by stock markets, 

and scientific and medical observations. Symbolic sequence data comprises event sequences or 

nominal data sequences, which are not usually observed at equal time intervals. Examples are, 

customer shopping sequences, web click streams and biological sequences (e.g., DNA and 

protein sequences). Since biological sequences hold extremely complex semantic meaning and 
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present several challenging research issues, maximum investigations are conducted in the field of 

bioinformatics.

Mining Graphs and Networks

Graphs are representative of a more general class of structures than sets, sequences and trees. There 

exists a broad range of graph applications on the web and in social networks, information networks, 

biological networks, bioinformatics, chemical informatics, computer vision, and multimedia and 

text retrieval. Therefore, graph and network mining have become very important and a subject of 

heavy research.

Mining Spatiotemporal Data

Spatial data mining finds patterns and knowledge in data pertaining to geospace, stored in geospatial 

data sources. Spatiotemporal data pertain to space as well as time. Examples of spatiotemporal 

data mining are uncovering of weather patterns, forecasting earthquakes and hurricanes, and 

determination of global warming trends. Spatiotemporal data mining has grown significantly 

because mobile phones, GPS devices, internet-based map services, and so on, have become very 

popular.

Mining Cyber-Physical System Data

A cyber-physical system comprises a huge volume of interacting physical and information elements; 

for instance, a patient care system that connects a patient monitoring system to a network of patient/

medical information, and an emergency handling system; a transportation system connected to a 

transportation monitoring network (containing several sensors and video cameras) with a traffic 

information and control system.

Mining Multimedia Data

Multimedia data mining refers to the detection of interesting patterns in multimedia databases, that 

is, image data, graphics, video data, audio data, text data and hypertext data (comprising text, text 

markups, and linkages). This interdisciplinary field assimilates image processing, computer vision, 

data mining, and pattern recognition.

Mining Web Data

The World Wide Web is a huge, widely distributed, global information center for news, ads, 

consumer information, financial management, education, government and e-commerce. Any 

information one seeks is available on www. It is a rich and dynamic source of information on web 

page contents with hypertext structures and multimedia, hyperlink information, and access usage 

information; thus offering plenty of sources for mining data.

Mining Data Streams

Stream data implies data which flows into a system in large quantities, changes dynamically, 

and comprises multidimensional characteristics. It is not possible to store such data in traditional 

databases. This presents difficulties for the efficient mining of stream data.
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Data stream mining is significant as it forms the basis of several applications—sensor network 

processing, network traffic, web searches, and so on. Its objective is the determination of patterns of 

structures of continuous data, which may be later employed to deduce likely occurrence of events.

Recommender Systems

The customers of today have millions of products and services to choose from, while shopping 

online. Recommender systems make the work easier by making product recommendations to 

consumers—which consumers are likely to be interested in. The recommender systems are 

personalized according to diverse user preferences. This is a significant factor when it comes to 

effective recommendation. 

Recommender systems may make use of either:

 (i) content-based model

 (ii) collaborative model 

 (iii) hybrid model (a mix of content-based and collaborative approaches)

The content-based model recommends items that are similar to the ones preferred by the user or 

queried in the past. It relies on product traits and textual product descriptions. The collaborative 

filtering approach may take into account a user’s social environment. Its recommendation of items 

is based on the opinions of other users whose tastes or preferences are similar to that of the user. 

The historical data that is reflective of preferences may contain product ratings, web click logs, 

reviews or tags.

Adversarial Situations 

A prime example of adversarial situations is the junk email. Spam filtering is thus an important 

application of machine learning.

Sadly, several other adversarial situations exist in our world today. Closely related to junk email 

is the search engine spam, wherein sites try to trick Internet search engines into displaying them 

prominently in the lists of search results. There are also computer virus wars, wherein designers of 

viruses and virus protection software respond to one another’s innovations.

Computer network security is a constantly escalating war. Protectors toughen networks, operating 

systems, and applications, and attackers seek vulnerable areas. This has encouraged intrusion 

detection and prevention, making it a crucial element of networked systems. An intrusion is the set 

of actions threatening the integrity, confidentiality or availability of network resources. Privacy-

preserving data mining is a significant issue as there is a growing need for storage of personal data 

for users.

Data Mining for Big Data

Scaling to complex, extremely large datasets—the big data analytics—is probably the most debated 

current research issue. We are now in the arena of ‘big data’—the more is just not more, but more 

is different. The next section presents some highlights of this debate.

Just like other areas of technology, data mining stands on an ever changing landscape. The old 

section of the landscape is undergoing a redefinition as the new sections continue to emerge.
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9.7  TECHNOLOGIES FOR BIG DATA

In this section, an overview of big-data analytics is presented. Many books are now available on 

this emerging field. The overview here is based on the references [183–185].

Big data is often referred to as the data that exceeds the capability of widely-used hardware 

environments and software tools that capture, manage, and process it within an acceptable  time 

period for its users. As per this definition, the qualification for big data will alter with technological 

advancement. What is big data presently, will not be so later. This definition also indicates that 

the composition of big data will vary from industry to industry and organization to organization, 

according to the varying tools and technologies and their varying capability.

Big data definitely involves huge volumes of data, but that isn’t all there is to it. Big data also 

possesses high velocity (i.e., the rate of transmission and receipt of data), and a variety of data 

sources compared to conventional data sources. While the focus is mostly on its size, the challenging 

part of big data actually is the absence of structure in it as compared to conventional data, which is 

structured and possesses a fixed file format (refer to Section 1.6). Big data sources rarely have any 

control on format. Its data is unstructured, with majority of the data being at-least semi-structured 

following a logical flow and format, but the format is not easy to use. 

Let us look at certain specific examples of big data. Web data can be said to be the most commonly 

used and recognized source of big data. There are several other sources of big data, with their own 

important users. While some are well-known others are relatively unclear. 

Let us look at a representative cross-section of big data sources, to help readers understand the 

breadth and types of available big data, as well as the breadth of analysis that the data enables.

Web Data

Online businesses are already high data oriented. Potentially every industry but particularly those 

with a lot of customer data—such as retail, travel and transportation, telecommunications, media 

and entertainment, and financial services, are collecting and analyzing the detailed transaction 

histories of their customers. Several companies make the assumption that transactional history 

offers the closest possible view to a ‘360-degree’ view of their customers. Web integration with the 

inclusion of online transactions, facilitate such a view.

Traditional web analytics vendors offer operational reporting on click-through rates, traffic 

sources, and summary statistics on the basis of web data. The goal has to move to the combining of 

customer-level web behavior data with other cross-channel customer data. This means, going well 

beyond click-through reports and summaries of page views.

Customer-level web behavior data is basically a new source of information. Any action taken 

by customers in the purchasing procedures must be captured if possible; this means, a detailed 

event history from any customer touch point. Websites, mobile apps, and social media are some of 

the popular touch points of the modern era. This data can provide information related to customer 

preferences, future intentions and motivations. Knowledge of this kind permits a new level of 

interactions with customers, which drives further business.

Just like the integration of web transactions with traditional transactions caused a revolution in 

the power and depth of analysis, these new sources of customer-level web behavior data have taken  

analytics to an all new level. With the ability of storing and processing data that we witness today, 



Business Intelligence and Data Mining: Techniques and Applications  499

it is quite possible to succeed, and several progressive organizations have already demonstrated this 

by  application of the data. 

Web data can be applied by organizations to improve current analytics, enable new analytics, 

and make  business better. Here are a few examples:

 • Prediction of the next best offer to each customer. 

 • Flagging of those customers who are at the risk of cancelling their accounts so that proactive 

action may be taken for prevention. Churn is a significant issue facing the industry and Churn 

models help solve this issue.

 • The web behavior permits identification of customers who are presently interested in buying. 

It also makes it possible to score and rank customers by the probability of taking action. Then 

appropriate customer segments are generated on the basis of those ranks so that the customers 

can be reached out to.

 • Improved assessment, paid search and online advertising results in another high-impact 

analysis enabled with customer-level web behavior data.

Text Data

Language is obviously a critical component of how people communicate and how information is 

stored in the business world. There exist e-mails, text messages, tweets, social media postings, 

real-time chats, and audio recordings which have been translated into text. Text data is one of the 

least structured and the largest sources of big data available today.

A widely common use of text analysis today is sentiment analysis, which examines the general 

direction of opinion across a vast number of people to offer information on the market—what it 

says, what it thinks, and what it feels about a company. Text analysis is useful in sorting through 

complaints, repair notes, and other remarks from customers and, therefore, an organization will be 

able to identify and rectify issues faster. It can also be applied to detect fraud.

Social Network Data

The entire set of cell phone calls or text message records that a cellular carrier captures, is a huge 

dataset usually employed for varioius purposes. But social network analysis looks into many 

degrees of association and not merely one. It examines who the calls were between, and goes even 

deeper. A more complete picture of a social network can be obtained by examining as many layers 

as the analysis systems can possibly tackle. The urge for navigating from customer to customer and 

call to call only adds to the process and nature of analysis. The same idea is applicable to social 

networking sites, such as LinkedIn or Facebook.

Social networking analysis has changed the emphasis from profitability of accounts to 

profitablility of network. It is capable of offering insights into a customer’s total influence and 

value, which can totally alter the way a customer is viewed by a company.

Time and Location Data

With the arrival of the Global Positioning Systems (GPS) and cellular phones, time and location 

information has come to be a growing source of data. It is a type of big data, which has maximum  

privacy-sensitivity.
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Time and location information on assets can be obtained with the help of Radio Frequency 

IDentification (RFID) tag, which is a tiny tag fixed on objects, such as shipping pallets or product 

packages. When an RFID reader emits a signal, the RFID tag sends a response in the form of 

information. A primary use of RFID data is in asset tracking. 

Time and location data is going to continue to grow in adoption, application, and impact.

Sensor Data 

There are several complex machines and engines across the globe—aircrafts, military vehicles, 

trains, construction tools and devices, drilling equipment, and so on. To maintain the smooth 

functioning of such equipment is a must since they are expensive. Recently, embedded sensors 

have begun to be used for the monitoring of secondwise status of the equipment.

Smart grids form the next generation of electrical power infrastructure. They have extremely  

refined monitoring, communication, and generation systems. Various sensors and monitors keep 

track of diverse facets of the power grid itself and the electrical flow through it.

An application in auto insurance industry involves putting a sensor, or black box, into a car to 

capture information about what is happening with the car. This black box can measure any number 

of things depending on how it is configured. It can monitor speed, mileage driven, or heavy braking. 

This data helps insurance companies better understand customer risk levels and set insurance rates.

How is Big Data Different?

Clearly, big data is a totally new source of data and not merely an extended collection of traditional 

data. 

Big data is at times generated automatically using a machine in an automated manner. A sensor 

embedded in an engine, for instance, throws out data related to its surroundings even if no-one 

demands it. We seize all this data, and only bother about it during the analysis stage. 

The design of big data sources is far from user friendly. For instance, in case of text streams 

from social media sites, users cannot be asked to follow specific standards of grammar, or sentence 

ordering or vocabulary. We will receive what people do when they make a posting. It is not easy to 

work with such unstructured data.

Huge volumes of big data streams may not have much value. We capture all that is possible to 

make sure that nothing is missed but also make the process of big data analysis more painful.

Will big data remain a wild west of crazy formats, unrestricted streams, and without definition? 

Probably not. Over a period of time, standards will be established.  

9.7.1  Emerging Analytic Methods

As with any new topic attracting much attention, there are all kinds of claims regarding how big 

data will alter everything about the way analysis is performed and the way it is used. It is actually 

not the case; the hype goes much beyond reality.

Just because big data has much volume, arriving rapidly, and from a range of sources in complex 

formats, it does not gain in importance compared to other data. Perhaps the most interesting bit 

about big data is how it will affect a business when combined with other data from an organization. 
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It is crucial  that organizations do not develop a distinct big data strategy from their conventional 

data strategy. Organizations require to focus on developing a cohesive strategy wherein big data is 

merely another aspect of an enterprise data strategy.

New evolving big data sources pertaining to customers, from a variety of newly evolving touch 

points, such as web browsers, mobile applications, kiosks, social media sites (Facebook, Twitter, 

YouTube, LinkedIn, and others), are the game-changing sources. Amazing new frontiers are 

shooting up, which are capable of revolutionizing organizations’ customer insights and the effect 

those insights will have on their business. The challenge is to analyze the behavioral data at the 

customer’s level.

This data is mostly unstructured or semi-structured text data. Unstructured data has no format to 

it, while semi-structured data has a logical flow and format to it, but the format is not user-friendly. 

The traditional data comes in a fixed file format.

Analytic professionals have used a range of tools and techniques over the years that have made 

it possible for them to prepare data for analysis, execution of analytic algorithms, and assessment 

of the results. Unsurprisingly, the depth and functionality of these tools and techniques have 

gone up with time. The need for new tools and methods is being felt by analytic professionals to 

handle big data problems. When combining new tools and techniques with the evolved scalability, 

organizations will be positioned perfectly well to tackle big data challenges.

At times, analytic professionals will just do a lot more of the old and tried tools and methodologies 

as a result of today’s new scalability. However, new techniques to address new business issues are 

continuously emerging. While tools and techniques will go on evolving, let us look at some that are 

worth consideration today.

The biggest problem with big data may not really pertain to analytics, but to data preparation for 

analysis. Within a big data feed, there will be certain information possessing long-term strategic 

value, some information that will be employed for immediate and tactical use, and some data that 

will be useless. A major part of the big data challenge is the determination of the category into which 

the pieces fall. Analytic processes may need filters for the removal of portions of big data stream 

that are hardly required. During the data processing, there will be other filters, which will filter data 

to the user actions that require examination for the business issues that need to be addressed.

Traditional structured data does not require as much effort in this area since it is specified, 

understood, and structured in advance. Therefore, the extract, transform, and load processes for 

data preparation require bigger effort for big data problems. Complex filtering algorithms will be 

developed to siphon off the meaningful pieces from a raw stream of big data.

Data exploration is an important element of traditional analytic process. It is going to get 

more important for big data problems. Typically unstructured data itself is not analyzed. Rather, 

unstructured data is processed in a way that applies some sort of structure to it. Then those structured 

results are what is analyzed. Data exploration becomes an important step before we proceed to the 

analysis phase. 

Data exploration also helps in delivering small, quick results for business decision making. 

Small wins demonstrated by data exploration will confirm to the organization that progress is being 

made; that will build support for further efforts.
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Modern visualization tools allow the analytic professionals to interactively explore data in a 

visual paradigm, and to share the complicated results of the analysis with the non-technical business 

people. In the world of analytics, visualization implies charts, graphs and tables displaying data. 

Over a period of time, graphical interfaces have been created to let users perform many actions via 

point-and-click environments. Today’s tools let several tabs of graphs and charts be connected to 

the underlying data. More importantly, the tabs, graphs and charts can be connected to each other. 

Tools now include more sturdy graphics, workflow diagrams, and other applications that require 

manipulation of data. In addition, the ability to link to big data, interweave the visuals, and search 

and drill down at will, gives rise to something with a lot of power.

Very often, professional analysts will merely perform a lot more of the same long-standing 

analytic techniques to handle new scalability issues. One trend is the use of commodity models—

one that has been produced without bothering about making use of every bit of the predictive power. 

The objective of a commodity model is not to obtain the best model, but to obtain a good-enough 

model that will quickly produce a better result than in the absence of a model. The most important 

consideration is to ensure that we create a process capable of generating good-enough models.

A plain and straight forward technique of applying long-standing algorithms to a large dataset, 

is to divide the data into portions of smaller size and learn separate models for each, combining 

the results by averaging. In a multi-structured dataset, data can be divided into structured subsets. 

Either a parallel bagging-like scheme or a sequential boosting-like scheme can be used to build a 

model. There is more to Ensemble methods than selecting the best performer from a set of models. 

It is really about combining the results of various models to obtain the single final answer, by 

averaging or a much more complex formula. Due to the evolution of analytic tools, the use of 

ensemble approaches has increased. Without an ideal way for management of work flow and tying 

of the results of various models together, ensemble modeling will prove to be a tedious procedure.

One of the fastest growing techniques used by businesses today is the application of analytics on 

text. The growth of text analytics can be attributed to the wealth of new sources of text data. Of late, 

everything from e-mails to social media commentary from sites such as Facebook and Twitter, to 

online inquiries, to text messages, to call center conversations is captured in bulk. It is not possible 

to ignore this kind of unstructured data. It is a widely used type of big data, and text analytics tools 

and techniques have actually evolved.

An important theme here is that typically, unstructured data itself is not analyzed; rather, 

unstructured data is processed in a way that applies some sort of structure to it. Then those 

structured results are what is analyzed.

Thus applications of analytics on text include:

 • Data mining on structured text data, and

 • Representing documents in the computer to facilitate mining.

Representing documents in the computer is the first challenge in text mining. There is a continuum 

of approaches for helping the computer understand the documents. At one end is the ‘bag-of-words’ 

approach, where documents are considered merely a collection of their words (refer to Section 9.5). 

At the other end is the ‘understanding’ approach, where an attempt is made to actually understand 

the document and what each word specifically means. Technically, this is called semantics.
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The bag-of-words approach treats the documents as unordered lists of their words. This approach 

is the most naive approach, where even basic grammatical constructs are ignored. The other is the 

natural language processing approach, which takes into account the meanings and grammatical 

features of the language. There are many variations of both methods. A handful of extensions to the 

bag-of-words approach make it more useful

The next step is mining the resulting text data. Singular Value Decomposition (SVD), naive 

Bayesian methods, nearest-neighbor approaches and clustering are some of the techniques that are 

common in the world of text analysis.

Big data will not really change the goals and purpose of analysis, or procedure of the analysis 

itself. The issues addressed will definitely evolve with big data. However, at the end of the day, 

analysts will merely explore new and extraordinarily huge datasets to reveal important trends and 

patterns. Big data will definitely drive new and innovative analytics, and force analytic professionals 

to go on expressing their creativity within their scalability limitations.

Deep Learning Big Data allows extraction of high-level, complex abstractions as data 

representations through a hierarchical learning process. A key benefit of deep learning in big data 

analysis is that it can learn from massive amounts of unsupervised data. This makes it a valuable 

tool for Big Data Analytics where huge amounts of raw data are uncategorized. 

The present state-of-the-art in deep learning algorithms:

 • needs large amount of data to understand it perfectly

 • heavily depends on high-end machines; accelerated computing using Graphics Processing 

Unit (GPU) together with a CPU (Deep learning algorithms inherently do a large amount of 

matrix multiplication operations. These operations can be efficiently optimized using a GPU 

because GPU is built for this purpose) 

 • takes a long time to train; about two weeks to train completely from scratch

 • lacks interpretability (this factor is the main reason deep learning is still thought as an option 

for several times before its use in industry)

Although deep learning is used by Google in its voice-recognition and image-recognition 

algorithms, by Amazon to make decisions regarding what and what not to purchase next, and by 

researchers to make forecasts for the future, the knowledge obtained from (and offered by) deep 

learning algorithms has remained mostly untapped in the context of Big Data Analytics. Deep 

learning algorithms are capable of facilitating research, and have become the primary focus of data 

science. 

9.7.2  Emerging Technologies for Higher Levels of Scalability

The traditional methods will not work for handling big data; updating technologies to provide 

a higher level of scalability is necessary. There are multiple technologies available that address 

different aspects of making use of big data in analytic processes. Some of these advances are 

quite new. Analytic and data management environments are converging. In-database processing is 

replacing much of the traditional off-line analytic processing.

In traditional architectures, databases are built for each specific purpose or team, and single-purpose 

databases (often called ‘data marts’) are spread all over an organization. Analytic processing occurs 
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in the analytic environment (analyst’s desktop, for example); relevant data is pulled from data marts 

into analytic environment to create variables required for an analysis. Leading organizations now 

see value in moving the analysis to the data, and not data to the analysis; analytic processing occurs 

in Enterprise Data Warehouse where the entire data of the organization has been consolidated. That 

is, analysis is done where all the data is together; need not be pulled together just for analysis. The 

user’s machine just submits the request to in-database analytic environment.

Enterprise data warehouses (as well as data marts) are scalable using Massively Parallel Processing 

(MPP) technology. MPP systems behave like separate computers connected by a very high-speed 

network (MPP is also referred to as grid computing). Data is spread out into these independent 

processing units; each has its own memory and its own disk storage, breaking the analysis job into 

pieces and allowing the different sets of processing units to run the process concurrently. It gets a 

little more complicated in cases where data must be moved from one processing unit to another as 

part of the requirements of the query, but MPP systems are built to handle that in a very, very fast 

way.

SQL, the inherent language of an MPP system, is known for its efficiency for a range of 

requirements. SQL has undergone evolution. Several core data preparation tasks can be translated 

into SQL. It can be easily generated for several common analytic algorithms as well.

User-defined functions, coded in languages such as C++ or Java, compile code into new database 

functions capable of being called from an SQL query. For a user, the analytic function will act as 

the original analytic tool and will run parallely on the database with efficiency.

The MPP systems help build and deploy advanced analytic procedures. For analytic professionals 

to use an enterprise data warehouse or data mart more effectively, it is a must for analysts to have 

a workspace with a group of resources that allow them to experiment with and reshape data in 

whatever fashion they require. Various terms are employed for this dedicated workspace—analytics 

sandbox (the word ‘sandbox’ is derived from the sandboxes where children play reshaping the sand 

as they wish to create anything they want to), agile analytics cloud and data lab, and so on; we will 

use the term ‘sandbox’ for the concept.

A sandbox is used by a very small set of users. Analytic dataset will be created within the 

sandbox, in the format needed for specific analysis in hand. For generating the same, data needs to 

be transformed, aggregated and combined. It will replicate a flat file structure with a single record 

for each customer, location, product, or whatever entity type is being analyzed. The analytic dataset 

bridges the gap between efficient storage and convenience of use. Storage structures efficiently 

store and retrieve data, but make advanced analytics efforts rather complicated. Analytic tools 

generally need data in a simple flat file format.

Sandbox users will be permitted to load their own data for short periods as part of the project, 

even if that data does not form part of the official enterprise data model. The shelf life of data in 

a sandbox will be constrained. The objective is not to establish a lot of permanent data. The data 

required during a project is built as per need and deleted once the project is over.  

The sandbox’s involvement should stop the moment things develop into ongoing user-managed 

processes or production processes. Sandbox is separated from the production database.

There are many kinds of sandbox environments—internal, external and hybrid. A section of an 

enterprise data warehouse is reserved to act as an internal sandbox. In case of an external sandbox, 
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a physically separate analytic sandbox is created to test and develop analytic procedures. A hybrid 

sandbox combines an internal and an external sandbox, with positives and negatives of each. The 

decision is dependent on several factors: taking advantage of available hardware resources and 

existing infrastructure, cost-effectiveness, workload management, simplicity, and so on.

As time goes by, new technologies will emerge. A trend that is becoming popular is putting 

more advanced analytic functions directly into the database, making it possible to use a data mart 

or data warehouse as an analytic sandbox. Enhancing databases is becoming possible partly due to 

improvements in hardware that are speeding up databases, and partly due to more functionality in 

the SQL language such as analytic functions, grouping sets, better scalar factions, and user-defined 

functions.

New demands on ad hoc analyses or ad hoc queries for applications flooded with big data are 

throwing new challenges, and the technology is moving forward to face these challenges.

Cloud computing as a concept is much talked about today. Cloud is a non-dedicated set of 

computers linked to the Internet, which can be used, whenever required, to handle small to very 

huge processing jobs with the help of the Internet to distribute data and computing tasks to several 

computers across  the world, but with a centralized infrastructure. An actual cloud, whether public 

or private, requires to comply with the three following criteria:

 • Enterprises do not incur any costs, infrastructure or capital. They only incur operational 

costs,  on a pay-per-use basis without any contractual obligations.

 • Cloud hardware resources are elastic, that is, they may easily increase or decrease any time. 

Therefore, it is possible to scale up or down the capacity dynamically and promptly.

 • The underlying hardware can exist anywhere geographically, hidden from the user.

When it comes to working with big data, it will be wise to augment the sandbox with Map 

Reduce environment. Map Reduce is a parallel programming framework. It is complementary to 

existing technologies.

Several decades earlier, a programming language called APL, introduced the ideas of scalar 

extension and reduce operator. Later these ideas were picked up by other programming languages 

including Lisp. In Lisp, scalar extension is known as map. The idea of map operator (scalar 

extension) was that any function defined on a scalar (word used for single value) could be applied 

to the elements of an array of any shape and number of dimensions. The idea of reduce operator 

was to use a function to reduce an array’s number of dimensions by one.

Several decades later, researchers at Google revisited these Lisp primitives and realized that map 

and reduce could be implemented on massively parallel processing systems to process very large 

volumes of data. Their efforts in building the infrastructure to support grid computing, and code to 

implement map and reduce, led to the invention of MapReduce.

MapReduce is a programming framework. The most common implementation of MapReduce 

goes by the name of Hadoop, named by the project’s founder Dave Cutter who named it after his 

son’s favorite toy, a stuffed elephant. This open-source platform is available on Amazon’s elastic 

cloud computing infrastructure. 

Increasingly, Hadoop platform is expanding to include higher-level SQL-like languages such as 

Hive, for manipulating data. Hadoop supports MapReduce but it also supports other technologies 
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as well. On the other hand, MapReduce can be implemented using platforms other than Hadoop. 

For example, Teradata’s Aster platform has patented SQL MapReduce implementation that allows 

MapReduce processes to be executed as part of an SQL query. Massively parallel processing (MPP) 

systems, sandboxes, clouds, MapReduce, Hadoop, SQL and SQL-like higher-level languages, all 

have role to play in an evolving analytic environment for big data.

MapReduce is a tool that is helping organizations handle the unstructured and semi-structured 

sources of data that are not easy to analyze with traditional tools. In a relational database, the data 

is already in tables of rows and columns, and has well-defined relationships. This is not always 

true with raw data streams of multiple types of data, such as text, images, web logs, sensor data, 

etc. This is where MapReduce can really be powerful. The visual of the MapReduce framework is 

shown in Fig. 9.11.

Map/Reduce Function

Scheduler

Server
machine

Map

Shuffle

Reduce

Results

Figure 9.11  MapReduce programming framework

The data is first distributed by the scheduler to each of the server nodes with the help of a simple 

file copy technique. The data is, therefore, inside a file of a certain format decided by the user before 

the MapReduce procedure begins.

Then, the programmer submits two programs to the scheduler—map and reduce. The former 

program finds the data on the disk and executes the logic contained in it. This happens independently 

on each of the server nodes, which do not interact nor possess knowledge of each other. After the 

map step, the next stage is shuffling, during which the results from map are distributed by hashing 
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so that the same concept map results are sent to the same reduce node. The reduce program then 

summarizes and aggregates the final results. 

There can be thousands of map and reduce tasks running across thousands of server machines. 

That is how MapReduce becomes so strong. When huge streams of data are available, data has to 

be broken into pieces, which are then distributed among server machines. Fully parallel processing 

takes place because each machine works independently. 

MapReduce will grow in terms of impact and become more popular with big data becoming a 

bigger part of what organizations require to handle. By dividing the work into small bits, it gets 

done faster and more economical than via other options. Once the immediate task is accomplished, 

the most significant pieces of data can be loaded onto a database to be strategically analyzed. 

Massively parallel relational databases, clouds, and MapReduce all have to play significant 

roles in an analytic ecosystem. A combination of the three can help maximize results. When 

these technologies interact and work together, each can improve the others if used properly. Grid 

computing configurations can also sit alongside any of the resulting scenarios when we combine 

these technologies. 
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Because of complexity of biological processes, there has hardly been any progress made to 

comprehend these processes, and whatever understanding has been achieved is limited and crude.  

Yet, even this limited understanding has managed to give the much required push to the emulation 

of some human learning behaviors with the help of systems science and mathematics. 

Neural networks and fuzzy logic are the two disciplines which have given us the mathematical 

tools for  cognitive information, which is a field of much importance. With the continual development 

of these disciplines and enhanced understanding of biological processes, we are hopefully getting 

closer to the ‘true’ emulation of human learning behaviors.

Just as the neural networks and fuzzy logic, evolutionary computation—the area which 

encompasses genetic algorithms, evolution strategies and genetic programming—are methods 

of solving problems, that have biological processes as their inspiration. The natural evolution 

process has, over a period of millions of years, given rise to adaptable, specialized species that 

are extremely fit for their environments. In 1858, Darwin first suggested the theories of evolution 

and natural selection, which explained what he observed of the plants and animals in the world of 

nature. 

It was Darwin’s observation that with the introduction of variations into a population, in each 

new generation, those individuals who are not adequately fit have the tendency to die-off in 

trying to compete for food. And this fight for survival, which is won only by the fittest, results 

in enhancements in the species (This is known as survival of the fittest principle). The concept of 

natural selection helped to provide explanation about the manner in which the species have been 

able to adopt themselves to changing environments, and also how, as a result, species that are alike 

in terms of the ability to adapt may have developed or evolved.

Evolutionary computation simulates evolution on a computer. Such a simulation gives rise to 

a set of optimization algorithms, which are generally based on a basic set of rules. Here, we will 

see the way in which the insights gained from studying evolution can be applied to optimization 

problems.
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The evolutionary approach has its basis in computational models of natural selection and genetics. 

They are referred to as evolutionary computation, an umbrella term, which is a combination of 

genetic algorithms, evolution strategies, and genetic programming. All these methods present a 

simulation of evolution with the help of the processes of selection, mutation, and reproduction. 

Our focus in this appendix is on Genetic Algorithms (GAs), which are the simplest and have been 

successfully applied to many real-life optimization problems. Most of the other evolutionary 

algorithms can be seen as variants of GAs.

Detailed presentation of only the basic genetic algorithm will be made. We have already 

examined its application to the learning of neural networks (Section 5.10), and to the structural and 

parametric adaptations of fuzzy systems (Section 6.8).

Optimization may not appear as a task of mining data, but it is seen that several data mining 

problems can be reformulated as optimization problems. All that is needed is a method of generating 

candidate solutions and a technique of measuring how fit a solution is or the ‘fitness’ of a potential 

solution. For example, predicting the level of inventory required for an item is a characteristic 

data mining problem. It is possible to rephrase the same problem as that of optimization: reducing 

the discrepancy that exists between demand and level of inventory to the minimum [19]. A 

field where genetic algorithms have been established to be reasonably effective is in the case of 

problems that involve scheduling. These problems are outside the range of traditional data mining 

problems; however, they are not only interesting but also demonstrate the supremacy of genetic 

algorithms (refer to [5] for maintenance scheduling problem). Genetic algorithms have also been 

used to facilitate the classification of comments sent to an airline [19]. Feedback received from 

customers directly is a potent information source for businesses, such as mobile phone companies, 

international airline processes, and many others. Classification of comments is an example of the 

problem of message routing.

There are three features of optimization problems:

 • A set of parameters capable of adjustments.

 • An objective function that pools the parameters into a one single value.

 • A set of constraints on the parameters.

The objective is to search for the parameters capable of maximizing or minimizing the objective 

function subject to the constraints. It is a difficult task even for the fastest of computers to conduct 

a thorough search of all the combinations of parameters that fulfil the constraints; even for a very 

miniscule number of parameters, the number of combinations is way too large to explore.

For the problems that can be represented as well-behaved continuous functions and have 

extrema (maxima or minima), the extrema can be found analytically using calculus. Techniques 

based on calculus have been studied at length. Indirect techniques for extremization look for local 

extrema by solving the generally nonlinear set of equations that result from setting the gradient of 

the objective function equal to zero (the derivative of the objective function describes the rate at 

which it is increasing or decreasing; at the extremum value, the function is neither increasing nor 

decreasing, so the derivative is zero). On the contrary, direct techniques are search methods that 

look for local optima by riding on the function and progressing in a direction pertaining to the local 

gradient. This is basically the concept of hill climbing: to seek out the local best, climb the function 

in the steepest  direction permissible. Hill-climbing algorithms, such as gradient descent, Newton’s 
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technique, and conjugate gradient, begin with an estimated solution and iteratively enhance it with 

the help of local search.

The scope of techniques based on calculus, is local. The optima they look for are in the region 

of the present point. It is clear that beginning the search process in the locality of the lower peak 

will lead us to miss the primary event (the higher peak). After the lower peak is attained, more 

improvement has to be searched for via random restart or other tricks. Another issue with calculus-

based techniques is that they rely on the fact that derivatives exist (very uncommon in the business 

world). Even if we permit numerical estimation of derivatives, it is a severe limitation. The real 

world of search is flooded with irregularities and vast multimodel (i.e., comprising several “hills”) 

noisy search spaces; techniques that rely on restrictive needs of continuity and derivative existence, 

are adequate only for a limited domain of problems. To attack more complex problems, other 

techniques will be required. We will study the way genetic algorithms help tackle complex problems.

Many successful applications have been described in the GA literature . However,  there are 

several cases wherein GAs do not perform well. When faced with a potential application, how is 

it possible to understand whether a GA is an appropriate technique to employ? There is no clear 

answer, although researchers do share the intuitions that if the space for exploration is large enough, 

is far from smooth and unimodel, or is not understood appropriately; or if the fitness function is 

noisy; and if the task does not need a global optimum to be found—i.e., if arriving at a fairly “good” 

solution quickly is sufficient—a GA will have an opportunity to surpass other techniques.

These intuitions, definitely do not predict exactly when a GA will serve as an efficient search 

process competent enough to match other processes. Research on this facet of genetic algorithms 

has still to produce definite answers. 

A.1  A SIMPLE OVERVIEW OF GENETICS 

Knowledge of biological terminology, though not necessary, may help better appreciation of genetic 

algorithms. 

Life is dependent on proteins, comprising 20 basic units known as amino acids. The chromosomes 

in a cell’s nucleus are strands of DNA (Deoxyribo Nucleic Acid) carrying the blueprints of the 

proteins the cell requires. Conceptually, we may divide a chromosome into genes—functional 

blocks of DNA, each encoding a specific protein. In a very rough manner, one can consider a gene 

as encoding a trait, say, eye color. The various likely ‘settings’ for a trait (e.g., green, brown or blue 

eyes) are known as alleles. Each gene is found at a specific position or locus on the chromosome. 

Genes are capable of expressing themselves in destructive ways, that result in the death of the 

resulting organism. Healthy organisms are able to survive to produce offspring and pass on their 

DNA to the next generation.

The total collection of genetic material (all chromosomes within a cell collectively) is called the  

genome of the organism. Genotype is the term referring to the specific set of genes encompassed 

within a genome. The genotype is responsible—under foetus and later development—for giving 

rise to the phenotype of the organism—its physical and mental traits, for instance, eye color, height, 

brain size and intelligence.

Through sexual reproduction, surviving organisms pass on their DNA to the next generation. 

During sexual reproduction, the DNA from one survivor is really mixed with the DNA from another 
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via the process known as recombination (or crossover). Crossover creates two new genomes from 

two present ones by joining together pieces of each one.

Offsprings are a lot like their parents. They may represent a novel combination of parental traits, 

but they are subject to mutation, in which single nucleotides (elementary bits of DNA) are changed 

from the parents to offspring; mutation may cause the chromosomes of offsprings to be different 

from those of their biological parents. Mutation is quite rare in nature. The resulting change in the 

gene occasionally represents a significant improvement in fitness, although more often than not, 

the results are harmful.

All these processes combined with that of natural selection, over several generations, can give 

rise to organisms that are extremely adaptable to their environment: the evolution process. The 

process of natural selection permits only the individuals who are most fit in the population to live 

to pass on their genetic material on to the next generation.

Therefore, evolution can be considered a process that results in the maintenance or increase of 

population’s survival capability and the ability to reproduce in a particular environment. This ability 

is known as evolutionary fitness. Even though it is not possible for fitness to be directly measured, 

it is possible to estimate it based on the ecology and functional morphology of the organism in its 

environment. Evolutionary fitness can also be considered a measure of the organism’s ability to 

anticipate environmental changes. Therefore, the fitness can be seen as the quality that the natural 

life is optimizing. Natural evolution is an endless, uninterrupted process.

A.2  GENETICS ON COMPUTERS

In 1858, with the presentation of his theory of evolution, Charles Darwin [186], marked the launch 

of a revolution in biology. Darwin’s classical theory of evolution combined with the theory of 

natural selection and the theory of genetics, are now representative of the new-Darwinian paradigm, 

which is based on the processes of reproduction, mutation, competition and selection.

Is it possible for a computer to simulate the natural evolution process? There exist many different 

techniques of evolutionary computation today, and all of them simulate natural evolution. This is 

usually done through the creation of a population of individuals, assessing their fitness, generating 

a new population through genetic operations, and repeating this procedure several times. However, 

there are various means of doing evolutionary computing. Here, the concepts are presented using 

the basic genetic algorithm; most other evolutionary algorithms, for instance, genetic programming 

[187] and evolution strategies [188], can be simply considered as variants.

In the 1970s, John Holland, founder of evolutionary computation, introduced the genetic 

algorithms concept [189], and this became popular through the efforts of David Goldberg [190]. 

Holland aimed to get computers to perform all that nature did. It is possible to represent his GA 

through a series of procedural steps that move from one population of ‘artificial chromosomes’ 

to another population. It employs natural selection, and methods inspired by genetics, that is, 

crossover and mutation.  

Encoding and evaluation are the two instruments connecting a GA to the issue that it is offering 

a solution for. In Holland’s work, encoding is done through the representation of chromosomes 

as strings of binary digits (1s and 0s). Chromosome is a term used to refer to a candidate solution 

to an optimization problem. The ‘genes’ are short blocks of neighboring bits encoding a specific 
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element of the candidate solution. An ‘allele’ in a bit string is either 0 or 1. We show one such 

string in Fig. A.1. It is a binary string of length 12 bits for representing a chromosome. In the 

context of parametric optimization, the parameter q of the problem is coded as a finite length string 

(chromosome). In case of multiparameter function optimization, the parameter vector q = [q1 q2 
… qn]

T is coded as a chromosome; the bits encoding a particular parameter qj, might be considered 

to be a gene.

1 0 1 1 1 1 0 0 0 1 0 1

allele

Gene

String of genes = chromosome

Figure A.1  Binary string for representing a chromosome

An evaluation function is employed for measuring how fit the chromosome is in terms of its 

performance to solve the problem. The fitness function helps in measuring how fit a chromosome 

is to be able to  survive in a population of chromosomes. The GA will look for maximization of 

the fitness function J(q) through the evolution of successive generations of chromosomes (binary 

strings) that q represents.

The basic GA is depicted in Fig. A.2. It consists of a population of strings or chromosomes, 

and three evolutionary operators—selection, crossover and mutation. Each chromosome encodes 

a candidate solution to the problem in question, and its associated fitness is dependent on the 
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application. The original population is randomly generated. A population with a high level of 

fitness evolves via many generations. Iterating selection, crossover and mutation processes gives 

rise to distinct generations. Once a new generation is evolved, the old can be discarded. New 

generations are evolved until some stopping criterion is met (this is unlike natural populations). 

Also, the size of the population stays constant for generations, which is not the case in natural 

populations. Therefore, there is no chance of the extinction of the GA population (which would 

undoubtedly not be the optimum solution!).

Genetic Operators 

Let us now explain the genetic operators and their importance. They will be described in the form 

of a traditional GA free of problem-specific alterations.

Selection: Essentially, as per Darwin, the individuals who are most qualified survive to mate. 

The term ‘most qualified’ can be quantified using the fitness value of a chromosome. In the fitness 

proportionate selection, the fitness function assigns a fitness to candidate solutions or chromosomes. 

This fitness level is used to associate a probability of selection with each individual chromosome. 

The fitness of a chromosome is divided by the total fitness of all chromosomes in a generation, to 

obtain its probability of selection.

The selection operation could be imagined to be like a roulette wheel in a casino. Imagine a 

roulette wheel wherein each candidate solution is representative of a pocket on the wheel; the 

size of the pockets is proportional to the selection probability. Selection of N chromosomes from 

the population is carried out by playing N games on the roulette wheel, wherein every candidate 

is drawn independently. A random selection is made just the way the roulette wheel is rotated. 

Chromosomes that are fitter will end up with more copies in the ‘mating pool’, that is, the collection 

of chromosomes chosen for mating; hence, chromosomes with larger-than-average fitness will 

embody a greater portion of the next generation. At the same time, owing to the probabilistic nature 

of the selection process, it is possible that certain chromosomes that are relatively less fit, may find 

their way into the mating pool. 

Crossover: In biological terms, we consider crossover as mating, which at a basic biological 

level involves the process of combining chromosomes. We randomly pair off the chromosomes in 

the mating pool (i.e., form pairs to mate). The moment two chromosomes are chosen to mate, two 

offspring are created using the crossover operator.

To crossover chromosomes of parents, we choose a “cross site” randomly, chosen between one 

and (L–1) bits where L is the length of the chromosome. After this, all the bits to the right of the 

cross site of a string are exchanged with those of the other. This procedure is illustrated in Fig. A.3. 

In this example, the cross site is position five on the string, and therefore, the last seven digits are 

swapped between the two strings. A repetition of this procedure is done for each pair of strings in 

the mating pool. This is the most simple one-point crossover system, wherein cross site is chosen 

randomly.  

Mutation: The mutation operation is usually performed on the chromosomes in the mating pool 

after the crossover operation.
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In a binary-coded GA, it is possible to mutate by flipping a bit. Mutation gives rise to random 

incremental changes in the offspring generated through crossover, as shown in Fig. A.3.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

Cross site

0 1 1 0 1 1 1 1 0 0 1 1

0 1 1 0 0 1 0 0 1 0 1 0

0 1 1 0 1 1 0 0 1 0 1 0

0 1 1 0 0 1 1 1 0 0 1 1

Parent 1:

Parent 2:

Offspring 1:

Offspring 2:

(a) One-point crossover

(b) Mutation operator

Switch these two parts of the strings

0 1 1 0 1 1 0 0 1 0 1 0

0 0 1 0 1 1 0 0 1 0 1 0

Mutation

Figure A.3  Crossover and mutation operations in reproduction phase

When mutation is carried out by itself, in the absence of any crossover, it is equivalent to a 

random search, comprising incremental alteration of the present solution, and acceptance in case 

improvement is seen. But when employed in GA, its behavior alters drastically. In a GA, the 

important role of mutation is that it replaces the gene values, which the population loses during 

the process of selection, so that mating can be tried out in a new context, or it provides the gene 

values that were absent in the original population. Therefore, mutation makes it possible to reach 

the whole search space in spite of a limited population size.

The mutation probability is defined as the likelihood of mutation of each gene. It keeps control of 

the rate at which new gene values are injected in the population. If this rate is very less, then several 

gene values that would have been otherwise useful are never tried out. If it is too much, then excess 
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of random disturbance will take place, and the offspring will end up losing their resemblance to the 

parents. The algorithm’s capability to learn from the history of the search will, thus, vanish.

During reproduction, the crossover operator exchanges components of the two single 

chromosomes, whereas the mutation operator alters the gene value in certain arbitrarily selected 

position of the chromosome. Due to this, after several successive reproductions, the chromosomes 

that are not very fit vanish altogether, becoming extinct. The fit ones that manage to survive slowly 

go on to control the population. The approach or model is rather basic. Still, even crude reproduction 

processes possess the ability to solve certain difficult problems 

Genetic algorithms are a category of stochastic search algorithms formed on the basis of 

biological evolution. For an unambiguously defined problem to be solved, a basic GA applies 

certain simple steps for arriving at a solution to the search optimization problem. We will now 

examine these simple steps of genetic algorithm.

A.3  THE BASIC GENETIC ALGORITHM 

We consider here a simple example to illustrate how the basic genetic algorithm works. Let us find 

the maximum value of the function

  J(q) = 15q – q2 (A.1) 

where parameter q varies between 0 and 15. For simplicity, we assume that q takes only integer 

values. 

We can solve this trivial optimization problem by calculus. The derivative of J(q) is (15 – 2q). 

At the maximum, the derivative is 0; therefore q = 7.5 results in maxima of J(q). Maximum value 

of J(q) is (15 ¥ 7.5 – (7.5)2) = 56.25. How can the genetic algorithm be used to solve this simple 

problem? In GA, evolution is simulated with the following steps.

Encoding 

The first decision is how to represent candidate solutions. Basic GA requires the natural parameter 

set of the problem to be coded as a finite-length string of binary bits 0 and 1. A bit-string is a 

combination of 0s and 1s, which represents the value of a number in binary form. An m-bit string 

can accommodate all the integers upto the value 2m – 1 (conversion from decimal (base 10) to 

binary (base 2)). The problem under consideration requires 4-bit strings to represent candidate 

solutions; the bit-string is the computerized genetic material called a chromosome. Encoding results 

in the following chromosomes for the population:

{0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 

Fitness Function 

A fitness function takes a chromosome (binary string) as an input and returns a number that is a 

measure of chromosome’s performance on the problem to be solved. GA is a maximization routine; 

the fitness function must be a non-negative figure of merit.

If the optimization problem is to maximize objective function J(q) ≥ 0, then this function itself 

may be used as the objective function. It is often necessary to transform the underlying natural 
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objective function to a fitness function through a mapping. If the optimization problem is to 

minimize the cost function J(q), then the following cost-to-fitness transformation may be used:

 J(q) = 
1

J ( )q e+
 (A.2)

where e is a small positive number. Minimization of J can be achieved through maximization of J.

Another way to define the fitness function is to let 

 J(q) = – J J( ) | ( )|q q
q

+ max  (A.3)

The minus sign in front of J (q) term turns the minimization problem to a maximization problem, 

and max
q

q| ( )|J  term is needed to shift the function up so that J (q) is always positive.

A Fitness function can be any nonlinear, non-differentiable, discontinuous positive function 

because the algorithm only needs a fitness value assigned to each string.

The GAs work by evolving successive generations of chromosomes that get progressively 

more and more fit; that is, the successive generations have chromosomes that are better and better 

solutions to the original problem. As with many optimization techniques on complex problems, 

GAs are not guaranteed to produce the best value. However, by creating successive generations of 

solutions that get better and better, they have proven successful in practice. 

The role of the fitness function in GA is similar to that of the environment in the evolution of 

nature. Interaction of the individual with the environment provides a measure of fitness to reproduce. 

In the same way, the manner in which a chromosome (binary string) interacts with a fitness function 

provides a measure of the fitness of the GA while reproducing.

The fitness function for the problem in hand may be defined as 

 J(q) = 15q – q2 (A.4)

Initialization of Population 

The basic element processed by GA is the string—a binary coding of a parameter (set) of the 

search space. We start with a randomly selected initial population of such chromosomes (strings); 

each chromosome in the population represents a point in the search space, and hence, a possible 

solution to the problem. Each string is then decoded to obtain its fitness value, which determines 

the probability of the chromosome being acted upon by the genetic operators. The population then 

evolves, and a new population is crated through the application of genetic operators. The new 

generation is expected to perform better than the previous generation (better fitness values). The 

new set of strings is again decoded and evaluated, and another generation is created using the basic 

genetic operators. This process is continued until we reach the terminal conditions (to be described 

shortly).

The initial population of the chromosomes for our problem may appear similar to what is depicted 

in  Table A.1; comprising randomly generated 1s and 0s filled in six 4-bit strings. An actual practical 

problem would essentially have a population of several thousand chromosomes.

Survival of only the most fit species is possible in natural selection. Only the fittest can breed 

and pass on their genes to the generation that follows. An approach similar to this is used by GAs. 
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However, there is no change in the size of the chromosome population in successive generations 

which is not the case in nature. This helps in efficient and economical computation.

Table A.1  Initial randomly generated population of chromosomes

String number String q J J/SJ  

   Av J = 36

Max J = 56

s(1) 1100 12 36 0.165

s(2) 0100 4 44 0.202

s(3) 0001 1 14 0.064

s(4) 1110 14 14 0.064

s(5) 0111 7 56 0.257

s(6) 1001 9 54 0.248

For the problem in hand, Table A.1 gives initial population of six strings, the corresponding 

decoded value of the parameter q for each string and the fitness value for each string. One example 

of decoding (conversion) from binary (base 2) to decimal (base 10)) follows:

  (1100)2 = 1 ¥ 23 + 1 ¥ 22 + 0 ¥ 21 + 0 ¥ 20 = (12)10 (A.5)

The average fitness of initial population is 36; pretty good, because the actual maximum is 

56.25. Evolution can improve it further.

Let us represent the decision variable by q(k) where the iteration index k stands for the 

generation number. The parameter q for various strings in Table A.1 has been assigned initial 

values corresponding to randomly selected strings; these values thus stand for generation 0, and are 

denoted as q (0).

String in a population may be represented as s(i)(k); i = 1, …, N. For the initial population in 

Table A.1, N = 6, and k = 0.

The fitness function for our problem is 

 J(q(k)) = 15q (k) – (q(k))2 (A.6)

The entries in Table A.1 correspond to k = 0.

Selection 

In the process of natural selection, the most qualified (fittest) creatures survive to mate. Fitness is 

determined by a creature’s ability to survive predators, pestilence, and other obstacles to adulthood 

and subsequent reproduction. In our unabashedly artificial setting, we quantify “most qualified” 

via a chromosome’s fitness J(q(k)). The fitness function is the final arbiter of the string-creature’s 

life or death. Selecting strings according to their fitness values means that the strings with a higher 

value have a higher probability of contributing one or more offspring in the next generation.

Selection is a process in which good-fit strings in the population are selected to form a mating 

pool. A chromosome is selected for mating pool according to the probability proportional to its 

fitness value. The probability for selecting the ith string s(i) is 
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 P(i) = 
J k

J k
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q

=

Â
1

 (A.7)

For the initial population of six strings in Table A.1, the probability of selection is given in the 

column J/SJ of Table A.1:

P(1) = 0.165, P(2) = 0.202, P(3) = 0.064, P(4) = 0.064, P(5) = 0.257, P(6) = 0.248

Survival is based on randomly choosing chromosomes for the next generation in such a way that 

the chance of a chromosome being selected is proportional to its fitness.

Chromosome selection process may be carried out by first creating a number line between 0 

and 1. Each chromosome in generation 0 is allotted a portion of the number line proportional to 

its probability of selection. For the example in hand, s(1) gets 16.5% of the line, s(2) gets 20.2%, 

s(3) gets 6.4%, s(4) gets 6.4%, s(5) gets 25.7% and s(6) gets 24.8% (Fig. A.4). Chromosomes s(5) 

and s(6) (the most fit chromosomes) occupy the largest segments, whereas the chromosomes s(3) 

and s(4) (the least fit) have much smaller segments. To select a chromosome for mating, a random 

number is generated in the interval [0, 1], and the chromosome whose segment spans this number, 

is selected. In our example, we have initial population of six chromosomes. Thus to establish the 

same size population in the next generation, the random number is generated six times. Notice that, 

in general, this procedure produces more copies of the fitter chromosomes and fewer of the less fit.

s
(1) : 16.5% s

(2) : 20.2%

s
(3
)
:
6
.4
%

s
(4
)
:
6
.4
%

s
(5): 25.7% s

(6): 24.8%

10

Figure A.4  The selection strategy (similar to a roulette wheel in casino) 

The first two random number generations for selection might select chromosomes s(6) and s(2) 

to become parents, the second pair of random number generations might choose chromosomes s(1) 

and s(5), and the last two might select s(2) and s(5), resulting in the mating pool shown in Fig. A.5.

 s(6) : 1 0 0 1

 s(2) : 0 1 0 0 

 s(1) : 1 1 0 0

 s(5) : 0 1 1 1

 s(2) : 0 1 0 0

 s(5) : 0 1 1 1

Figure A.5  Mating pool
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Notice that due to the probabilistic nature of the selection process, it is possible that some 

relatively unfit strings may end up in the mating pool. For the problem in hand, string s(3) or s(4) 

also might have been selected in the process of random number generations for selection; it is just 

the luck of the draw (we do not worry too much about this issue; relatively unfit strings will not 

survive too long, i.e., too many generations, because of the selection operator). If the population 

size were large and random number generated many times, the average results would be closer to 

the expected values. 

Reproduction Phase; Crossover 

The next operator applied to the surviving chromosomes is crossover. Crossover, which is analogous 

to sexual reproduction in nature, creates two new chromosomes from two existing ones by gluing 

together pieces of each one. There are many popular approaches to crossover; we will consider here 

the simplest approach: the single-point crossover. Single-point crossover starts with two parent 

chromosomes and a random position, the crossover point, where the two chromosomes ‘break’. 

The crossover operator exchanges all bits to the right of the cross site of one string with those of 

the other.

This process is pictured in Fig. A.6. In this example, the cross site is position two on the string, 

and hence, we swap the last two bits between the two strings (clearly, the cross site is a random 

number between one, and the number of bits in the string minus one). As a result of the crossover, 

two offspring are created, each have a piece of their genetic code inherited from each of their 

parents.

 Before crossover After crossover 

 1 0 0 1 1 0 0 0 

             �  

 0 1 0 0 0 1 0 1

 ≠ ≠

 Cross site Cross site

Figure A.6  Crossover operation example 

Just as in nature, one has no reason to expect offspring to be any more or less fit than their 

parents; just different. The chromosomes of offspring include traits inherited from both parents. 

When a particular combination turns out to have a high fitness value, it is likely to be replicated in 

future generations. When the solution space is very large, as it would be in typical applications of 

genetic algorithms, there is high probability that some of the offspring will happen to be very fit, 

and favoured by selection. This is how crossover improves the average fitness of the population 

over time. If good chromosomes are not created by crossover, they will not survive too long because 

of the selection operator.

If a pair of chromosomes does not crossover, then chromosome cloning takes place, and the 

offsprings are created as exact copies of each parent.

Applying crossover to a population proceeds by selecting pairs of chromosomes and randomly 

deciding whether they split and swap. The crossover probability Pc is usually chosen to be high 
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enough to cause many new candidate solutions to be tried, but not so high that promising traits that 

may be represented by substrings of the chromosome are broken up before they can demonstrate 

their value. A value near 0.7 generally produces good results. For pairs selected for split and swap, 

a random position for cross site is chosen and the offspring of the original chromosomes replace 

them in the next generation.

For the example under consideration, the randomly generated pairs for mating are: s(6) and s(2); 

s(1) and s(5); and s(2) and s(5). The chromosomes s(6) and s(2) could be crossed over after the second 

bit, chromosomes s(1) and s(5) after the first bit, and chromosomes s(2) and s(5) may not cross over. 

The chromosomes after this crossover process, are shown in Fig. A.7.

1 0 0 0 

0 1 0 1

1 1 1 1

0 1 0 0 

0 1 0 0 

0 1 1 1

Figure A.7  Chromosomes after a crossover process 

Why does the GA need to perform crossover besides the fact that the crossover facilitates the 

modeling of the mating part of the evolution process? Essentially, the crossover operation perturbs 

the parameters close to good values to attempt to explore better solutions to the optimization 

problem. It has the tendency to assist in performing a localized search around the much fitter strings 

(because on an average, the strings in the generation k mating pool are much fitter than those found 

in the generation k population).

In a GA, the process for crossover first demands the specification of the crossover probability Pc, 

followed by the execution of certain steps, as follows:

 (i) Random pairing off of the strings in the mating pool. In case of odd number of strings in the 

mating pool, the string that occurs last is simply paired off with another string, which has 

already been paired off.

 (ii) Consider a chromosome pair formed in step (i). Generate a random number r Œ[0, 1].

 (a) If r < Pc, then crossover takes place.

 (b) If r > Pc, then the crossover will not take place; hence, we do not modify the strings.

 (iii) Repeat step (ii) for each pair of strings in the mating pool.

Reproduction Phase; Mutation

In nature, mutation rarely takes place, as it is the outcome of miscoded genetic material being passed 

on to an offspring from its parent. The change that results in the gene is occasionally representative 

of an important improvement in fitness over the current population, though the results cause damage 

quite often. 
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Why does the GA perform mutation besides the fact that this operator facilitates the modeling 

of the mutation in a biological system? Essentially, its role is to provide a guarantee that the search 

algorithm is not trapped on a local optimum. The selection and crossover operations may end 

up being stagnated at any homogenous set of solutions. All chromosomes appear same under 

such conditions, and therefore, no improvement is possible in the average level of fitness of the 

population. But the solution may seem to become optimal, merely because the search algorithm is 

unable to move ahead. Mutation offers random excursions into new areas of the search space. We 

may get lucky and undergo mutation to a good solution. It is a process that attempts to ensure that 

we are not trapped at a local optima, and are able to explore other areas of the search space to seek 

a global optimum. But, it is to be noted that when the initial population offers a decent coverage 

of the search space, successive generations progress rapidly towards the optimal solution with the 

help of selection and crossover; there is a likelihood of modifications brought in by mutation being 

harmful. Generally, the mutation probability Pm is selected to be very small, with a typical range 

being 0.001 to 0.01, as this guarantees that not all the strings in the mating pool undergo mutation, 

so that there is no loss of any progress made in search. Owing to extremely low probability of 

mutation, the harmful effects, if any, fail to last for more than one or two generations.

In artificial genetic systems (GA), mutation is realized by inverting a randomly chosen bit in a 

string. For example, the third string (chromosome) in Fig. A.7 might be mutated in its second bit, 

and fifth string in its third bit, as shown in Fig. A.8. Before mutation  After mutation

  1 1 1 1 1 0 1 1

 Mutation site Mutation site
   

  0 1 0 0 0 1 1 0

 Mutation site Mutation site

Figure A.8  Mutation operation examples 

Terminal Conditions 

We get the generation k + 1 population as a result of the selection, crossover and mutation operations 

on generation k. The iteration of these steps results in successive generations being produced, and 

this way we model evolution (an extremely basic model).

While the process of biological evolution keeps going on, may be even forever (competition and 

selection processes usually occur in the natural world, wherein the limitation of space and resources 

restrict the expansion of populations of various species), we prefer to terminate our artificial one 

and explore the following:

 (i) To determine the population string—say q
*(k)—that maximizes the fitness function, we 

require knowledge of the generation number k where the fittest string was present (not 

essentially in the last generation). A computer code, which implements the GA, keeps track 

of the highest J value, and the generation number and string that achieved this value of J.

≠ ≠

≠ ≠
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 (ii) The value of the fitness function is J(q*(k)). How can then the genetic algorithm be terminated? 

There are several ways for termination of a GA; many of these resemble the termination 

conditions employed for conventional optimization algorithms. To introduce a few of these, 

let e > 0 be a small number and K1 > 0 and K2 > 0 be integers. Termination of a GA can be 

done in any of the following ways:

 (i) By stopping the algorithm after K1 generations. 

 (ii) By stopping the algorithm post the occurrence of at least K2 generations, and at least for 

K1 iterations the maximum (or average) value of J for all population members has risen 

by e, and not more.

 (iii) By stopping the algorithm the moment J takes on a value higher than a fixed value.

These possibilities are not difficult to implement on a computer. However, at times, you may 

wish to watch the evolution of parameters and make a decision pertaining to when the algorithm 

should be stopped. After many generations (typically several hundred), the population evolves to a 

near-optimal solution.

Multi-Parameter Fitness Functions

For the simple illustrative problem considered so far, the objective function

J(q) = 15q – q2

has a single parameter (decision variable) q. Further, we have constrained the values of q to be 

integers.

In more practical problems, the objective function would be of the form 

 J(q) = J(q1, q2, …, qj, …, qn) (A.8)

having n decision variables qj; the values of qj Œ¬, i.e., qj have real values.

If there are n parameters in the objective function, we encode the parameter set by creating bit 

string for each parameter qj; j = 1, …, n, and then joining them (concatenating the strings). If each 

parameter qj is encoded as an m-digit binary number, then a chromosome is a string of m ¥ n binary 

digits. We start with a randomly selected population of such chromosomes; each chromosome in 

the population represents a point in the search space, and hence a possible solution to the problem. 

Each sub-string is then decoded to obtain the fitness value.

Consider, for example, an objective function J(q1, q2). The problem specification may impose 

different values of minimum and maximum for q1 and q2; we assume here that the minimum value 

to which we would expect qj; j = 1, 2, to go would be  –2, and the maximum would be 5.

Therefore, 

qjmin = – 2, and qjmax = 5; j = 1, 2

The first step is to represent the problem variables as a chromosome. In other words, we represent 

parameters q1 and q2 as a concatenated binary string. We take the string length to be 12. The first six 

encode the parameter q1, and the next six encode the parameter q2. The strings (000000, 000000) 

and (111111, 111111) represent the points (q1min, q2min), and (q1max, q2max), respectively, in the 

parameter space for the parameter set (q1, q2). Decoding of (000000) and (111111) to decimal form 



Genetic Algorithm (GA) for Search Optimization  523

gives 0 and 63 (2L – 1; L = 6), respectively. Since (qjmin, qjmax) = (– 2, 5), the best resolution would 

be obtained if decoding of (000000) and (111111) to decimal form gives – 2 and 5, respectively.

How is decoding done? 

Consider a string (a concatenation of two sub-strings):

                                    000111  010100 (decimal values: 7  20) (A.9)

representing a point in the parameter space for the set (q1, q2). The decimal value of the substring 

(000111) is 7 and that of (010100) is 20. A sub-string may be mapped to the value of the parameter 

qj with fixed range {qjmin, qjmax}, by the mapping

 qj = qjmin + 
b

L
2 1-

(qjmax – qjmin) (A.10)

where b is the number in decimal form that is being represented in binary form, L is the length of 

the bit sub-string (i.e., the number of bits in the sub-string), and qjmin and qjmax are user specified 

constants, which depend on the problem in hand.

For the string given in (A.9), the mapping gives the values:

                    q1 = q1min + 
b

L2 1
2

7

2 1
5 2 1 221 1 6

-

- = - +

-

- - = -( ) ( ( )) .max minq q  

                    q2 = q2min + 
b

L2 1
2

20

2 1
5 2 0 222 2 6

-

- = - +

-

- - =( ) ( ( )) .max minq q

The next step is to calculate the fitness of each chromosome. Using decoded values of q1 and 

q2 as inputs in the fitness function J(q1, q2), the GA calculates the fitness of each chromosome (a 

concatenation of sub-string representing q1 and q2).

Note that the larger is the string length, better is the resolution of encoding, resulting in better 

solution accuracy. The length of the bit strings GA uses, is based on the handling capacity of the 

computer being used for realization of GA, i.e., how long a string the computer can manipulate at 

an optimum level.

As an exercise example, consider the problem of minimizing the function

 J (q1, q2) = (q1
2 + q2 – 11)2 + (q2

2 + q1 – 7)2 (A.11)

in the interval 0 £ q1, q2 £ 6. The true solution [3, 2] to the problem is having a function value equal 

to zero.

Take up this problem to explain the steps involved in GA: maximizing the function 

 J(q1, q2) = 
1 0

1 0
0 6

1 2
1 2

.

. ( , )
; ,

+
£ £

J q q
q q  (A.12)

Step 1: Take 10 bits to code each variable. 

Step 2: Take population size equal to total string length, i.e., 20. Create a random population of 

strings.
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Step 3: Consider the first string of the initial random population. Decode the two sub-strings and 

determine the corresponding parameter values. What is the fitness function value corresponding to 

this string? Similarly for other strings, calculate the fitness values.

Step 4: Select good strings in the population to form the mating pool.

Step 5: Perform crossover on random pairs of strings (the crossover probability Pc is 0.8).

Step 6: Perform bitwise mutation with probability 0.05 for every bit.

The resulting population is the new population. This completes one iteration of GA, and the 

generation count is incremented by 1.

Summary of the Basic Genetic Algorithm 

On-line view of the basic genetic algorithm is summarized in Table A.2 [5].

Table A.2  Summary of the basic genetic algorithm

Generate a population of chromosomes of size N: strings s(1), s(2), …, s(N); string s(i) representing the parameter 

set q(i) = {q1
(i), q2

(i), …, qj
(i), …, qn

(i)}

Step 1: Calculate the fitness of each chromosome:

J(q(1)), J(q(2)), …, J(q(N))

Step 2: If the termination criterion is satisfied, go to step 9; otherwise go to step 3.

Step 3: Select a pair of chromosomes for mating.

Step 4: With the crossover probability Pc, exchange parts of the two selected chromosomes and create two 

offspring.

Step 5: With the mutation probability Pm, randomly change the bit values in the two offspring chromosomes. 

Step 6: Place the resulting chromosomes in the new population. 

Step 7: If the size of the new population is N, then go to step 8; otherwise go to step 3.

Step 8: Replace the current chromosome population with the new population, and go to step 1. 

Step 9: Terminate optimization.

A.4  BEYOND THE BASIC GENETIC ALGORITHM 

Researchers have been exploring improvements in genetic algorithms in all directions possible. 

Certain improvements have occurred in the basic algorithm; others alter the algorithm to present a 

better model of genetic activity in the natural world. 

The simple genetic algorithm previously described has room for improvement in several areas. 

An overview of the research trends is given below.
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Schema Theorem

 Although convenient for many problems, bit strings are not the only representation of chromosomes. 

In reference [5], bit strings have been used to represent genomes in a maintenance scheduling 

problem, but for the traveling salesman problem, a vector of integers has been used to represent 

genomes. Vector of integers has also been used in a message routing problem in reference [19].

One of the reasons that bit strings are often preferred has to do with the way sub-strings that 

match a particular pattern or schema represent whole families of potential solutions.

John Holland in 1975 [189] introduced the notation of schema, which came from the Greek word 

meaning ‘form’. A schema is a set of bit strings of 1s and 0s and asterisks, where each asterisk 

(*) can assume either value 1 or 0. The 1s and 0s represent the fixed positions of a schema, while 

asterisks represent ‘wild cards’. For example, the schema

1 * * 0 

stands for a set of 4-bit strings. Each string in this set begins with 1 and ends with 0. The strings are 

called instances of the schema. A chromosome matches a schema when the fixed positions in the 

schema match the corresponding positions in the chromosome. For example, the schema

1 * * 0 

matches the following set of 4-bit chromosomes.

1 1 1 0 

1 1 0 0

1 0 1 0 

1 0 0 0 

The number of defined bits (non-asterisks) in a schema is called the order of the schema. The 

distance between the outermost bits of a schema is called defining length.

When they run, GAs manipulate schemata (plural of the word schema). As per the Schema 

Theorem, short and low-order schemata possessing fitness beyond average, increase in population 

from one generation to the other. Simply put, low-order schemata are the building blocks that lay 

the foundation for the GAs to operate. The building blocks that are most fit survive from generation 

to generation, mingling with each other to create genomes that are better, superior and more fit.

According to the Schema Theorem, genetic algorithms are really searching through the possible 

schemata to identify the building blocks fit enough to survive from generation to generation. By 

processing as many schema as possible, from generation to generation, it is possible to find the 

fittest building blocks.  

The Schema theorem lends us insight into the reason for genomes to work better when there 

are just two symbols (0s and 1s) in the representation. Consider the schema * 0 0 . Only 

two chromosomes, 0 0 0  and 1 0 0 , process this schema when two symbols are used for 

representation of chromosomes. If there are four symbols, 0, 1, 2, and 3, in the representation, then 

four chromosomes: 0 0 0 1 0 0 2 0 0, ,  and 3 0 0 , process this schema. Because genetic 

algorithms search for the best schemata using a given population size, the additional chromosomes 

do not help this search. 
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Rigorous presentation of the details of Schema Theorem is beyond the scope of this Appendix.

Diploid Chromosomes

 The genetics employed till now is based on the most basic chromosomes existing in nature: haploid 

chromosomes comprising just a single-strand of genes. These occur in single-cell organisms that 

are not complex. In more complex organisms, the chromosomes are two-stranded (occur in arrays 

of pairs), or diploid, as in case of our own DNA. In case of diploid sexual reproduction, genes are 

exchanged between pairs of chromosomes of the two parents to give rise to a gamate (a single 

chromosome) in each parent. These gamates from the two parents pair up to give rise to a complete 

set of diploid chromosomes. On the other hand, exchange of genes takes place between the single-

strand chromosomes of  the two parents, in case of haploid sexual reproduction.  

The algorithmic features of diploid chromosomes are similar to that of haploid chromosomes, 

as it is possible to treat diploid chromosomes as two chromosomes bound together. Selection, 

crossover, and mutation progress in the same manner. The only way they differ is in the fact that 

there are now two alleles for each gene and not just one. IF they match, it is fine, but if they don’t, 

the fitness function makes use of the dominant allele. For example, if an allele for blue eyes pairs up 

with an allele for brown eyes, the latter will win. In the language of genetics, the alleles for brown 

eyes are expressed instead of the blue eyes. A solution has been found by researchers—they include 

information related to dominance in the alleles themselves.

New Models

Certain improvements in genetic algorithms change the algorithm so that they offer a better model 

of genetic activity in the natural world. An overview of the popular new models follows.

 • A model for the simulation of natural evolution was suggested in the early 1960s, in Germany 

[188]. This model is referred to as an evolution strategy. The genetic algorithm differs from 

evolution strategy because it uses both crossover and mutation, unlike the evolution strategy 

which employs mutation alone. Additionally, evolution strategies need no representation of 

the problem in a coded form.

 • Genetic Programming is an extension of the traditional genetic algorithm, but the objective 

of genetic programming is not merely the evolution of a bit-string representation of a certain 

problem but the evolution of the computer code that offers a solution to the problem. This 

means, genetic programming can lead to the creation of computer programs as the solution, 

whereas genetic algorithms give rise to strings of binary numbers representing the solution. 

Genetic programming applies the same evolutionary model as genetic algorithm [187].

Other Learning Approaches Inspired by Nature 

In addition to evolutionary computation, many other learning approaches have been developed, 

which are inspired by nature. Out of these approaches, swarming and immune systems are widely 

researched and used methods (refer to Section 1.7). The thread that ties together learning based on 

evolution process, swarm intelligence and immune systems is that all have been applied successfully 

to a variety of optimization problems. Interested readers may find references [26–29] useful.
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B.1  INTRODUCTION 

Reinforcement learning (RL) is a learning paradigm pertaining to learning to control a system 

to maximize a numerical performance measure that expresses a long-term objective. It is of 

immense interest owing to the huge volume of applications it can help address. The application 

of reinforcement learning in learning to play games has proved to be very impressive. Job-shop 

scheduling (seeking a schedule of jobs fulfilling temporal and resource limitations) is one of the 

several operation-related problems that RL can effectively address. Other problems include inventory 

control, maintenance problems, targeted marketing, vehicle routing, fleet management, elevator 

control, etc. RL is capable of addressing a lot of information theory problems, for instance, optimal 

coding, packet routing, optimization of channel allocation or sensor networks. Another significant 

category of problems emanates from finance. These include optimal portfolio management and 

option pricing. RL is employed to handle problems in control engineering: optimal control of 

chemical or mechanical systems in process control and manufacturing applications. The problem 

of controlling robots is part of the latter [31].

Reinforcement learning finds basis in the logical concept that if an action is followed by a 

satisfactory state of affairs, or by an improvement in the state of affairs (as established by a clearly 

defined measure), then the inclination to produce that action becomes stronger, that is, reinforced. 

Allowing actions to depend on state information, brings in the feedback aspect. Therefore, an RL 

learning system is one which results in an improvement in performance by interacting with its 

environment. Through interaction, the learning system receives feedback in the form of a scalar 

reward (or penalty)—a reinforcement signal, consistent with the response. No supervision is given 

to the learning system regarding what action is to be taken. Rather, trials lead to the discovery of 

the action which will give the most reward. The actions influence not just the immediate reward but 

also the situation that follows, and hence, all successive rewards. These two features—learning by 

trial-and-error and cumulative reward—are the two essential distinguishing traits of reinforcement 

learning. Even though the initial performance may be weak, through sufficient environmental 
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interaction it will ultimately be able to learn an effective strategy that maximizes the cumulative 

reward.

Suppose, we wish to build a machine that learns to play chess [6].  It is not possible for us to 

use a supervised learner as there is no best move; the appropriateness of a move is dependent on 

the moves that follow. A single move does not count but a sequence of moves is the best if the 

game is won after playing them (cumulative reward). There is a decision maker called the agent 

(the game-player, playing against an opponent) that is placed in an environment (the chess board). 

At any time, the environment is in a certain state (the state of the chess board), and the agent has a 

set of possible actions (legal moves of pieces on the chess board). Once an action is selected and 

performed, the state is altered. A sequence of actions is required for the solution to the task; the 

learning agent learns the best sequence of actions to solve a problem, where ‘best’ is quantified as 

a sequence possessing the maximum cumulative reward (winning the game). Feedback in the form 

of immediate reward following each action (move on the chess board) is used to select actions in 

order to ensure maximum cumulative reward.

Another example we take here is a robot (agent) placed in a maze (environment) [6]. The robot 

can move in one of the four compass directions without hitting the walls (set of possible actions). 

At any time, the robot is in a certain position in the maze, that is, one of the possible positions 

(environment is in a certain state that is one of the possible states). The robot performs a sequence 

of moves and when it reaches the exit, only then does it get a reward (cumulative reward). In this 

case, there is no opponent, but we can have preference for shorter trajectories, implying that in this 

case we play against time.

Reinforcement learning framework formulation to solve sequential decision problems, generally 

considers, the reinforcement learning problem as a straightforward framing of the problem of 

learning from interaction to attain a goal. The learner and the decision-maker is called an agent. 

Everything beyond that is known as the environment. There is continuous interaction amongst 

them, with the agent choosing the actions and the environment providing responses to them and 

presenting new situations (states of the environment) to the agent. Figure B.1 is a diagram of a 

generic agent, which perceives its environment via sensors and acts upon it using effectors. RL 

means learning to map states to actions so as to maximize a numerical reward. The agent is not 

Percepts

(state, reward)

Environment Agent
Sensors

Effectors

Actions

 Figure B.1 A generic agent
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informed regarding the actions to be taken; rather, it should discover the actions that give the 

maximum reward, by trying them out. To achieve huge rewards, an RL agent has to necessarily opt 

for actions that have been tried out earlier and found to be efficient in reward production. In order 

to find such actions, it has to test actions that have not been chosen before. The agent has to exploit 

the knowledge it already possesses by being greedy to maximize reward, but it has to also explore 

so as to choose better actions in the future. The problem is that exclusively exploring or exploiting 

will only lead to failure at the task. The agent has to attempt various actions and progressively opt 

for the ones that seem to be most efficient. Even if the agent’s performance is not good enough 

initially, with adequate environmental interaction, it will ultimately learn an effective policy for 

reward maximization.

Reinforcement learning is not the same as supervised learning. It could be considered as “learning 

with a critic”, which is different from “learning with a teacher”. A critic is not the same as a teacher 

as it does not show us what is to be done. It only tells us how well we have done in the past; the 

critic gives no advance information. After several actions are taken and rewards received, it is 

desired to assess the individual actions performed earlier, and identify the moves that resulted in 

the winning of the reward, so that they can be recorded and recalled in the future. An RL program 

actually learns to generate a value for immediate states or actions; that is, how well they lead us 

to the goal. The moment an immediate reward mechanism of this kind is learned, the agent can 

perform the local actions  to maximize it. 

Until now we have assumed in the book that the instances that constitute a sample are iid 

(independently and identically drawn). This assumption is, however, not valid for applications 

where successive instances are dependent. Processes where there are a sequence of observations, 

can’t be modeled as simple probability distributions. 

The problems which require a sequence of actions are ideally described in the Markovian 

Decision Processes (MDPs) framework of [6], wherein the sequence is characterized as being 

generated by a parametric random process. The states can be observed in an MDP model. At any 

time t we are aware of the state, and as the system progresses from one state to another, we obtain 

observation sequence, that is, a sequence of states and actions. In a Hidden Markov Model (HMM), 

the states cannot be observed.

In real-life applications, we usually come across two situations: observable states, and partially 

observable states. In certain applications, the agent is not aware of the exact state. It has the sensors 

that return an observation, which the agent then employs for an estimation of the state. Suppose 

there is a robot navigating in a room. It may be unaware of its precise location in the room, or 

what else exists in the room. The robot could have a camera for the purpose of recording sensory 

observations. This does not really convey to the robot its precise state, but provides some indication 

regarding its probable state. This setting resembles an MDP, except that once the action is taken, 

the new state is not known, but there is a sensor observation that is a stochastic function of earlier 

state and action. The solution to this partially observable MDP is somewhat similar to MDP: from 

sensor observation, the state (or rather the probability distribution for the states) can be inferred 

and then acted upon. 

In our brief presentation in this appendix, we will assume observable states, and use MDP model 

to model the behavior of the agent.
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The standard approach for solving MDPs is with the help of dynamic programming, which 

converts the problem of identifying a good agent into the problem of seeking a good value function. 

But, other than the simplest case when MDP has very few states and actions, dynamic programming 

is not feasible. The RL algorithms discussed here can be considered as a way of converting the 

infeasible dynamic programming techniques into feasible algorithms to make them applicable to 

large-scale problems. There are just two primary ideas that permit RL algorithms to attain this goal 

[31]:

 • One primary idea is to employ samples that can represent the dynamics of the control system 

in a compact manner.

 • Another key idea behind RL algorithms is to make use of powerful function approximation 

techniques (neural networks, for example) to efficiently represent value functions. Using 

neural networks helps control RL in terms of the realistic problems possessing large state-

and action spaces. A neural network possesses the generalization property; experience with 

a restricted subset of state space is typically generalized to give rise to a good approximation 

over a much bigger subset.

The two ideas fit together properly. Samples may focus on a small subset of space they belong 

to, from which function approximation methods generalize to bigger spaces. It is the understanding 

of the interplay between dynamic programming, samples, and function approximation, which is at 

the heart of the design, analysis, and application of RL algorithms. 

Recent advances relating reinforcement learning to dynamic programming are providing 

solid mathematical foundation; mathematical results that guarantee optimality in the limit for an 

important class of reinforcement learning systems are now available (the property that we lack in 

case of supervised learning, which is an empirical science—the asymptotic effectiveness of the 

learning systems has been validated only empirically).

In this appendix, we will concentrate on those RL algorithms that are built on the foundation of the 

powerful theory of dynamic programming. RL discussed here is also referred to as neuro-dynamic 

programming or approximate dynamic programming. The term neuro-dynamic programming is 

derived from the fact that, in several cases, RL algorithms are used with artificial neural networks.

There are several software packages which support the development and testing of RL algorithms. 

The most notable could be the RL-GLUE (http://glue.rl-community.org) and RL-LIBRARY (http://

library.rl-community.org) packages.

The coverage of reinforcement learning in this appendix is to be regarded as an introduction to the 

subject; a springboard to advanced studies [30–32]. The inclusion of the topic has been motivated 

by the observation that reinforcement learning has the potential of solving many nonlinear control 

problems. 

B.2  ELEMENTS OF REINFORCEMENT LEARNING 

The learning decision maker is known as the agent. There is an interaction of the agent with the 

environment, which comprises everything beyond the agent. The agent is equipped with sensors 

that decide on its state in the environment and takes an action that modifies its state. When the agent 

takes an action, the environment offers a reward (Fig. B.2(a)). Time is discrete: t = 0, 1, 2, …. When 
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the agent is in state st, takes an action at, the clock ticks, reward r (st) Œ ¬ is received, and the agent 

moves to the next state st + i. 

Beyond the agent and the environment, it is possible to find four main sub-elements of 

a reinforcement learning system—a policy, a reward function, a value function and horizon of 

decisions. A policy defines the learning agent’s behavior at a given time. A policy is, roughly, 

a mapping of the environment from perceived states to actions that need to be implemented in 

those states. A reward function defines immediate reward for an action that is accountable for 

the present state of the environment. It maps environmental states to a scalar, a reward, which 

indicates the inherent desirability of the state. While a reward function implies whatever is good 

in the immediate sense, a value function lays down what is good in the long term. The value of 

a state is the cumulative reward that an agent can expect to receive in the future as an outcome 

of the sequence of its actions, beginning from that state. While rewards establish the immediate, 

intrinsic desirability of environment states, values imply the desirability of states in the long run, 

after considering the states that are expected to follow, and the rewards obtainable in those states. 

An agent’s only aim is the maximization of the cumulative reward (value) attained in the long term.

The value function is dependent on the existence of a finite or an infinite horizon for making 

decisions. A finite horizon indicates a fixed time after which nothing really matters, as the game is 

kind of finished. In case of a finite horizon, the optimal action for a given state may be different at 

different times, that is optimal policy for a finite horizon is nonstationary.

In the absence of a fixed time limit, on the contrary, the reason for any different behavior in the 

same state at different times does not arise. Therefore, the optimal action is dependent solely on 

the present state, and the policy is stationary. Policies for finite-horizone case are complex, whereas 

policies for the infinite-horizon are much simpler.

‘Infinite horizon’ does not imply that all state sequences are infinite; it merely means that no 

deadline is fixed. There will not be any infinite sequences if the environment comprises terminal 

states and if it is known with certainty that the agent will eventually reach one. 

Our focus in this chapter is on reinforcement learning solutions to control problems 

(Fig. B.2(b)). The controller (agent) has a set of sensors to observe the state of the controlled 

process (environment); the learning task is to learn a control strategy (policy) for choosing control 

signals (actions) that achieve minimization of a performance measure (maximization of cumulative 

reward).

Environment
Controlled
Process

Controller

cost

action

state

reward
actionstate

Agent

(a) Agent-environment interaction (b) The basic reinforcement learning scenario
for control problems

Figure B.2
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In control problems, we minimize a performance measure; frequently referred to as cost 

function. The reinforcement learning control solution seeks to minimize the long-term accumulated 

cost the controller incurs over the task time. The general reinforcement learning solution seeks 

to maximize the long-term accumulated reward the agent receives over the task time. Since in 

control problems, reference of optimality is a cost function, we assign cost to the reward structure 

of the reinforcement learning process; the reinforcement learning solution then seeks to minimize 

the long-term accumulated cost the agent incurs over the task time. The value function of the 

reinforcement learning process is accordingly defined with respect to cost structure.

The stabilizing control problems are all infinite-horizon problems. Here also, we will limit our 

discussion to this class of control problems.

Some reinforcement learning systems have one more element—a model of the environment. 

This replicates the behavior of the environment. For instance, considering a state and action, the 

model may predict the subsequent next state and next cost.

RL systems were initially clearly model-free, trial-and-error learners. Over time, it became 

quite clear that RL techniques are similar to dynamic programming techniques, which make use 

of models. Adaptive dynamic programming has emerged as a solution method for reinforcement 

learning problems wherein the agent learns the models through trial-and-error interaction with the 

environment, and then uses these models in dynamic programming methods.

In control engineering, vector x is used to represent the state of a physical system: x = [x1 x2 … 

xn]
T, where xj: j = 1, … , n, are state variables of the system. State x, a vector of real numbers, is a 

point in the state space. In reinforcement learning (RL) framework, we will represent the state by 

‘s’; thus s is a point in the n-dimensional state space. Similarly, the vector u is used for control. We 

will represent this by the action ‘a’ in our RL framework.

If the environment is deterministic, then an agent’s action a will transit the state of the environment 

from s to s¢ deterministically; there is no probability involved. If the environment is stochastic, then 

transition of s to s¢ under action a will be different each time action a is applied in state s. This 

is captured by a probabilistic model. If the environment is deterministic, but uncertain, then also 

transition of s to s¢ under action a will not be unique each time action a is applied is state s. Since 

uncertainty in environments is the major issue leading to complexity of the control problem, we 

will be concerned with probabilistic models.

 (1) A specification of the outcome probabilities for each admissible action in each possible state 

is known as the transition model.

  P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s.

 (2) There are Markovian transitions in control problems. That is, the probability of reaching state 

s¢ from s depends only on s and not on the history of earlier states.

 (3) In each state s, the agent gets a reinforcement r(s), which measures the immediate cost of the 

action.

 (4) A Markov Decision Process (MDP) is the specification of a sequential decision problem for 

a completely observable environment, with a Markovian transition model and cost for each 

state 

 (5) The RL framework is based on the Markov decision processes.
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Off-line Learning and On-line Learning

Dynamic programming is a general-purpose technique used to identify optimal control strategies 

for nonlinear and stochastic dynamic systems. It addresses the problem of designing closed-loop 

policies off-line, assuming that a precise model of the stochastic dynamic system is available. 

The off-line process of design generally results in a computationally efficient technique which 

determines each action as a function of the observed system state.

There are two practical issues related to the use of dynamic programming:

 (1) For many real-world problems, the number of possible states and admissible actions in 

each state are so large that the computational requirements of dynamic programming are 

overwhelming (‘curse of dimensionality’). 

 (2) Dynamic programming algorithms require accurate model of the dynamic system; this prior 

knowledge is not always available (‘curse of modeling’). 

Over the past three decades, the focus of researchers has been to develop methods capable of 

finding high-quality approximate solutions to problems where exact solutions via classic dynamic 

programming are not attainable in practice due to high computational complexity and lack of 

accurate knowledge of system dynamics. In fact, reinforcement learning is a field that represents 

this stream of activities. All of the reinforcement learning can be viewed as attempts to achieve the 

same effect as dynamic programming, only with less computation and without assuming a perfect 

model of the dynamic system. By focusing on computational effort along behavioral patterns 

of interactions with the environment, and by using function approximation (neural network) for 

generalization of experience to states not reached through interactions, reinforcement learning can 

be used no-line for problems with large state spaces and with lack of accurate knowledge of system 

dynamics.

RL and use of dynamic programming to arrive at solutions for sequential decision problems are 

closely related as follows:

 (i) the environment in both is characterized by a set of states, a set of admissible actions, and a 

cost function; 

 (ii) both aim to identify a decision policy that reduces the cumulative cost over time to a minimum.

However, there is a significant difference. While solving a sequential decision problem with 

the help of dynamic programming, the agent (apparently the designer of the control system) has a 

complete (albeit stochastic) model of the environmental behavior. With this information, the agent 

can calculate the optimal control policy pertaining to the model. In RL, the set of states, and the set 

of admissible actions are known a priori. However, the effects of actions on the environment and 

on the cost are unknown. Therefore, the agent cannot compute an optimal policy a priori (off-line). 

Rather, the agent should learn an optimal policy by experimenting in the environment. Therefore, 

RL system is an on-line system.

In an on-line learning system, the learner moves around in a real environment observing the 

outcomes. In such a situation, the main concern is generally the number of real-world actions that 

the agent should perform to converge to an computational agreeable policy (instead of the number 

of cycles, as in off-line learning). The reason is that for many practical problems, the costs in time 

and in dollars of performing actions dominate the computational costs.
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An adaptive dynamic programming agent learns the transition model of the environment by 

interacting with the environment. It then plugs the transition model and the observed costs in 

the dynamic programming algorithms. Adaptive dynamic programming is, therefore, an on-line 

learning system.

The process of learning the model itself is not difficult when it is possible to fully observe the 

environment. In the most simple case, we can represent the transition model as a table of probabilities. 

We track the frequency of each action outcome, and make an estimation of the transition probability 

P(s, a, s¢) from the frequency with which state s¢ is attained during the execution of the action a in 

state s.

Temporal  Difference  Learning:  An idea that is central and novel to RL, is undoubtedly 

Temporal Difference (TD) learning. Temporal difference learning can be considered as a version of 

dynamic programming, with the only difference that TD techniques can learn on-line in real-time, 

from raw experience without a model of the environment’s dynamics. TD techniques do not make 

an assumption of complete knowledge of the environment; they need only experience—sample 

sequences of states, actions and costs from actual environmental interaction. Learning from actual 

experience is outstanding as it needs no prior knowledge of the environment’s dynamics, but still 

can attain optimal behavior.

The main benefit of dynamic programming is that, if a problem can be specified in terms of 

Markov decision process, then its analysis can be done and an optimal policy achieved a priori. The 

two primary drawbacks of dynamic programming are as follows: 

 (i) for various tasks, it is not easy to specify the dynamic model; and 

 (ii) as dynamic programming establishes a fixed control policy a priori, it fails to offer a 

mechanism for adapting the policy to compensate for disturbances and/or modeling errors 

(nonstationary dynamics).

Reinforcement learning has complimentary benefits as follows: 

 (i) it needs no prior dynamical model of any type, but learns by experience gathered directly 

from the environment; and

 (ii) to a certain level, it can keep track of the dynamics of nonstationary systems. 

The primary drawback of RL is that, typically, several trials (repeated experiences) are needed to 

learn an optimal control strategy, particularly if the system begins with a weak initial policy.

It appears that the respective drawbacks of these two approaches can be taken care of through 

their integration. That is, if a complete, possibly incorrect, model to the task is available a priori, 

model-based techniques (including dynamic programming) may be employed for the development 

of initial policy for an RL system. A reasonable initial policy can substantially improve the system’s 

initial performance and reduce the time required to reach an acceptable level of performance. 

Alternatively, if an adaptive RL element is added to an otherwise model-based fixed controller, an 

inaccurate model can be compensated for.

In this appendix, we limit our discussion to naive reinforcement learning systems. Our focus is 

on temporal difference learning. We begin with an introduction to dynamic programming, and then 

using this platform, develop temporal difference methods of learning.
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B.3  BASICS OF DYNAMIC PROGRAMMING 

We first define a general formulation of the problem of learning sequential control strategies. To 

do so, we consider building a learning controller for stabilization of an inverted pendulum. Figure 

B.3 shows an inverted pendulum with its pivot mounted on a cart. The cart is driven by an electric 

motor. The motor drives a pair of wheels of the cart; the whole cart and the pendulum become the 

‘load’ on the motor. The motor at time t exerts a torque T(t) on the wheels. The linear force applied 

to the cart is u(t); T(t) = Ru(t), where R is the radius of the wheels.

The pendulum is obviously unstable. It can, however, be kept upright by applying a proper 

control force u(t). This somewhat artificial system example represents a dynamic model of a space 

booster on take off—the booster is balanced on top of the rocket engine thrust vector.

Pendulum

Carriage

z

u t( )

q

Figure B.3 Inverted pendulum system 

In the reinforcement learning control setting, the controller, or agent, has a set of sensors to 

observe the state of its environment (the dynamic system: inverted pendulum mounted on a cart). 

For example, a controller may have sensors to measure angular position q and velocity �q  of 

the pendulum, and horizontal position z and velocity �z  of the cart; and actions implemented by 

applying a force of u newtons to the cart. Its task is to learn control strategy, or policy, for choosing 

actions that achieve its goals.

A common way of obtaining approximate solutions for continuous state and action tasks is to 

quantize the state and action spaces, and apply finite-state dynamic programming (DP) methods. 

The methods we explore later in this appendix, make learning tractable on the realistic control 

problems with continuous state spaces (infinitely large set of quantized states).

Suppose that our stabilization problem demands that the pendulum must be kept within ± 12° 

from vertical, and the cart must be kept within ± 2.4m from the center of the track.

We define the following finite sets of possible states S and available actions A.
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States Æ 1 2 3 4 5 6

Pend. angle(deg); q < – 6 – 6 to –1 –1 to 0 0 to 1 1 to 6 > 6

Pend. velocity; �q
< – 50 –50 to 50 > 50

Cart position(m); z < – 0.8 –0.8 to 0.8 > 0.8

Cart velocity; �z < – 0.5 – 0.5 to 0.5 > 0.5

Actions Æ 1 2 3 4 5 6 7

Apply force of u newtons –10 –6 –2 0 2 6 10

Define: x1, = q, x2, = �q, x3 = z, x4 = �z. Vector x = [x1 x2 x3 x4]
T defines a point in the state space; 

the distinct point corresponding to x is the distinct state s of the environment (pendulum on a cart). 

Therefore, there are 6 ¥ 3 ¥ 3 ¥ 3 = 162 distinct states: s(1), s(2), …, s(162), of our environment. The 

finite set of states, in our learning problem, is thus given as, 

S : {s(1), s(2), …, s(162)}

The action set size is seven: a(1), a(2), …, a(7). The finite set of available actions in our learning 

problem, is thus given as, 

A : {a(1), a(2), …, a(7)}

We assume the knowledge of state transition model:

P(s, a, s¢): probability of reaching state s¢ if action a is applied in state s; for all s Œ S, and for all 

a Œ A

Note that our model is stochastic; it captures the uncertainties involved in the environment.

In each state s, the agent receives a reinforcement r(s), which measures the immediate cost of 

action. For the particular inverted pendulum example, a cost of ‘–1’ may be assigned to failure 

states (q > 12°; q < –12°), and a cost of ‘0’ may be assigned to every other state. Note that cost 

structure for a learning problem is an important design parameter. It controls the convergence speed 

of a learning algorithm. The functions P(◊) and r(◊) are part of the environment.

The specification of a sequential design problem for a fully observable (the agent knows where 

it is) environment with a Markovian decision model and cost for each state, is a Markov Decision 

Process (MDP). An MDP is defined by the tuple (S, A, P, r) where S is the set of possible states 

the environment can occupy; A is the set of admissible actions the agent may execute to change

the state of the environment, P is the state transition probability, and r is the cost function. We 

assume that 

S : {s(1), s(2), …, s(N)}; A : {a(1), a(2), …, a(M)}

where N represents the total number of distinct states of the environment, and M represents the total 

number of admissible actions in each state.

Let us now consider the structure of solution to the problem. Any fixed action sequence (open-loop 

structure) will not solve the problem because due to uncertainties in the behavior of the environment, 

the agent might end up in a failure state; i.e., the scheme lacks the robustness properties. Therefore, 
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a solution must specify what the agent should do far any state that the environment might reach. 

The resulting feedback loop is a source of a measure of internal/external disturbances. A solution 

of this kind is called a policy. We usually denote a policy by p.

A stationary policy p for an MDP is a mapping p : S Æ W(A), where W(A) is the set of all 

probability distributions over A. p (a, s) stands for the probability that policy p chooses action a in 

state s. Since each action a(1), a(2), …, a(M) is a candidate for state s, policy p (a, s) for s is a set of 

action-selection probabilities associated with a(1), …, a(M); their sum equals one.

A stationary deterministic policy p is a policy that commits to a single action choice per state, 

that is, a mapping p : S Æ A from states to actions. In this case, p(s) indicates the action that the 

agent takes in state s. For every MDP, there exists an optimal deterministic policy, which minimizes 

the expected, total discounted cost (to be defined shortly) from any initial state. It is therefore, 

sufficient to restrict the search for the optimal policy only within the space of deterministic policies.

The next question we must decide is how to calculate the value of a state. Recall that the value of 

a state is the cumulative cost an agent can expect to incur over the future as a result of sequence of 

its actions, starting from that state. A sequence of actions for a given task will force the environment 

through a sequence of states. Let us call it environment trajectory of a given task. In an infinite-

horizon problem, the number of actions for a task is not fixed; therefore, number of distinct states 

in an environment trajectory is not fixed. A typical state sequence in a trajectory may be expressed 

as {s0, s1, s2, …} where, each st; t = 0, 1, 2, 3, …, could be any of the possible environment states 

s(1), …, s(N).

Given the initial state st and the agent’s policy p, the agent selects an action p(st), and the result 

of this action is next state st + 1. The state transition model, P(s, a, s¢), gives a probability that the 

next state st+1 will be s¢ Œ S, given that the current state st = s and the action at = a. Since each 

state s(1), s(2), …, s(N) is a candidate to be the next state s¢, the environment simulator gives a set of 

probabilities: P(st, at, s
(1)), …, P(st, at, s

N); their sum equals one. Thus, a given policy p generates 

not one state sequence (environment trajectory), but a whole range of possible state sequences, 

each with a specific probability determined by the transition model of the environment.

The quality of a policy is, therefore, measured by the expected value (cumulative cost) of a state, 

where the expectation is taken over all possible state sequences that could occur. For MDPs, we can 

define the ‘value of a state under policy p’ formally as, 

 V p(s) = Ep g
t
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where Ep{◊} denotes the expected value given that the agent follows policy p. This is a discounted 

cost value function; the discount factor g  is a number between 0 and 1 (0 £ g  < 1).

Note that 
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=

•

Â Â£
0 0

 g trmax = rmax (1 – g )

Thus, the infinite sequence converges to a finite limit when costs are bounded and g  < 1.
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The discount factor g determines the relative value of delayed versus immediate costs. In 

particular, costs incurred t steps into the future are discounted exponentially by a factor of g t. Note 

that if we set g  = 0, only the immediate cost is considered. If we set g closer to 1, future costs are 

given greater emphasis relative to the immediate cost. The meaning of g  substantially less than 1 is 

that future costs matter to us less than the costs paid at this present time. The discount factor is an 

important design parameter in reinforcement learning scheme.

The final step is to show how to choose between policies. An optimal policy is a policy that 

yields the lowest expected value. We use p* to denote an optimal policy.

 p* = arg min ( )E r s
t
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The ‘arg min’ notation denotes the values of p at which Ep[◊] is minimized. p*(s) is, thus, a 

solution (obtained off-line) to the sequential decision problem. Given p*, the agent decides what to 

do in real time by observing the current state s and executing the action p*(s). This is the simplest 

kind of agent, selecting fixed actions on the basis of the current state. A reinforcement learning 

agent, as we shall see shortly, is adaptive; it improves its policy on the basis of on-line, real-time 

interactions with the environment.

In the following, we describe algorithms for finding optimal policies of the dynamic programming 

agent.

B.3.1  Finding Optimal Policies 

The dynamic programming technique rests on a very simple idea known as the principle of 

optimality [32].

An optimal policy has the property that whatever the initial state and initial decisions are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the 

previous decisions.

Consider a state sequence (environment trajectory) resulting from the execution of optimal 

policy p*: {s0, s1, s2, …} where each st : t = 0, 1, 2, …, could be any of the possible environment 

states s(1), s(2), …, s(N). The index t represents stages of decisions in the sequential decision problem.

The dynamic programming algorithm expresses a generalization of the principle of optimality. 

It states that the optimal value of a state is the immediate cost for that state plus the expected 

discounted optimal value of the next state, assuming that the agent chooses the optimal action. That 

is, the optimal value of a state is given by 

 V *(s) = r (s) + g min ( , , ) ( )*

a
s

P s a s V s¢ ¢

¢

Â  (B.3)

This is one form of the Bellman optimality equation for V*. For finite MDPs, this equation has a 

unique solution.

The Bellman optimality equation is actually a system of N simultaneous nonlinear equations 

in N unknowns, where N is the number of possible environment states. If the dynamics of the 

environment (P(s, a, s¢)) and the immediate costs underlying the decision process (r(s)) are known, 

then, in principle, one can solve this system of equations for V*using any one of the variety 
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of methods for solving systems of nonliner equations. Once one has V*, it is relatively easy to 

determine an optimal policy:

 p*(s) = arg min ( , , ) ( )*

a
s

P s a s V s¢ ¢

¢

Â  (B.4)

Note that V*(s) = Vp*(s):

                 V*(s) = min ( )
p

p

V s for all s Œ S (B.5)

The solution of Bellman optimality equation (B.3) directly gives the values V* of states with 

respect to optimal policy p*. From this solution, one can obtain optimal policy using Eqn (B.4).

Equation (B.5) suggests an alternative route to finding optimal policy p*. It uses Bellman equation 

for V p, given below.

 Vp(s) = r(s) + g p
p

P s s s V s

s

( , , ) ( )( ) ¢ ¢
¢

Â  (B.6)

Note that this equation is a system of N simultaneous linear equations in N unknowns, where N is 

the number of possible environment states (Eqns (B.6) are same as Eqns (B.3) with ‘min’ operator 

removed). We can solve these equations for Vp(s) by standard linear algebra methods.

Given an initial policy p0, one can solve (B.6) for Vp0(s). Once we have Vp0, we can obtain 

improved policy p1, using the strategy given by Eqn (B.4):

 p1(s) = arg min ( , , ) ( )
a

s

P s a s V s¢ ¢

¢

Â
p0  (B.7)

The process is continued: 

p0 Æ V p0 Æ p1 Æ V p1 Æ p2 Æ … Æ p* Æ V *

It is certain that each policy will be a strict improvement over the previous one (unless it is already 

optimal). As a finite MDP has only a limited number of policies, this procedure will have to end up 

as an optimal policy p* and optimal value function V* in a limited number of iterations.

Thus, given a complete and accurate model of MDP in the form of knowledge of the state 

transition probabilities P(s, a, s¢) and immediate costs r(s) for all states s  Œ  S and all actions a Œ A, 

it is possible—at least in principle—to solve the decision problem off-line. There is one problem: 

the Bellman Eqn (B.3) is nonlinear because of the ‘min’ operator; solution of nonlinear equations 

is problematic. The Bellman Eqn (B.6) is linear and therefore, can be solved relatively quickly. For 

large state spaces, time might be prohibitive even in this relatively simpler case.

In the following, we describe basic forms of two dynamic programming algorithms: value 

iteration and policy iteration—a step towards answering the computational complexity problems 

of solving Bellman equations.

B.3.2  Value Iteration

As employed for solving Markov decision problems, value iteration is a successive approximation 

process that solves the Bellman optimality Eqn (B.3), where the fundamental operation is ‘backing 
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up’ estimates of optimal state values. We can solve Eqn (B.3) with the help of a simple iterative 

algorithm:

 V(l + 1)(s) ¨ r (s) + g min ( , , ) ( )
a

l

s

P s a s V s¢ ¢

¢

Â  (B.8)

The algorithm begins with arbitrary guess V0(s) for each s Œ S. The sequence of V1(s), V2(s), …, is 

then obtained. The algorithm converges to the optimal values V*(s) as the number of iterations l 

approaches infinity (We use the index l for the stages of iteration algorithm, whereas we have used 

earlier the index t to denote the stages of decisions in the sequential decision problem). In practice, 

we stop once the value function changes by a small amount. Then a greedy policy (choosing the 

action with the lowest estimated cost) with respect to the optimal set of values is obtained as an 

optimal policy.

The computation (B.8) is done off-line, i.e., before the real system starts operating. An optimal 

policy, that is, an optimal choice of a Œ A for each s  Œ S, is computed either simultaneously with V *, 

or in real time, using Eqn (B.4).

A sequential implementation of iteration algorithm (B.8) requires temporary storage locations so 

that all the iteration-(l + 1) values are computed based on the iteration-l values. The optimal values 

V* are then stored in a lookup table. In addition to a problem of the memory needed for large tables, 

there is another problem of time needed to accurately fill them. Suppose there are N states, and M 

is the largest number of admissible actions for any state, then each iteration comprising backing 

up the value of each state precisely once, needs  about M ¥ N2 operations. For the huge state sets, 

typically seen in control problems, it is tough to attempt to complete even one iteration, leave alone 

iterate the procedure till it ends up in V* (curse of dimensionality).

The iteration of synchronous DP algorithm defined in (B.8) backs up the value of every state 

once to produce the new approximate value function. We call this kind of operation as full backup; 

it is based on all possible next states rather than on a sample next state. We think of the backups as 

being done in a sweep through the state space. 

Asynchronous DP algorithms are not organized in terms of systematic sweep of the entire set of 

states in each iteration. These algorithms back up the values of the states in any random order, with 

the help of whatever values of other states are available. The values of certain states may be backed 

up many times before the values of others are backed up once. To converge accurately, however, an 

asynchronous algorithm will have to continue to back up the values of all the states.

Of course, evading sweeps need not imply that we can get away with less computation. It simply 

means that our algorithm does not require to be locked into any hopelessly long sweep before it 

can progress. We can attempt to leverage this flexibility by choosing the states to which backups 

are applied to improve the algorithm’s progress rate. We can attempt to order the backups to let 

value information propagate efficiently from one state to another. Some states may not require 

the backing up of their values as often as other states. Some state orderings give rise to faster 

convergence as compared to others, depending on the problem.

B.3.3  Policy Iteration

A policy iteration algorithm operates by alternating between two steps (the algorithm begins with 

arbitrary initial policy p0):
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 (i) Policy evaluation step

  Given the current policy pk, we perform policy evaluation step that computes Vpk(s)  for all 

s Œ S, as the solution of the linear system of equations (Bellman equation)  

 Vpk(s) = r(s) + g P s s s V s
k

s

k( , ( ), ) ( )p
p

¢ ¢

¢

Â  (B.9)

  in the N unknowns V pk (s).

  To solve these equations, an iteration procedure similar to the one used in value iteration 

algorithm (given by (B.8)) may be used.

                                       V s r s P s s s V s
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 (ii) Policy improvement step 

  Once we have Vpk , we can obtain improved policy pk +1 (refer to Eqn (B.7)) as follows: 

 pk +1(s) = arg min ( , , ) ( )
a

s

P s a s V sk¢ ¢

¢

Â
p

 (B.11)

The two-step procedure is repeated with policy pk +1 used in place of pk, unless we have Vpk +1(s) 

ª Vpk
 (s) for all s; in which case, the algorithm is terminated with optimal policy p* = pk. 

Policy iteration algorithm can be viewed as an actor-critic system (Fig. B.4). In this interpretation, 

the policy evaluation step is viewed as the work of a critic, who evaluates the performance of the 

current policy pk, i.e., generates an estimate of the value function Vpk from states and reinforcement 

supplied by the environment as inputs. The policy improvement step is viewed as the work of 

an actor, who takes into account the latest evaluation of the critic, i.e., the estimate of the value 

function, and acts out the improved policy pk +1.

System

Cost

State

Actor

Critic

Values

Action

Figure B.4 The actor-critic architecture
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The algorithm described till now needs updation of the values/policy for all states at once. But 

this is not strictly required. In fact, it is possible for us to pick any subset of states, on each iteration, 

and carry out updating to that subset. This algorithm is known as asynchronous policy iteration. 

Considering specific conditions on the initial policy and value function, asynchronous policy 

iteration is certain to converge to an optimal policy. The liberty to select any states to work on 

implies that it is possible to design highly effective heuristic algorithms—for instance, algorithms 

focussing on updation of the values of states which have a likelihood of being reached by a good 

policy.

B.4  TEMPORAL DIFFERENCE LEARNING 

The novel aspect of learning that we address now is that it assumes the agent that does not have 

knowledge of r(s) and P(s, a, s¢), and therefore it cannot learn solely by simulating actions with 

environment model (off-line learning not possible). It has no choice but to interact with the 

environment and learn by observing consequences.

Figure B.5 gives a general setting of the agent-environment interaction process. Time advances 

by discrete unit length quanta; t = 0, 1, 2, … . At each time step t, the agent senses the current state 

st Œ S of the environment, chooses an action at Œ A, and performs it. The environment responds by 

giving the agent a cost rt = r (st), and by producing the succeeding state st +1 Œ S.

Environment

Reinforcement rt

Action at
st + 1

State st
Agent: at = ( )p st

Figure B.5 The agent-environment interaction 

The environment is stochastic in nature—each time the action at is applied in the state st, the 

succeeding state st +1 could be any of the possible states in S : s(1), s(2), …, s(N). For the stochastic 

environment, the agent, however, explores in the space of deterministic policies (a deterministic 

optimal policy is known to exist for Markov decision process). Therefore, for each observed 

environment state st, the agent’s policy suggests a deterministic action at = p(st).

The task of the agent is to learn a policy p : S Æ A that produces the lowest possible cumulative 

cost over time (greedy policy). To state this requirement more precisely, the agent’s task is to learn 

a policy p that minimizes the value Vp given by (B.1).

Reinforcement learning methods specify how the agent updates its policy as a result of its 

experience. The agent could use alternative methods for gaining experience and using it for 

improvement of its policy. In the so called Monte Carlo method, the agent executes a set of trials in 

the environment using its current policy p. In each trial, the agent starts in state s(i) (any point s(1), 

…, s(N) of state space) and experiences a sequence of state transitions until it reaches a terminal state. 
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In infinite-horizon discounted cost problems under consideration, terminal state corresponds to the 

equilibrium state. A learning episode (trial) is infinitely long, because the learning is continual. 

For the purpose of viewing the infinite-horizon problem in terms of episodic learning, we may 

define a stability region around the equilibrium point and say that the environment has terminated 

at a success state if the state continues to be in stability region for a prespecified time period (In a 

real-time control, any uncertainty (internal or external) will pull the system out of stability region 

and a new learning episode begins). Failure states (situations corresponding to ‘the game is over 

and it is lost’) if any, are also terminal states of the learning process. 

In a learning episode, agent’s precepts supply both the current state and the cost incurred in that 

state. Typical state sequences (environment trajectories) resulting from trials might look like this:

 (1) (s(1))r(1) Æ (s(5))r(5) Æ (s(9))r(9) Æ (s(5))r(5) Æ (s(9))r(9) Æ (s(10))r(10) Æ

               Æ (s(11))r(11) Æ (s(SUCCESS))r(SUCCESS)

 (2) (s(1))r(1) Æ (s(5))r(5) Æ (s(9))r(9) Æ (s(10))r(10) Æ (s(11))r(11) Æ

                  Æ (s(7))r(7) Æ (s(11))r(11) Æ (s(SUCCESS))r (SUCCESS)

 (3) (s(1))r(1) Æ (s(2))r(2) Æ (s(3))r(3) Æ (s(7))r(7) Æ (s(FAILURE))r (FAILURE)

Note that each state percept is subscripted with the cost incurred. The objective is to use the 

information about costs to learn the expected value Vp(s) associated with each state. The value is 

defined to be the expected sum of (discounted) costs incurred if policy p is followed (refer to Eqn 

(B.2)).

When a nonterminal state is visited, its value is estimated based on what happens after that visit. 

Thus, the value of a state is the expected total cost from that state onward, and each trial (episode) 

provides samples of the value for each state visited. For example, the first trial in the set of three 

given above, provides one sample of value for state s(1):

 (i) r(1) + g r(5) + g 2r(9) + g 3r(5) + g 4r(9) + g 5r(10) + g 6r(11) + g 7r(SUCCESS);

 two samples of values for state s(5):

 (i) r(5) + g r(9) + g 2r(5) + g 3r(9) + g 4r(10) + g 5r(11) + g 6r (SUCCESS);

 (ii) r(5) + g r(9) + g 2r(10) + g 3r(11) + g 4r(SUCCESS);

 two samples of values for state s(9):

 (i) r(9) + g r(5) + g 2r(9) + g 3r(10) + g 4r(11) + g 5r(SUCCESS);

 (ii) r(9) + g r(10) + g 2r(11) + g 3r(SUCCESS);

 and so on. 

Therefore, at the end of each episode, the algorithm computes the observed total cost for each 

state visited, and the estimated value is accordingly updated for that state simply by maintaining a 

running average for each state in a table. In the limit of infinitely many trials, the sample average 

will converge to the true expectation of Eqn (B.2).
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The Monte Carlo method differs from dynamic programming in the following two ways:

 (i) First, it operates on sample experience, and thus can be used for direct learning without a 

model. 

 (ii) Second, it does not build its value estimates for a state on the basis of estimates of the possible 

successor states (refer to Eqn (B.6)); it must wait until the end of the trial to determine the 

update in value estimates of states. In dynamic programming methods, the value of each state 

equals its own cost plus the discounted expected value of its successor states.

The Temporal Difference (TD) learning techniques are a combination of sampling of Monte 

Carlo, and the value estimation scheme of dynamic programming. TD techniques update value 

estimates on the basis of the cost of one-step real-time transition and learned estimate of successor 

state, without waiting for the final outcome. Typically, when a transition occurs from state s to state 

s¢, we apply the flowing update to V p(s):

 Vp(s) ¨ Vp(s) + h (r(s) + g Vp(s¢) – Vp(s)) (B.12)

where h is the learning parameter.

Because the update uses the difference in values between successive states, it is called the 

temporal-difference or TD equation. TD methods have an advantage over dynamic programming 

methods in that they do not require a model of the environment. Advantage of TD methods over 

Monte Carlo is that they are naturally implemented in an on-line fully incremental fashion. With 

Monte Carlo methods, one must wait until the end of a sequence, because only then is the value 

known, whereas with TD methods, one need only wait one time step.

Note that the update (B.12) is based on one state transition that just happens with a certain 

probability, whereas in (B.6), the value function is updated for all states simultaneously using all 

possible next states, weighted by their probabilities. This difference disappears when the effects 

of TD adjustments are averaged over a large number of transitions. The interaction with the 

environment can be repeated several times by restarting the experiment after success/failure state 

is reached. For one particular state, the next state and received reinforcement can be different each 

time the state is visited. As the frequency of each successor in the set of transitions is approximately 

proportional to its probability, TD can be considered as a crude but effective approximation to 

dynamic programming.

The TD Eqn (B.12) is, in fact, approximation of policy-evaluation step of policy iteration 

algorithm of dynamic programming (refer to previous section for a recall), where the agent’s policy 

is fixed and the task is to learn the values of states. This, as we have seen, can be done without a 

model of the system. However, improving the policy using (B.11) still requires the model.

One of the most significant breakthroughs in RL was the development of model-free TD control 

algorithm, called Q-learning.

B.4.1  Q-learning 

In addition to recognizing the inherent relationship between RL and dynamic programming, Watkins 

[30, 32] made a significant contribution to RL by suggesting a new algorithm named Q-learning. 

The importance of Q-learning is that when applied to a Markov decision process, it can be shown 
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to converge to the optimal policy, under appropriate conditions. Q-learning is the first RL algorithm 

seen to be convergent to the optimal policy for decision problems which involve cumulative cost.

The Q-learning technique learns an action-value representation rather than learning value 

function. We will make use of the notation Q(s, a) to denote the value of doing action a in state s. 

Q-function is directly related to value function as follows:

 V(s) = min
a

Q(s, a) (B.13)

Q-functions may seem like just another way of storing value information, but they have a very 

imported property: a TD agent that learns a Q-function does not need a model for either learning 

or action selection. For this reason, Q-learning is called a model-free method.

The connections between Q-learning and dynamic programming are strong: Q-learning is 

motivated directly by value-iteration, and its convergence proof is based on a generalization of the 

convergence proof for value-iteration.

We can use the value-iteration algorithm (B.8) directly as an update equation for an iteration 

process that calculates exact Q-values, given an estimated model:

                                 Q s a r s P s a s Q s al
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It converges to the optimal Q-values, Q*(s, a).

Once one has Q*(s, a) for all s Œ S and all a Œ A, it is relatively easy to determine an optimal 

policy: 

 p*(s) = arg min ( , )*

a
Q s a   (B.15)

This does, however, require that a model is given (or is learned (adaptive dynamic programming)), 

because Eqn (B.14) uses P(s, a, s¢). 

The temporal-difference approach, on the other hand, requires no model. The update equation 

for TD Q-learning is (refer to Eqn (B.12))

                            Q(s, a) ¨ Q(s, a) + h r s Q s a Q s a
a

( ) min ( , ) ( , )+ ¢ ¢È
Î

˘
˚
-( )¢

g  (B.16)

which is calculated whenever action a is executed in state s leading to s¢.

The Q-learning algorithm (B.16) takes a back-up of the Q-value for just a single state-action pair 

at each time step of control, where the state-action pair comprises the observed present state and the 

action actually executed. Particularly, make an assumption that at time step t in real-time control, 

the agent observes state st and has the estimated Q-values created by all the preceding stages of 

real-time Q-learning (the estimates stored in a lookup table with one entry for each state-action 

pair). We depict these estimates by Qt(s, a) for all admissible state-action pairs. The agent selects 

an action at Œ A using this information available in lookup table: 

 at = arg min
a

tQ (st, a)
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After executing at, the agent receives the immediate cost rt = r (st) while the environment state 

changes to st+1. The Q-values in the lookup table are then updated as follows:

For the state-action pair (st, at):

                    Qt +1(st, at) = Qt(st, at) + ht r Q s a Q s at
a

t t t t t+ ( ) -È
Î

˘
˚+g min ( , ) ( , )1  (B.17a)

For other admissible state-action pairs, the Q-values remain unchanged:

 Qt+1(s, a) = Qt(s, a) " (s, a) π (st, at) (B.17b)

Watkins [30, 32] has shown the Q-learning system that 

 (1) decreases its learning parameter at an appropriate rate (e.g., ht = 1/tb, where 0.5 < b < 1); and 

 (2) visits each state-action pair infinitely often, is guaranteed to converge to an optimal policy.

Convergence, thus requires that the agent selects actions in such a fashion that it visits every 

possible state-action pair infinitely enough. This means, if action a is an admissible action from 

state s, then over a period of time the agent will have to execute action a from state s again and 

again with nonzero frequency as the length of its action sequence approaches infinity.

In the Q-learning algorithm shown in Eqns (B.17), the strategy for the agent in state st at time 

step t is to choose the action a that minimizes Qt(st, a), and thus, exploits the present approximation 

of Q* by following a greedy policy. But, with this strategy, the agent stands the risk that it will 

overcommit to actions discovered with low Q-values during early stages, while failing to explore 

other actions that can have even lower values. In fact, the convergence condition needs each state-

action transition to take place infinitely often. This will not take place if the agent follows the 

greedy policy all the time.

The Q-learning agent should necessarily follow the policy of exploring and exploiting: the 

former, exploration, makes sure that all admissible state-action pairs are visited enough to satisfy 

the Q-learning convergence condition, and the latter, exploitation, tries to minimize the cost by 

adopting a greedy policy.

Many exploration schemes have been employed in the RL literature. While the most basic one is 

to behave greedily most of the time, but every once a while, with small probability e, instead choose 

a random action, uniformly, and independent of the action-value estimates. We call techniques that 

make use of this near-greedy action-selection rule e-greedy techniques.

B.4.2  Generalization 

Till now the assumption has been that the Q-values the agent learns are represented in a tabular 

form with a single entry for each state-action pair. This is a clear and instructive case, but it is 

certainly restricted to tasks possessing small numbers of states and actions. The issue is not merely 

the memory required for large tables, but the computational time required to experience all the 

state-action pairs to generate data to fill the tables in an accurate manner.

Very few decision and control problems in the real world fit into lookup table representation 

strategy for solution; the number of possible states and actions in the real world is often much too 

large to accommodate the computational and storage requirements. The problem is more severe 

when state/action spaces include continuous variables—to use a table, they should be discretized 
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to finite size, which may cause errors. The only way of learning anything about these tasks is 

to generalize from past experienced states, to states which have never been seen. Simply put, 

experience with a finite subset of state space can be meaningfully generalized to give rise to a good 

approximation over a bigger subset.

Luckily, generalization from examples has been studied at length, and we do not require to 

devise altogether novel techniques to use in Q-learning. To a great extent, we require to simply 

create a combination of Q-learning and off-the-shelf architectures for the purpose of inductive 

generalization—frequently referred to as function approximation, as it takes examples from desired 

Q-function and tries to generalize from them for the construction of an approximation of the 

function. Function approximation is done with the help of supervised learning. In principle, any of 

the techniques examined in this field can be employed in Q-learning.

In parametric methods, the tabular (exact) representation of the real-valued functions Q(s, a) 

is replaced by a generic parametric function approximation ˆQ(s, a; w) where w are the adjustable 

parameters of the approximator. Learning Q(s, a) for all s Œ S and a Œ A amounts to learning 

parameters w of ˆQ (s, a; w). The new version of Q-learning Eqn (B.16) is 

                  wj ¨ wj + h r s Q s a Q s a
Q s a

wa j

( ) min ( , ; ) ( , ; )
( , , )

+ ¢ ¢È
Î

˘
˚
-( ) ∂ ∂¢

g w w
w

 (B.18)

This update rule can be shown to converge to the closest possible approximation to the true function 

when the function approximator is linear in the parameters.

Unfortunately, all bets are off when nonlinear function approximators—such as neural networks—

are used. For many tasks, Q-learning fails to converge once a nonlinear function approximator is 

introduced. Fortunately, however, the algorithm does converge for large number of applications. 

The theory of Q-learning with nonlinear function approximator still contains many open questions; 

at present, it remains an empirical science. 

For Q-learning, it makes more sense to use an incremental learning algorithm that updates the 

parameters of function approximator after each trial. Alternatively, examples may be collected to 

form a training set and leaned in batch mode, but it slows down learning as no learning happens 

while a sufficiently large sample is being collected.

We give an example of neural Q-learning. Let ˆQt(s, a; w) denote the approximation to

Qt(s, a) for all admissible state-action pairs, computed by means of a neural network at time step t. 

The state s is input to the neural network with parameter vector w producing the output ˆQt (s, a; w) 

" a Œ A. We assume that the agent uses the training rule of (B.17) after initialization of ˆQ(s, a; w) 

with arbitrary finite values of w.

Treating the expression inside the square bracket in (B.17a) as the error signal involved in 

updating the current value of parameter vector w, we may identify the target (desired) value of ˆQt  

at time step t as, 

 Qt
target(st, at; w) = rt + g min ( , ; )

a
t tQ s a+( )1 w  (B.19)

At each iteration of the algorithm, the weight vector w of the neural network is changed slightly 

in a way that brings the output ˆQt(st, at; w) closer to the target Qt
target(st, at; w) for the current (st, at) 

pair. For other state-action pairs, Q-values remain unchanged (Eqn (B.17b)).
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B.4.3  Sarsa-learning 

The Q-learning algorithm is an off-policy TD method: the learned action-value function Q directly 

approximates Q*, the optimal action-value function, independent of the policy being followed; 

optimal action for state s is then obtained from Q*. The Q-learning is motivated by value iteration 

algorithm in dynamic programming.

The alternative approach, motivated by policy iteration algorithm in dynamic programming, is 

an on-policy TD method. The distinguishing feature of this method is that it attempts to evaluate 

and improve the same policy that it uses to make decisions.

Earlier is this section on TD learning, we considered transitions from state to state and learned 

the value of states (Eqn (B.12)) when following a policy p. The relationship between states and 

state-action pairs is symmetrical. Now we consider transition from state-action pair to state-action 

pair and learn the value of state-action pairs, following a policy p. In particular, for on-policy TD 

method, we must estimate Qp(s, a) for the current policy p and for all states s Œ S and actions a Œ A. 

We can learn Qp using essentially the same TD method used in Eqn (B.12) for learning Vp:

                           Qp(s, a) ¨ Qp(s, a) + h(r(s) + g Qp(s¢, a¢) – Qp(s, a)) (B.20)

where a¢ is the action executed in state s¢.

This rule uses every element of the quintuple of events, (s, a, r, s¢, a¢), that make up a transition 

from one state-action pair to the next. This quintuple (State-Action-Reinforcement-State-Action) 

gives rise to the name SARSA for this algorithm. Unlike Q-learning, here the agent’s policy does 

matter. Once we have Qpk(s, a), improved policy can be obtained as follows:

 pk +1(s) = arg min
a

Q kp (s, a) (B.21)

Since tabular (exact) representation is impractical for large state and action spaces, function 

approximation methods are used. Approximations in the policy-iteration framework can be 

introduced at the following two places:

 (i) The representation of the Q-function: The tabular representation of the real-valued function 

Qp(s, a) is replaced by a generic parametric function approximation ˆQ
p(s, a; w) when w are 

the adjustable parameters of the approximator. 

 (ii) The representation of the policy: The tabular representation of the policy p(s) is replaced by a 

parametric representation ˆp (s; q) where q are the adjustable parameters of the representation.

The difficulty involved in use of these approximate methods within policy iteration is that the 

off-the-shelf architectures and parameter adjustment methods cannot be applied blindly; they have 

to be fully integrated into the policy-iteration framework.

The introduction to the subject of reinforcement learning given in this appendix had the 

objective of motivating the readers for advanced studies [30–32]. Reinforcement learning has been 

successfully applied to many real-life decision problems. Vast amount of literature is available on 

the subject. Going through the available case studies, and experimenting with some, will provide a 

transition to the next improved state of learning.



DATASETS FROM REAL-LIFE 

APPLICATIONS FOR 

MACHINE LEARNING 

EXPERIMENTS

In various chapters of the book, it has been repeatedly emphasized that there is no generally 

applicable systematic methodology for the design of intelligent systems guaranteed to result in 

high performance. However, despite the lack of a general systematic design procedure, machine 

learning design methodology does provide a way to design intelligent systems for a wide variety of 

applications. Once the methodology is understood, it provides ‘a way to at least get a solution, and 

often a way to quickly get an acceptable solution’, for many types of machine learning problems. 

One must keep in mind that machine learning has significant functional capabilities (recall the 

universal approximation property) and therefore, with enough work, the designer should be able 

to achieve just about anything that is possible in terms of performance (upto the computational 

limits of the computer on which the machine learning experiment is carried out). The problem is 

that just because the performance can be achieved does not mean that it is easy to obtain, or that the 

current framework in which we are designing will work. Ultimately, the design of machine learning 

experiments is nothing more than a heuristic technique.

Learning by Doing

The best way to learn the basics of how to design intelligent systems is to do machine learning 

experiments ourselves—and for a variety of applications. Even if we focus on one application, 

a (somewhat) systematic design methodology seems to emerge. While the procedure is typically 

linked to the application specific concepts and parameters, and is, therefore, generally not applicable 

to other applications, it does often provide a very nice framework in which the designer can think 

about how to attempt a solution for a problem from a new application domain. However, to be an 

‘effective’ designer, we should gain experience on wide variety of machine learning experiments 

from real-life application domains.

The approach into the field of machine learning taken in this book has been to focus on machine 

learning theory, and provide a platform for the hands-on experience through ‘self-study machine 

learning projects.’
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Self-Study Machine Learning Projects

The general idea is that ‘small projects’ are designed and executed after learning machine-learning 

theory from this book. The projects should target specific questions that generally still bother your 

(the readers of this book) minds. The projects should be ‘small’ in terms of number of data samples 

and number of features representing these data, to ensure that they soon get completed with learning 

benefits extracted, to move on to the next project. The projects should require small resources: a 

desktop or laptop connected to the internet; not requiring exotic software, web infrastructure, or 

third-party data or service.

We recommend that you need not write the code (the goal is to learn something and not to create 

a unique source). This is not to undermine the significance of writing your own codes (in fact, in 

this book, we have presented the techniques in a way that provides a comfortable environment 

for writing your own codes), but only to accelerate the understanding of machine learning. 

Open-source software tools may be used for these projects (refer to Section 1.10). As a ‘machine-

learning professional’ you will be surely curious enough to develop your own codes, to achieve 

better performance than that achievable by using available software tools. You will embed in your 

codes, your expertise on machine-learning theory.

There are excellent libraries of data sources available (refer to Section 1.10). You may browse 

and choose a dataset for your project that matches your immediate interest and curiousity.

The following steps for a machine learning experiment are recommended:

 • Browse the repositories containing a large number of datasets frequently used by machine 

learning researchers for bench marking purposes. Choose an appropriate dataset for your 

project for the application area of your interest. By appropriate we mean, it should be helpful 

in doing a small self-study course project. For example, datasets with image, text or audio data 

require conversion to numerical form for carrying out machine learning project. This requires 

deeper domain knowledge. Take your knowledge on application domain into consideration 

while selecting a dataset. Probably, selecting one which is already in numerical form may be 

a choice worth considering.

 • Browse the Internet and download relevant articles/papers by machine learning researchers 

using the dataset you have selected. Acquire the required knowledge from these sources to 

prepare a platform for launching machine learning experiment.

 • Select a suitable software tool matching your background.

 • Perform the experiments, using the knowledge acquired from this book, to assess and 

compare the performances of various learning algorithms in practice.  Analyze the results of 

these experiments.

   Some proposals for self-study projects are given below for helping you to get initiated on 

these steps.

Datasets for Some Realistic Problems

In the following, we present data structure for machine learning applications, with description 

of datasets for some realistic problems. This will help the reader appreciate better the real-world 

environment for machine learning. The sources of the datasets and relevant papers describing 
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work done on these datasets are also given. Students may consider using these datasets for their 

self-study projects. However, exploration of the dataset websites will give them many alternative 

choices for the projects.

Experiment 1: Breast Cancer Diagnosis

In medical diagnosis, the inputs are the relevant information we have about the patient and the 

classes are the illnesses. The inputs contain the patient’s age, gender, past medical history and 

current symptoms. A wrong decision may lead to a wrong or no treatment, and in cases of doubt, it 

is preferable that the classifier reject and defer decision to a human expert.

We consider here the breast cancer diagnosis problem. Cancer is a group of diseases in which 

cells in the body grow, change, and multiply out of control. Breast cancer refers to the erratic growth 

of cells that originate in the breast tissue. A group of rapidly dividing cells may form a lump or 

mass or extra tissue. These masses are called tumors. Tumors can either be cancerous (malignant) 

or non-cancerous (benign). Malignant tumors penetrate and destroy healthy body tissues.

Breast cancer is the second (exceeded only by lung cancer) largest cause of death among women. 

At the same time, it is also among the most curable cancer types if it is diagnosed early. Mortality 

rate from breast cancer has decreased in recent years with an increased emphasis on diagnostic 

techniques and more effective treatments. There is no doubt that evaluation of data taken from 

patients and decision of experts are the most important factors in diagnosis. However, machine 

learning techniques for classification also help experts to a great deal.

We present here structure of the Wisconsin Breast Cancer (WBC) dataset from the UCI 

Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+

(Original)), made available in public domain by Dr. William H. Wolberg of the Dapartment of 

Surgery of the University of Wisconsin Medical School. The dataset contains 699 samples from 

needle aspirates from human breast cancer tissue (A breast Fine Needle Aspiration (FNA) is a quick 

and simple procedure to perform, which removes some fluid or cells from a breast lesion or cyst 

with a fine needle. The sample of fluid or cells is smeared on a glass slide which is examined by a 

specialist doctor under a microscope).

Image-processed features for breast cancer diagnosis are objective and precise compared to 

subjective evaluation. A small region of each breast FNA is digitized; an image-analysis program 

using curve-fitting is used to determine boundaries of the nuclei.

The details of the features listed in the dataset (each of which is represented as an integer between 

1 and 10) are given below.

x1 : Clump Thickness

x2 : Uniformity of Cell Size

x3 : Uniformity of Cell Shape

x4 : Marginal Adhesion

x5 : Single Epithelial Cell Size

x6 : Bare Nuclei

x7 : Bland Chromatin
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x8 : Normal Nucleoli

x9 : Mitoses

y(class) : 0(benign), 1(malignant)

 • The features of uniformity of cell in the clump, capture the variation of cancer cells in size 

and shape.

 • In the case of marginal adhesion, the normal cells tend to stick together, where cancer cells 

tend to lose this ability. So loss of adhesion is a sign of malignancy.

 • In the single epithelial cell size, the size is related to the uniformity mentioned above. 

Epithelial cell that is significantly enlarged may be a malignant cell.

 • The bare nuclei is a term used for nuclei that are not surrounded by eytoplasm (the rest of the 

cell). These are typically seen in benign tumors.

 • The bland chromatin describes a uniform ‘texture’ of the nucleus seen in benign cells. In 

cancer cells, the chromatin tends to be coarser.

 • The normal nucleoli are small structures seen in the nucleolus. In normal cells, the nucleolus 

is usually very small if visible. In cancer cells, the nucleoli become more prominent, and 

sometimes there are more of them.

 • Mitoses is nuclear division plus cytokines and produce two identical daughter cells during 

prophase. It is the process in which the cell divides and replicates. Pathologists can determine 

the grade of cancer by counting the number of mitoses.

A few samples from Breast Cancer dataset, structured in the form of data matrix of Table 1.2, 

are shown in Table E1.1.

References helpful for experiment on this dataset are [191, 192].

Table E1.1 Samples from Breast Cancer Dataset

  Features

              and

Class 

      s(i)

  Patients

x1 x2 x3 x4 x5 x6 x7 x8 x9 y

s(1)

s(2)

s(3)

s(4)

.

.

.

.

5

5

8

8

.

.

.

.

1

4

10

7

.

.

.

.

1

4

10

5

.

.

.

.

1

5

8

10

.

.

.

.

2

7

7

7

.

.

.

.

1

10

10

9

.

.

.

.

3

3

9

5

.

.

.

.

1

2

7

5

.

.

.

.

1

1

1

4

.

.

.

.

0

0

1

1

.

.

.

.
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The reader might not have understood the features to his/her satisfaction. This has been intentially 

done to highlight the point that domain knowledge for the application is extremely important for 

any real-life problem. We have talked about domain knowledge in various chapters of the book.

Another point to keep in mind is that the dataset for machine learning is a set of FNA images. 

The dataset in numerical form has been obtained by processing these images to extract appropriate 

features. Feature extraction from image database requires specific image-processing techniques for 

each application; features must have discriminating power from one image to another. We have 

given an overview of some of these techniques in Section 9.5.

Experiment 2: Optical Recognition of Handwritten Digits

Recognition of both printed and handwritten characters is a typical domain where machine learning 

has been successfully applied. In fact, Optical Character Recognition (OCR) systems are today 

among the commercial applications of learning systems.

OCR is the ability of a computer to translate character images into a text. This is an application 

example where there are multiple classes, as many as there are characters we would like to 

recognize. Especially interesting is the case when the characters are handwritten. People have 

different handwriting styles; characters may be written small or large, slanted, with a pen or pencil, 

and there are many possible images corresponding to the same character. We do not have a formal 

description of ‘A’ that covers all ‘A’s and none of the non-‘A’s. Not having it, we take samples from 

writers and learn the definition of A-ness from these examples. Though we do not know what it is 

that makes an image of an ‘A’, we are certain that all those distinct ‘A’s have something in common, 

which is what a learning system extracts from the examples [6].

To capture the character images, we can use a scanner. It either passes light-sensitive sensors 

over the illuminated surface of a page or moves a page through the sensors. The scanner processes 

the image by dividing it into hundreds of pixel-sized boxes per inch and representing each box 

by either 1 (if the box is filled) or 0 (if the box is empty). The resulting matrix of dots is called a 

bit-map. Bit maps can be stored, displayed and printed by a computer. The patterns of dots have to 

be recognized as characters by the computer. This is the job for machine learning.

For simplicity, we limit our discussion to the recognition of digits from 0 to 9. We start with 

printed digits recognition, and then carry on to handwritten digits recognition.

The application areas of digits recognition systems are recognizing zip codes on mail for postal 

mail sorting, processing bank cheque amounts, numeric entries in forms (for example, tax forms) 

and so on.

Recognition of Printed Digits [5]

In commercial applications, where a high resolution is required, each digit is represented by 16 ¥ 

16 bit map. Here, for demonstration, we consider 5 ¥ 9 bit map as shown in Fig. E2.1. The data 

matrix, showing input vectors x representing the bit maps, and output vector (classes yq; q = 1, …, 

10), is given in Table E2.1. Input vector x for a digit comes from 9 rows of the pixel matrix of the 

digit (Fig. E2.1), each row having 5 binary values. Therefore, x is 45 ¥ 1 vector.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40

41 42 43 44 45

Figure E2.1  Bit maps for printed digits

Table E2.1 Data matrix for printed digits

Digits 

 s(i)

Input Patterns Output

yqx1   x2                                                            .  .  .                                                         
x44  x45

s(1)

s(2)

s(3)

s(4)

s(5)

s(6)

s(7)

s(8)

s(9)

s(10)

00100

01110

01110

00010

11111

01110

11111

01110

01110

01110

01100

10001

10001

00110

10000

10001

00001

10001

10001

10001

10100

00001

00001

00110

10000

10000

00010

10001

10001

10001

00100

00001

00001

01010

11110

10000

00010

10001

10001

10001

00100

00010

00010

01010

10001

11110

00100

01110

01111

10001

00100

00100

00001

10010

00001

10001

00100

10001

00001

10001

00100

01000

00001

11111

00001

10001

01000

10001

00001

10001

00100

10000

10001

00010

10001

10001

01000

10001

10001

10001

00100

11111

01110

00010

01110

01110

01000

01110

01110

01110

1

2

3

4

5

6

7

8

9

10

Recognition of Handwritten Digits

Optdigits dataset is a collection of handwritten samples from the UCI Machine Learning Repository 

(https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits). There are 

5620 samples with 64 attributes in this dataset. All input attributes are integers in the range 0-16 

while class codes are in the range 0-9. The samples have been collected from 43 people.

The size of a digit varies but is typically around 40 ¥ 60 pixels. To normalize the size of the 

characters, the characters were made to fit in 32 ¥ 32 bit maps after removing the extraneous marks 

in the image. To reduce the dimensionality of the attributes, the 32 ¥ 32 bit maps were divided 

into non-overlapping blocks of 4 ¥ 4, and the number of 1’s (representing ‘white’) counted in 
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each block. This generates an input matrix of 8 ¥ 8 where each element is an integer in the range 

0-16 (Fig. E2.2). each block is considered a feature, resulting in 64 features: x1, …, x64. Data for 

10 samples, each sample corresponding to a specific digit from 0 to 9, is given in Table E2.2. 

References helpful for experiment on this dataset are [193, 194].
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Figure E2.2  Bit map for a handwritten digit

Table E2.2: Samples from optdigits dataset

Data

Features

Digit 

1

Digit 

2

Digit 

3

Digit 

4

Digit 

5

Digit 

6

Digit 

7

Digit 
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0

0
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0

0
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0
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0
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0
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In today’s world, biometric recognition (authentification of people using their physiological 

and/or behavioral characteristics) using machine learning, is being extensively used. Examples of 

physiological characteristics are: images of face, fingerprint, iris, and palm. Examples of behavioral 

characteristics are: dynamics of signature, and voice. Forgeries are possible with usual identification 

methods—photo, printed signature, or password. When there are many different (uncorrelated) 

inputs, forgeries would be more difficult. Machine learning is used both in separate recognizers for 

these different inputs and in combination of their decisions to get an overall accept/reject decision.

Domain knowledge for each of these characteristics is very important for application of machine 

learning techniques. An overview of image and audio processing to generate numeric/categorical 

attributes/features for machine learning algorithms was given in Section 9.5.
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We have assumed a simple input based on collection of random dots for digit recognition. 

However, a character image is not just a collection of random dots; it is a collection of strokes that 

we can capture by a learning program.

Experiment 3: Prediction of Success of Bank Telemarketing

The purpose of this example is to introduce real-world environment for machine learning 

applications in business. For this domain of machine learning techniques, the techniques do not 

exist in a vaccum; they exist in a business context. Although the techniques are interesting in their 

own right, they are a means to an end. Knowledge of business domain is crucial for success of 

machine learning techniques.

Building a business around the customer relationship is a revolutionary change in today’s business 

world [19]. Banks have traditionally focused on maintaining the spread between the rate they pay 

to bring money in and rate they charge to lend money out. Telephone companies have concentrated 

on connecting calls through the network. Insurance companies have focused on processing claims, 

managing investments, and maintaining their loss ratio. Turning a product-focused organization 

into a customer-centric one requires changes throughout the enterprise; more so in marketing, sales, 

and Customer Relationship Management (CRM). Forward-looking companies are moving toward 

the goal of understanding each customer individually and using that understanding to make it easier 

(and more profitable) for the customer to do business with them rather than with competitors. These 

same firms are learning to look at the value of each customer so that they know which ones are 

worth investing money and effort to hold on to and which ones should be allowed to depart. With 

the inflow of large amounts of customer data, machine learning has become an indispensable tool 

for present day large business organizations.

This example is about the role of machine learning to improve direct marketing campaigns. 

Advertising can be used to reach prospects about whom nothing is known as individuals. Direct 

marketing requires at least a tiny bit of additional information such as name and address or a phone 

number or e-mail address.

Companies use direct marketing when targeting segments of customers to make a sale of 

merchandise or service. Centralized customer remote interactions in a Contact Center eases 

operational management of campaigns. Such centers allow communicating with customers through 

various channels; telephone (fixed-line or mobile) being one of the most widely used. Marketing 

operationalized through contact center is called telemarketing due to the remoteness characteristic. 

Contacts can be divided into inbound or outbound, depending on which side triggered the contact 

(client or contact center), with each case posing different challenges (e.g., outbound calls are often 

considered more intrusive).

Machine learning offers intelligent decision-support systems that can automatically predict the 

result of a phone call to sell a merchandise or service. Such decision-support system is valuable to 

assist managers in prioritizing and selecting the next customers to be contacted during marketing 

campaigns. Machine learning analyzes the probability of success and leaves to managers only 

the decision on how many customers to contact. As a consequence, the time and costs of such 

campaigns would be reduced. Also, by performing fewer and more effective phone calls, client 

stress and intrusiveness would be diminished.
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The goal of machine learning is to model the previous compaign’s customer behavior to analyze 

what combination of factors make a customer more likely to accept the merchandise/service. 

This will serve as the basis for the design of a new campaign (In what is closely related to the 

telemarketing phone calls approach, a mass media (e.g., radio and television) marketing campaign 

could affect the selling of a merchandise or service).

In the following, we present the structure of a publically available dataset. The data is related 

with direct marketing campaign of a Portuguese banking institution (https://archive.ics.uci.edu/ml/

datasets/Bank+Marketing). The marketing campaigns were based on phone calls. Often more than 

one contact to the same client was required in order to assess if the product (bank term-deposit) 

would be or would not be subscribed. The classification goal is to predict if the client will subscribe 

a term deposit or not (variable y). The dataset contains 45211 observations capturing 16 attributes/

features.

Attribute Information

 x1 : age (numeric)

 x2 : type of job(categorical)—“admin”, “unknown”, “unemployed”, “management”, 

“housemaid”, “entrepreneur”, “student”, “blue-collar”, “self-employed”, “retired”, 

“technician”, “services”

 x3 : marital status (categorical)—“married”, “divorced”, “single”; “divorced” means divorced 

or widowed

 x4 : education (categorical)—“unknown”, “secondary”, “primary”, “tertiary”

 x5 : credit in default? (categorical)—“yes”, “no”

 x6 : average yearly balance, in euros (numeric)

 x7 : has housing loan? (categorical)—“yes”, “no”

 x8 : has personal loan? (categorical)—“yes”, “no”

 x9 : contact communication type (categorical)—“unknown”, “telephone”, “cellular”

 x10 : last contact day of the month (numeric)

 x11 : last contact month of the year (categorical)—“jan”, “feb”, …, “nov”, “dec”

 x12 : last contact duration in seconds (numeric)

 x13 : number of contacts performed during this campaign and for this client (numeric); includes 

last contact

 x14 : number of days that passed by after the client was last contacted from a previous campaign 

(numeric); –1 means that the client was not previously contacted

 x15 : number of contacts performed before this campaign and for this client (numeric)

 x16 : outcome of the previous marketing campaign (categorical)—“unknown”, “other”, “failure”, 

success”
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Output Variable (Desired Target)

y = has the client subscribed to term deposit? (categorical)—“yes”, “no”

There are three kinds of attributes:

 • Numerical : x1 (age), x6 (average yearly balance), x10 (last contact day of the month), x12 

(last contact duration), x13 (number of contacts), x14 (number of days that 

passed by after the last contact), x15 (number of contacts performed before the 

campaign). Each attribute has a certain numeric range.

 • Categorical : x2 (type of job), x3 (marital status), x4 (education), x9 (contact type), x10 (last 

contact month), x16 (outcome of previous campaign). Each attribute belongs to 

a set of categorical values.

 • Binary categories : x5 (credit in default), x7 (housing loan), x8 (personal loan), y (subscription 

to term deposit). Each attribute belongs to ‘yes’, ‘no’ binary categories.

Some classification methods, as we have seen, accept categorical attributes; for others, we turn 

categorical attributes with more than two categories into dummy variables first.

Table E3.1 gives 15 samples of the dataset for illustration. The features of this real-life application 

are shown in the table. Table E3.2 shows dummy variables for two categorical features: x8 and x11. On 

similar lines, dummy variables are created for all categorical features; and the categorical features 

are replaced with numeric features given by the corresponding dummy variables (MATLAB tool 

box function dummyvar creates dummy variables).

Table E3.1 Bank marketing data

s(i)
xj and y

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 y

s(1) 43 technician single secondary no 593 yes no unknown 5 may 55 1 –1 0 unknown no

s(2) 34 services single secondary no 16 yes no cellular 20 nov 340 1 –1 0 unknown no

s(3) 36 unemployed married secondary no –872 yes yes cellular 20 nov 153 1 183 1 failure no

s(4) 35 blue-collar married secondary no 667 no no cellular 20 nov 178 1 –1 0 unknown no

s(5) 59 admin married secondary no 2343 yes no unknown 5 may 1042 1 –1 0 unknown yes

s(6) 32 blue-collar married secondary no 305 yes no cellular 20 nov 73 1 –1 0 unknown no

s(7) 50 blue-collar married primary no 2590 yes no telephone 20 nov 281 2 195 6 failure no

s(8) 30 self-employed single tertiary no –174 no no cellular 20 nov 80 1 –1 0 unknown no

s(9) 30 technician single secondary no 925 no no cellular 20 nov 240 1 –1 0 unknown no

s(10) 55 management married tertiary no 10065 no no cellular 20 nov 197 5 177 3 failure no

s(11) 34 management married tertiary no 273 yes no cellular 20 nov 308 1 188 1 success no

s(12) 42 entrepreneur divorced tertiary yes 2 yes no unknown 5 may 380 1 –1 0 unknown no

s(13) 58 retired married primary no 121 yes no unknown 5 may 50 1 –1 0 unknown no

s(14) 35 services single primary no 167 no yes cellular 11 jul 614 2 –1 0 unknown yes

s(15) 48 housemaid married secondary no 4 no no cellular 18 aug 68 4 –1 0 unknown no
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Table E3.2 Sample dummy variables

x8 x11

x8d1 x8d2 x11d1 x11d2 x11d3 x11d4 x11d5 x11d6 x11d7 x11d8 x11d9 x11d10 x11d11 x11d12

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0 0 0

References helpful for experiment on this dataset are [195, 196].

Experiment 4: Forecasting Stock Market Index Changes

In business, forecasts are needed for marketing, production, purchasing, manpower, and financial 

planning. Furthermore, top management needs forecasts for planning and implementing long-term 

strategic objectives and for planning capital expenditure. More specifically, marketing managers 

use sales forecasts to (1) determine optimal sales force allocations, (2) set sales goals, and (3) plan 

promotions and advertising. Production managers need forecasts in order to schedule production 

activities, order materials, establish inventory levels, and plan shipments. Financial managers 

must estimate the future cash inflow and outflow. The personnel department requires forecasts in 

planning for human resources in business.

Some powerful methods to develop models and schemes for business forecasting have emerged. 

One direction is based on discovering certain laws governing the market under consideration 

from first principles and then building nonlinear mathematical models. Lacking first principles, 

as encountered in many practical situations, time-series analysis of historical observations (data) 

seems to be a natural alternative.
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In this example, we consider a financial forecasting problem. Time series forecasting has 

applications in weather, biomedical, engineering, and other areas as well.

Recently, a lot of interesting work has been done in the area of applying machine learning 

algorithms for analyzing price patterns and predicting stock prices and index changes. Most 

stock traders now a days depend on Intelligent Trading Systems which help them in predicting 

prices based on various situations and conditions, thereby helping them in making instantaneous 

investment decisions.

Stock prices are considered to be very dynamic and susceptible to quick changes because of 

underlying nature of financial domain. Though it is very hard to replace the expertise that an 

experienced trader has gained, an accurate prediction can directly result into profits for investment 

firms (buying a stock before the price rises, or selling it before its value declines). Accuracy of 

prediction of at least trend (rise or fall) has a direct relationship with the profits made.

The EMH (Efficient Market Hypothesis) hypothesizes that the future stock price is completely 

unpredictable given the past trading history of the stock. With the advent of more powerful 

computing infrastructure, trading companies now build very efficient algorithmic trading systems 

that can exploit the underlying price patterns when a huge amount of data points are available on 

hand. Therefore machine learning techniques have a potential of seriously challenging the EMH.

The seemingly random character of the share market time series is due to many factors that 

influence share prices. Financial market modeling is a difficult task because of the ever-changing 

dynamics of the fundamental driving factors, partly uncontrollable. However, there is evidence 

to suggest that financial markets are partly random and partly ordered. Financial time series 

forecasting is concerned with exploiting the ordered part of the share market.

 Factors affecting the market are many and modeling all these factors at once is well out of the 

reach today. Hence, there is a need to select the most relevant factors for a given time series. This is 

(possibly) the most important preprocessing part and relies heavily on expert knowledge.

Indicators (zl; l = 1, …, m, time series) that are frequently used in the technical analysis of stock 

prices are:

 • Moving Average (MA): The average of the past P values till today.

 • Exponential Moving Average (EMA): Gives more weightage to the most recent values while 

not discarding the old observations entirely.

 • Rate of Change (ROC): The ratio of the current price and P quotes earlier (P is generally 5 to 

10 days). 

 • Relative Strength Index (RSI): Measures the relative size of recent upward trends against the 

size of the downward trends within the specified time interval (usually 9–14 days).

Several studies examine the cross-sectional relationship between stock returns and 

macroeconomic variables, and find that these variables have some power to predict stock returns. 

Table E4.1 outlines an array of macroeconomic variables for forecasting S&P500 stock index. The 

data on these variables is available in public domain (www.ibiblio.org/pub/archives/misc.invest/

historical-data/index/stocks/sp500). The weekly data covers the horizon from January 1980 to 

December 1992. There are 679 samples.
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Table E4.1 List of potential input and output variables

Input variables

1. S&P High 2. S&P Low

3. NYSE Advancing Issues 4. NYSE Declining Issues

5. OTC Advancing Issues 6. OTC Declining Issues

7. NYSE New Highs 8. NYSE New Lows

9. OTC New Highs 10. OTC New Lows

11. NYSE Total Volume 12. NYSE Advancing Volume

13. NYSE Declining Volume 14. OTC Total Volume

15. OTC Advancing Volume 16. OTC Declining Volume

17. S&P Earnings

18.  Short-term Interest Rates in the Three-Month Treasury Bill Yield

19.  Long-term Interest Rates in the 30-Year Treasury Bond Yield

20. Gold 21. S&P Close

Output variable

K-step (weeks) ahead prediction of S&P Close 

 • The Standard & Poor’ 500, abbreviated as the S&P500, is an American 

stock market index based on the market capitalizations of 500 large 

companies 

 • NYSE: The New York Stock Exchange 

 • OTC: Over-The-Counter; refers to stocks that trade via a dealer network 

as opposed to on a centralized exchange.

In some studies, S&P500 forecasting uses the following macroeconomic variables:

 1. S&P Close (z1).

 2. NYSE Advancing Issues (z2).

 3. NYSE Declining Issues (z3).

 4. NYSE New Highs (z4).

 5. NYSE New Lows (z5).
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 6. Short-term Interest Rates in the Three-Month Treasury Bill Yield (z6).

 7. Long-term Interest Rates in the 30-Year Treasury Bond Yield (z7).

The chosen inputs for machine learning are:

 • x1 : Weekly S&P closing price.

 • x2 : The ratio of the number of advancing issues and declining issues in the week for the 

stocks in the New York Stock Exchange (NYSE); breadth indicator for the stock market.

 • x3 : The ratio of the number of new highs and new lows achieved in the week for NYSE 

market; indicating strength of an upward or downward trend.

 • x4 : Short-term interest rates in the Three-Months Treasury Bill Yield.

 • x5 : Long-term interest rates in the 30-Year Treasury Bond Yield.

 • x6 – x10: are defined below.

For each of the five inputs x1–x5, following function is used to highlight Rate-Of-Change (ROC) 

features:

For the variable x,

ROCn(t) = (x(t) – BA(t – n)) (x(t) + BA(t – n))

where BA stands for Block-Average; BA(t – n) is a five-unit block average of adjacent values 

centered around the value n periods ago.

To make a prediction three weeks into the future, we will take data at least as far back as three 

weeks:

 BA(t) = 
x t x t x t x t x t( ) ( ) ( ) ( ) ( )- + - + + + + +2 1 1 2

5

 ROC3(t) = 
x t t

x t t

( ) ( )

( ) ( )

- -

+ -

BA

BA

3

3

Table E4.2 gives a sample of the data only for those macroeconomic variables that have been 

used for features required for a machine learning algorithm. Table E4.3 gives a sample of the 

features.

References helpful for experiment on this dataset are [197, 198].

Table E4.2 Data for a subset of macroeconomic variables

Date z1 z2 z3 z4 z5 z6 z7

1/4/1980 106.52 1246 296 47 17 12.11 9.64

1/11/1980 109.92 965 585 149 7 11.94 9.73

1/18/1980 111.07 713 809 80 19 11.9 9.8

1/25/1980 113.61 660 832 119 33 12.19 9.93

(Contd.)
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2/1/1980 115.12 778 669 71 34 12.04 10.2

2/8/1980 117.95 878 656 185 63 12.09 10.48

2/15/1980 115.41 382 1130 14 104 12.31 10.96

2/22/1980 115.04 374 1155 24 220 13.16 11.25

2/29/1980 113.66 929 554 19 106 13.7 12.14

3/7/1980 106.9 349 1235 0 360 15.14 12.1

3/14/1980 105.43 604 875 2 172 15.38 12.01

3/21/1980 102.31 478 983 5 179 15.05 11.73

3/28/1980 100.68 1401 267 2 172 16.53 11.67

4/3/1980 102.15 718 730 6 51 15.04 12.06

4/11/1980 103.79 963 615 9 29 14.42 11.81

4/18/1980 100.55 796 715 6 41 13.82 11.23

4/25/1980 105.16 662 779 9 19 12.73 10.59

5/2/1980 105.58 747 651 13 7 10.79 10.42

5/9/1980 104.72 511 996 9 19 9.73 10.15

5/16/1980 107.35 835 622 27 4 8.6 9.7

5/23/1980 110.62 1207 388 52 2 8.95 9.87

5/30/1980 111.24 837 610 21 6 7.68 9.86

6/6/1980 113.2 913 550 65 3 8.04 9.77

Table E4.3 Features obtained from given time-series data

s(i) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y

s(1) 117.950 1.338 2.937 12.090 10.480 0.029 – 0.130 – 0.396 0.002 0.030 –3.637

s(2) 115.410 0.338 0.135 12.310 10.960 0.008 – 0.550 – 0.961 0.011 0.044 –7.374

s(3) 115.040 0.324 0.109 13.160 11.250 0.002 – 0.472 – 0.919 0.042 0.045 –8.354

(Contd.)
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s(4) 113.660 1.677 0.179 13.700 12.140 –0.008 0.359 – 0.817 0.052 0.069 – 9.986

s(5) 106.900 0.283 0.000 15.140 12.100 –0.038 –0.548 – 1.000 0.089 0.047 –5.819

s(6) 105.430 0.690 0.012 15.380 12.010 –0.038 –0.069 – 0.966 0.073 0.027 – 3.111

s(7) 102.310 0.486 0.028 15.050 11.730 –0.042 –0.153 – 0.514 0.038 0.002 1.447

s(8) 100.680 5.247 0.012 16.530 11.670 –0.038 0.767 – 0.699 0.066 – 0.007 – 0.129

s(9) 102.150 0.984 0.118 15.040 12.060 – 0.018 – 0.261 0.437 – 0.004 0.005 2.947

s(10) 103.790 1.566 0.310 14.420 11.810 0.001 0.009 0.804 – 0.034 – 0.004 1.725

s(11) 100.550 1.113 0.146 13.820 11.230 – 0.011 – 0.234 0.209 – 0.050 – 0.027 4.147

s(12) 105.160 0.850 0.474 12.730 10.590 0.016 – 0.377 0.588 – 0.081 –0.050 2.083

s(13) 105.580 1.147 1.857 10.790 10.420 0.015 – 0.260 0.795 – 0.147 – 0.048 4.774

s(14) 104.720 0.513 0.474 9.730 10.150 0.006 – 0.376 – 0.102 – 0.157 – 0.050 6.226

s(15) 107.350 1.342 6.750 8.600 9.700 0.016 0.128 0.824 – 0.177 – 0.056 5.449

Experiment 5: System Identification using Gas Furnace Data

In sub-section 1.5.1, NARMA (Nonlinear Auto-Regressive Moving Average) model (refer to Eqn 

(1.6a))

y(t + 1) = f(y(t), y(t – 1), …, y(t – n))

was used. For dynamic systems with output y(t) and external input u(t), a NARMAX (Nonlinear 

Auto-Regressive Moving Average with Exogeneous variable) model is used:

y(t + 1) = f (y(t), …, y(t – n), u(t), …, u(t – m)); n ≥ m

Here, ‘t’ counts the multiple sampling periods so that y(t) specifies the present output, y(t – 1) 

signifies the output observed at the previous sampling instant, etc. Note that the output of the dynamic 

system has been described as a function of number of past inputs and outputs. (Time-invariant 

nonlinear dynamic systems with scalar input and scalar output are considered here; extension to 

the case of vector input and vector output is straightforward). Machine learning has been employed 

for inferring the values of output of dynamic systems from past observations on output and input.

The dataset used for approximating f (◊) has information on n past inputs and m past outputs 

of the dynamic system. An experiment on the dynamic system is conducted to produce a set of 

examples of how the dynamic system to be identified responds to various inputs. The experiment 

is particularly important in relation to nonlinear modeling; one must be extremely careful to collect 

a set of data that describes how the system behaves over its entire range of operation. The issues 

s(i) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 y
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like sampling frequency, input signals, preprocessing of data (filtering, etc.) must be considered in 

relation to acquisition of data.

Another important factor is the leg space, i.e., number of delayed signals used as regressors. A 

wrong choice of lag space may have a disastrous impact on some system identification applications. 

Too small obviously implies that essential dynamics will not be modeled, but too large can often 

be a problem (issues discussed in varoius chapters). Applying physical insight can often guide the 

proper lag space. If one has no idea regarding the lag space, it is sometimes possible to determine 

it empirically.

The input structure for nonlinear system identification consists of number of past inputs and 

outputs (refer to Fig. E5.1) where ŷ  is the predicted value of the output y at sampling instant t (note 

that t is a number; the physical sampling instant t ¥ T, where T is the sampling interval in secs.).

y t( – 1)

y t( – 2)

y t n( – )

u t( – 1)

u t( – 2)...
u t m( – )

...

...
...

Model
ˆ( )y t

Figure E5.1  Input structure for identification of single-input single-output nonlinear dynamic system

In the following, we present a well-known case study—nonlinear system identification using the 

gas furnace data. The dataset was recorded from a combustion process of a methane-air mixture. 

The input measurement u(t) is gas flow rate into the furnace and the output measurement y(t) is 

CO2 concentration in outlet gas. The sampling interval is 9 sec. The task of machine learning is to 

provide prediction of the CO2 concentration in ŷ(t).

The dataset (http://openmv.net/info/gas-furnace) consists of 296 rows and two columns, 

corresponding to 296 input-output measurements. ‘InputGasRate’ column represents the flow rate 

of the methane gas in a gas furnace, and ‘CO2’ column represents the concentration of carbon 

dioxide in the gas mixture flowing out of the furnace under a steady air supply. A small portion of 

the dataset (20 samples) is shown in Table E5.1. This dataset when transformed into the structure of 

Table 1.2, looks like the one given in Table E5.2. This corresponds to the model structure suggested 

for good prediction results:

 ŷ(t) = f (y(t – 1), u(t – 3), u(t – 4))

  = f (x1, x2, x3)

That is to predict CO2 concentration in y(t), we consider the inputs three and four steps before, 

resulting in features: x1 = y(t – 1), x2 = u(t – 3), x3 = u(t – 4).

References helpful for experiment on this dataset are [199, 200].
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Table E5.1 Gas furnace data

InputGasRate – 0.109 0 0.178 0.339 0.373 0.441 0.461 0.348 0.127 – 0.18

CO2 53.8 53.6 53.5 53.5 53.4 53.1 52.7 52.4 52.2 52

InputGasRate – 0.588 – 1.055 – 1.421 – 1.52 – 1.302 – 0.814 – 0.475 – 0.193 0.088 0.435

CO2 52 52.4 53 54 54.9 56 56.8 56.8 56.4 55.7

Table E5.2 Features obtained from gas furnace time-series data

s(i)
xj and y

x1 x2 x3 y

s(1) 53.5 0 – 0.109 53.4

s(2) 53.4 0.178 0 53.1

s(3) 53.1 0.339 0.178 52.7

s(4) 52.7 0.373 0.339 52.4

s(5) 52.4 0.441 0.373 52.2

s(6) 52.2 0.461 0.441 52

s(7) 52 0.348 0.461 52

s(8) 52 0.127 0.348 52.4

s(9) 52.4 – 0.18 0.127 53

s(10) 53 – 0.588 –0.18 54

s(11) 54 –1.055 –0.588 54.9

s(12) 54.9 –1.421 –1.055 56

s(13) 56 –1.52 –1.421 56.8

s(14) 56.8 –1.302 –1.52 56.8

s(15) 56.8 –0.814 –1.302 56.4

s(16) 56.4 –0.475 – 0.814 55.7



PROBLEMS

 P1.1: (a) It is said that guiding principle of machine learning is, “exploit tolerance for impre-

cision, uncertainty and partial truth”. Explain the principle with the help of examples.

  (b) Give one example for which machine learning approach is appropriate and one for 

which it seems inappropriate. Give justification for each. 

 P1.2: (a) A machine is said to learn from experience with respect to some class of tasks if its 

performance, as measured by a performance measure, improves with experience.

    Pick up one machine learning problem. Describe it by stating as precisely as possible 

the learning task, the measure of performance and the task experience. Propose a target 

function to be learned. 

  (b) Give two examples of machine learning problems, one with task experience in the form 

of experimental data, and the other with task experience in the form of structured human 

knowledge.

 P1.3: What are the different forms of learning? Give one example of each form that brings out the 

basic characteristics of that form of learning and its role to solve real-life problems.

 P1.4: Explain the following forms of learning:

 (i) Supervised learning 

 (ii) Unsupervised learning 

 (ii) Reinforcement learning 

 (iv) Evolutionary leaning 

 P1.5: Describe the following learning tasks with one real-life application of each:

 (i) Classification 

 (ii) Regression 

 (iii) Learning associations 

 (iv) Clustering

 P1.6: (a) Take a sample univariate time series data. Employing NARMA model for the time 

series, transform this data into a standard data matrix required for machine learning 

algorithms.

  (b) Repeat for multivariate time series data.
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 P2.1: Through simple regression and classification examples, show that minimizing training error 

given by empirical risk function is not a successful solution to our learning task. What is the 

successful solution? What is it that we need for empirical risk minimization over the training 

dataset to lead to a successful solution to the learning task?

P2.2: Give mathematical equations for true risk function and empirical risk function. Why for real-

world problems, finding optimal machine by true risk minimization is mostly not possible? 

What is the way out?

 P2.3: (a) What is inductive learning? How is it different from deductive learning?

  (b) What is generalization performance? Why is it a fundamental problem in inductive 

learning?

 P2.4: Several results explore ways to improve generalization performance of a learning algorithm 

with respect to the task it addresses. Explain how this issue has been studied in terms of 

 (i) Bias and variance 

 (ii) VC model 

 (iii) Occum’s razor principle 

 (iv) Minimum description length principle 

P2.5: • Higher the complexity of a hypothesis function (more flexible function with large 

number of free parameters), the lower is the approximation error.

  • Simpler (inflexible; less number of free parameters) models lead to higher approximation 

error.

  With respect to these observations, explain how improving generalization error requires 

trade-off between hypothesis complexity and approximation error.

 P2.6: To achieve good generalization performance, we require bias and variance to be low at the 

same time. Illustrate through an example bias-variance trade-off for regression.

 P2.7: Describe capacity (of a function) concept of VC theory in terms of VC dimension. How 

does it lead to an induction principle called structural risk minimization?

 P2.8: Occum’s Razor Principle and Overfitting Avoidance are extensively exploited for heuristic 

search in inductive learning. Explain how? How is overfitting avoidance related to 

generalization performance?

 P2.9: Training accuracy is 100% for a design done by you. Will you be proud of your design? 

Justify your answer?

 P2.10: Before being used, a machine learning system should be evaluated in many aspects. Describe 

the aspects of accuracy, robustness, computational complexity and speed, interpretability 

and scalability.

 P2.11: Describe regularization approach for finding a hypothesis function of complexity consistent 

with the data.

P2.12: Machine learning involves searching through space of possible hypotheses. List the 

practical hypothesis classes you are aware of.

 P2.13: Explain the concept of ensemble learning, and the techniques used for this purpose.
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 P2.14: Describe K-fold cross-validation procedure for training and evaluation of a learning 

machine.

   What is the difference in roles assumed by the validation partition and the test partition 

of a dataset? 

 P2.15: In many classification applications, wrong decisions—namely, false-positives and false-

negatives—have cost, and the costs for the two wrong decisions may be different. How 

do we evaluate a classifier taking relative costs into consideration? Give examples of such 

applications. 

 P2.16: (a) Why do we need “confusion matrix” for evaluation of a machine trained for a pattern 

recognition task?

  (b) What  is ROC curve? How does it help in comparing performance of classifiers?

P2.17: The design of a supervised learning system for classification and regression problems 

usually entails the repetition  of a number of different activities: data collection, features 

choice, model choice, training, and evaluation. Present an overview of the design cycle and 

explain some of the issues that frequently arise.

 P2.18: Table P2.18 shows a confusion matrix for medical data where the data values are yes or no 

for a class label attribute, cancer.

Table P2.18

     Predicted

            Class 

Actual

Class

Cancer

= “yes”

Caner

= “no”

yes 90 210

no 140 9560

  The numbers within the four cells indicate number of patients. Based on the given 

information, answer the following:

 (a) Determine the misclassification rate. Can we use misclassification rate as a performance 

measure for the given data? Justify your answer.

 (b) For the given confusion matrix, determine sensitivity and specificity.

 (c) Which is more important class (positive class) out of the two, and why? Which measure 

has better ability to detect the important class members correctly : misclassification 

rate; sensitivity; specificity.

 P2.19: Give one example each of confusion matrix of class-imbalanced data and balanced data. 

Show that for balanced data, misclassification rate is an acceptable measure of performance, 

while it is not when the data is imbalanced. Describe the measures that can be used for 

judging performance of imbalanced data.

 P2.20: The dataset in P3.8 is a toy dataset. In a real-life dataset, the observations given in

Table P 2.20 were made.
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Table P2.20

                 Predicted

           Class

  Actual

  Class 

buys_computer = “yes” buys_computer = “no”

buys_computer = “yes” 6954 46

buys_computer = “no” 412 2588

  The numbers within the four cells indicate number of customers. Based on the given 

information,  answer the following.

 (a) Determine the misclassification error for the data given. Can we use misclassification 

error as a performance measure? Justify your answer.

 (b) For the given confusion matrix, determine sensitivity, and specificity. How is accuracy 

related to these measures? Comment  on whether training data is balanced or unbalanced. 

Justify your answer.

 P2.21: Multiple models learned from the data may be combined to improve classification accuracy. 

Outline the basic features of the following popular ensemble methods:

 (a) Bagging

 (b) Boosting and AdaBoost

 (c) Random Forests

  How can we improve classification accuracy of class-imbalanced data?

 P3.1: A hospital tested the body-fat data for 18 randomly selected adults; the results are given in 

Table P3.1.

 (a) Calculate the mean, variance and standard deviation of each attribute.

 (b) Calculate covariance between two attributes, and the correlation coefficient.

Table P3.1

x1: age 23 23 27 27 39 41 47 49 50

x2: % fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2

x1 52 54 54 56 57 58 58 60 61

x2 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

 P3.2: Given the following two-dimensional data points: 
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 (a) Given a new data point x = 
1 4

1 6

.

.

È

Î
Í

˘

˚
˙  as a query, rank the data points based on similarity 

with the query using Euclidean distance, and Manhattan distance. 

 (b) Normalize the dataset to make the norm of each data point equal to 1. Use Euclidean 

distance on the transformed data to rank the data points. Comment on the result.

 P3.3: Consider the dataset given in Table P3.3 

Table P3.3

Records Age Income ($)

1 56 156,000

2 65 99,000

3 32 192.000

4 49 57,000

  Answer the following questions.

 (a) Using Euclidean distance as a measure of similarity, show which two records are 

farthest from each other?

 (b) Normalize the data. Does normalization change the result obtained in part (a)?

P3.4: (a) Describe Bayes Rule. Explain approximations that lead to naive Bayes classifier.

  (b) Why is naive Bayes classifier called “naive”?

  (c) Naive Bayes classification could depend on Maximum-a-Posteriori or Maximum-

Liklihood criteria. What is the difference between the two? 

P3.5: Table P3.5 provides a set of 14 training examples of the target concept: PlayTennis, where 

each day is described by the attributes: Outlook, Temperature, Humidity, and Wind. Use the 

naive Bayes classifier and the training data from this table to classify the following instance:

  (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong) 

Table P3.5

Day Outlook Temperature Humidity Wind PlayTennis

D1 sunny hot high weak no

D2 sunny hot high strong no

D3 overcast hot high weak yes 

D4 rain mild high weak yes

(Contd.)
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D5 rain cool normal weak yes

D6 rain cool normal strong no

D7 overcast cool normal strong yes

D8 sunny mild high weak no

D9 sunny cool normal weak yes

D10 rain mild normal weak yes

D11 sunny mild normal strong yes

D12 overcast mild high strong yes

D13 overcast hot normal weak yes

D14 rain mild high strong no

 P3.6: An auditing firm has data on 1000 companies that it investigated in the past. For each 

company, they have information on whether a company is fraudent or truthful, and whether 

legal charges have been filed against it or not. The counts from the data are shown in Table 

P3.6.

   A company has just been charged with fraudulent financial reporting. Using naive Bayes 

classification technique, compute the probabilities to each of the two classes.

Table P3.6

legal charges no legal charges  

fraudulent 50 50

truthful 180 720

 P3.7: Consider the 10 companies listed in Table P3.7. For each company, we have information 

on whether or not charges were filed against it, whether it is small or large company, and 

whether (after investigation) it turned out to be fraudulent or  truthful in financial reporting. 

   A “small” company has just been “charged” with fraudulent financial reporting. Using naive 

Bayes classification technique, compute the probability that the company is “fraudulent”.

   Through the dataset in Table P3.7, show how exact Bayes classifications differ from naive 

Bayes.

Table P3.7

Company s(i) x1: charges filed x2: company size y: status 

1 yes small truthful 

2 no small truthful

3 no large truthful

(Contd.)

Day Outlook Temperature Humidity Wind PlayTennis
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4 no large truthful

5 no small truthful

6 no small truthful

7 yes small fraudulent 

8 yes large fraudulent

9 no large fraudulent

10 yes large fraudulent

 P3.8: Table P3.8 presents a training set, randomly selected from customer database of a store. The 

data samples are described by attributes: age (x1), income (x2), student (x3), and credit-rating 

(x4). The continuous-valued attributes have been transformed to categorical values. Class 

label attribute: buys_ computer (y), has two distinct values.

   The sample we wish to classify is x: (x1 = “£ 30”, x2 = “medium”, x3 = “ yes”, x4 = “fair”),

  Using naive Bayes classifier, predict the class label for this sample. Steps (algorithm) used 

in prediction must be clearly given.

Table P3.8

Data samples s(i) x1 : age x2 : income x3 : student x4 : credit_rating y : buys_computer

s(1) £ 30 high no fair no

s(2) £ 30 high no excellent no

s(3) 31...40 high no fair yes

s(4) > 40 medium no fair yes

s(5) > 40 low yes fair yes

s(6) > 40 low yes excellent no

s(7) 31...40 low yes excellent yes

s(8) £ 30 medium no fair no

s(9) £ 30 low yes fair yes

s(10) > 40 medium yes fair yes

s(11) £ 30 medium yes excellent yes

s(12) 31...40 medium no excellent yes

s(13) 31...40 high yes fair yes

s(14) > 40 medium no excellent no

  (Hint: Note that attribute values for “age” are discrete bins. You may view them as 

categorical values: young, middle-aged, senior).
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 P3.9: Graphical models represent the interaction between variables visually and have the 

advantage that inference over a large number of variables can be decomposed into a set 

of local calculations involving a small number of variables making use of conditional 

independencies. Graphical models, also called belief networks, are composed of nodes and 

arcs between the nodes.

   Draw the Bayesian belief network that represents the conditional independence 

assumptions of the naive Bayes classifier for the PlayTennis problem of P3.5.

 P3.10: Consider the data given in Table 8.4 of Chapter 8. It is desired to categorize a new household 

with $ 60,000 income and lawn size 20,000 square feet. 

 (i) Among the households in the training set, find the one closest (using Euclidean distance 

similarity measure) to the new household.

 (ii) Choosing k = 3, find the three nearest households, and categorize the new household 

using majority voting.

 P3.11: In the case of normally distributed classes, discriminant functions are linear (straight lines, 

planes, and hyperplanes for two-, three-, and n-dimensional feature vectors, respectively) 

when the covariances matrices of corresponding  classes are equal. Confirm this by deriving 

discriminant functions for a binary classification problem.

  Given:

P(x |yq) = 
1

2
1 2

2 1 2
1
2

1

( ) | |
exp ( ) ( ) ; ,

/ /
p

n q
T

q q
S

m S m- - -( ) =
-

x x

  prove that linear discriminant functions 

  gq(x) = mq
T S –1 x – 1

2
mq

T S –1mq  + ln P(yq); q = 1, 2

  and decision boundary g(x) = g1(x) – g2(x) = 0 is given by

                                                  g(x) = wT x + w0 = 0 

                              wT x + w0 = ( ) ( ) ln
( )

( )
m m S m S m m S m1 2

1 1
2 1

1
1 2

1
2

1

2

T T T T P y

P y
- - - +

- - -
x

  (Hint: Use Eqns (3.61)–(3.62))

 P3.12: Patterns x Œ¬2 drawn from two equiprobable normally distributed classes, are given in 

Table P3.12. Find the decision boundary between the two classes.
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Table P3.12 

s(i) x1 x2 y1 s(i) x1 x2 y2

s(1) 1 2 0 s(1) 6 8 1

s(2) 2 2 0 s(2) 7 8 1

s(3) 2 3 0 s(3) 8 7 1

s(4) 3 1 0 s(4) 8 8 1

s(5) 3 2 0 s(5) 7 9 1

 P3.13: Perform two iterations of the gradient algorithm to find the minima of E(w) = 2w1
2 + 2w1w2 

+ 5w2
2. The starting point is w = [2 – 2]T. Draw the contours and show your learning path 

graphically.

 P3.14: In a linear regression problem, the data has been rearranged in the following vector form: 

y w XT T

N n n N( )

( )

( ( ))

( )

(( ) )1 1 1 1¥

=

¥ +

¥

+ ¥

  Give an expression for w  in terms of X and y.

 P3.15: Show that logistic regression is a nonlinear regression problem. Is it possible to treat logistic 

discrimination in terms of equivalent liner regression problem? Justify your answer.

P3.16: Parameter k in k-NN algorithm could be a very large value or a very small value. Give the 

drawbacks, if any, of each choice.

P3.17: Consider the dataset given in Table P 3.17. It is desired to transform the data to one-dimen-

sional data using Fisher linear discrimant analysis. Find the one-dimensional transformed 

data. What is the significance of Fisher linear discriminants for classification problems?

Table P3.17 

s(i) x1 x2 Class 

s(1) 1 2 1

s(2) 2 3 1

s(3) 3 3 1

s(4) 4 5 1

s(5) 5 5 1

s(6) 1 0 2

s(7) 2 1 2

s(8) 3 1 2

s(9) 3 2 2

s(10) 5 3 2

s(11) 6 5 2
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 P4.1: Let {x(1), ..., x(N)} be a finite number of linearly separable samples in n dimensions. Derive 

and explain the perceptron algorithm that will find a separating hyperplane wTx + w0 = 0 in 

a finite number of steps, with zero misclassification error.

 P4.2: By minimizing ||x – x(i)||2 subject to the constraint g(x) = 0, show that the distance from the 

hyperplane g(x) = wTx + w0 = 0 to the point x(i) is |g(x(i))| ||w||.

   Also prove that the projection of x(i) on to the hyperplane is given by 

xP = x(i) – 
g

i( )

|| ||

( )
x

w

w
2

 P4.3: Consider the case of a hyperplane for linearly separable patterns, which is defined by the 

equation 

wTx + w0 = 0 

  where w denotes the weight vector, w0 denotes the bias; and x denotes the input vector. The 

hyperplane is said to correspond to a canonical pair (w, w0) if, for the set of input patterns 

x(i); i = 1, ..., N, the additional requirement 

min
i N

T i
w

= º

+ =

1 2
0 1

, , ,

( )| |w x

  is satisfied. Show that this requirement leads to a margin of separation between the two 

classes equal to 2/||w||.

 P4.4: Find the distance from the point 

x = [1 1  1 1 1]T

  to the hyperplane 

                                                            x1 – x2 + x3 – x4 + x5 + 1 = 0

 P4.5: (a) You have a choice of handling a binary classification task using number of 

misclassifications as the performance measure, and maximizing the margin between the 

two classes as the performance measure. On what factors does your decision depend? 

  (b) You have a choice of handling a binary classification task using (i) linear SVM, and (ii) 

perceptron algorithm. On what factors does your decision depend?

 P4.6: Using the technique of Lagrange multipliers, find the maximum of the function 

f(x) = x1
2 + 4x2

2

  subject to the constraint 

                                                           x1 + 2x2 = 6

 P4.7: Using KKT conditions, find the minimum of the function 

f(x) = (x1 – 1)2 + (x2 – 2)2
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  subject to the following constraints:

                                                                        x2 – x1 = 1

                                                                        x1 + x2 £ 2

                                                                        x1 ≥ 0, x2 ≥ 0 

  Check your result graphically.

 P4.8: Consider the following data: 

  Class 1: [1 1]T, [2 2]T, [2 0]T

  Class 2: [0 0]T, [1 0]T, [0 1]T

  Plot the six training points and construct by inspection the weight vector for the optimal 

hyperplane, and the optimal margin. What are the support vectors?

   Construct now the solution in the dual space, and compare the two results.

 P4.9: Consider the two-class classification task that consists of the following points:

  Class 1: [1, 1]T, [1, –1]T

  Class 2: [–1, 1]T, [–1, –1]T

 (a) Using the simple geometry of the problem, compute the SVM linear classifier and the 

margin hyperplanes (lines). Determine and margin and the possible support vectors.

 (b) Consider another linear classifier x1 + x2 = 0. Determine the margin hyperplanes (lines) 

and the margin.

 (c) Set up mathematical formulation of the problem: define the Lagrangian function in the 

primal space and give the KKT conditions 

 P4.10: For the optimization of the separating hyperplane for nonseparable patterns, formulate the 

primal and the dual problems.

P4.11: It is said that support vectors constitute a small percentage of data, and only these vectors 

are used to compute weight of the decision function. What are support vectors? Identify 

these vectors in hard-margin and soft-margin SVM formulations.

P4.12: A three-dimensional input vector x = [x1  x2  x3]
T is mapped into the feature vector:

     z(x) = [f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)]T

                                    = [x1 x2 x3 (x1)
2 (x2)

2 (x3)
2 x1x2 x1x3 x2x3]

T

  Show that a linear decision hyperplane in feature space ¬m(m = 9) corresponds to a 

nonlinear hypersurface in the original input space ¬n(n = 3).

 P4.13: The points x = [1 1]T and [–1 –1]T are in category 1 (class y1) and points x = [1 –1]T and 

[–1 1]T are in category 2 (class y2). Confirm that this classification problem cannot be 

solved using a linear discriminant operating directly on the features.

  Following the approach of SVMs, we transform the features to map them to higher 

dimension space where they can be linearly seperated. One such simple mapping is to a 

six-dimensional space by 1, 2 2 21 2 1 2x x x x, , , x1
2 and x2

2. Using analytic techniques, 

show that 
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 (i) the optimal hyperplane is g(x1, x2) = x1x2 = 0, and 

 (ii) the margin is 2 .

  What are the support vectors?

 P4.14: Repeat problem P4.13 using the same mapping to six-dimensional space but with the 

following four points: 

  Class 1: [1 5]T, [–2 –4]T

  Class 2: [2 3]T, [–1 5]T 

 P4.15: Prove that a Gaussian kernel maps the points x Œ¬n to infinite dimensional space.

  (Hint: K(x(i), x(j)) = exp(–s ||x(i) – x(j)||2)

                               = exp(– s ||x(i)||2) exp(– s ||x(j)||2) exp(2s (x(i))T x(j))

  Expand each term by Taylor series expansion).

 P4.16: A support vector machine (SVM) has the inner-product kernel given by 

  K(x, x(i)) = exp - -Ê
ËÁ

ˆ
¯̃

1

2 2

2

s

|| ||( )
x x

i

  The width s 2 is specified a priori by the user. Outline the SVM classification algorithm. 

 P4.17: Describe One-Against-All (OAA), and One-Against-One (OAO) classification schemes.

   We usually transform a multi-class SVM classification problem into a set of equivalent 

OAA/OAO binary classification problems. Why? What are the constraints of today’s 

multiclass-based SVM variants?

 P4.18: Explain what do we mean by a kernel classifier. Give an example to show how kernels are 

useful. Also give three examples of kernel functions.

 P4.19: Software exercise 

  Train an SVM classifier with the data given in Table P4.17. What is the equation of the 

seperating hyperplane, the margin, and the support vectors?

Table P4.17

s(i) x1 x2 y

s(1) –3.0 – 2.9 1

s(2) 0.5 8.7 1

s(3) 2.9 2.1 1

s(4) – 0.1 5.2 1

s(5) – 4.0 2.2 1

s(6) –1.3 3.7 1

(Contd.)



Problems  579

s(7) – 3.4 6.2 1

s(8) – 4.1 3.4 1

s(9) – 5.1 1.6 1

s(10) 1.9 5.1 1

s(11) – 2.0 – 8.4 –1

s(12) – 8.9 0.2 –1

s(13) – 4.2 –7.7 –1

s(14) – 8.5 – 3.2 –1

s(15) – 6.7 – 4.0 –1

s(16) – 0.5 – 9.2 –1

s(17) –5.3 – 6.7 –1

s(18) – 8.7 – 6.4 –1

s(19) –7.1 – 9.7 –1

s(20) – 8.0 – 6.3 –1

P4.20: In SVM regressor algorithms, two important design parameters are parameter C and 

e-insensitivity zone. Describe the trade-off these parameters dealwith.

   In a regression problem, we normally use sum-of-error-squares criterion for design. 

Describe the criterion used by SVM-regressor algorithm.

P4.21: Software exercise

  Sinc function is one of the commonly used dataset for testing nonlinear regression 

algorithms. This function is given by the following equation:

                                                           y = 
sinp

p

x

x

 (a) Generate 50 data points from this function in the range [– 3, 3]. Also add Gaussian 

noise to the data. 

 (b) Train an SVM regressor with the data generated as per (a). Use suitable parameters 

required for training the regressor. Comment on the results.

P 4.22: Software exercise 

  Model (reconstruct) the simple relation y = sin x (known to you but not to the learning 

machine), using a support vector machine, having a set of ten data pairs from measurements 

corrupted by 25% of normally distributed noise with zero mean.

  Analyze the influence of an insensitivity zone on regression quality.

 P4.23: Parameter C ≥ 0 trades off the complexity as measured by the norm of weight vector 

and data misfit as measured by number of nonseperable points. Show this through the 

formulation of basic SVM. 
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   Parameter C in basic SVM is replaced by parameter n Œ [0, 1] in one of its variants. 

Discuss the advantages and limitations of this replacement. 

 P4.24: One of the limitations of SVM algorithm is computational complexity, arising due to 

quadratic optimization problem. What kind of variants of basic SVM are addressing this 

issue?

 P5.1: Construct a multilayer perception network with six input terminals, a hidden-layer of four 

neurons, and an output layer of two neurons. What is the hidden layer for, and what does it 

hide?

   Write a functional relationship between output output vector y and input vector x, showing 

explicitly the parameters involved.

 P5.2: What are the main problems with the backpropagation learning algorithm? How can learning 

be accelerated in multilayer neural networks?

 P5.3: A neural network typically starts out with random initial weights; hence, it produces 

essentially random predictions when presented with its first case. What is the key ingredient 

by which the network evolves to produce a more accurate prediction?

 P5.4: In logistic discrimination, we model the ratio of posterior probabilities of the two classes y1 

and y2 (binary classification problems). Assuming log of this ratio to be linear:

  log 
P y

P y

P y

P y
P y w

T( | )

( | )
log

( | )

( | ))
( ( | ))1

2

1

1
1 0

1

x

x

x

x

x w x=

-

= = +logit

  Show how do we obtain the estimate of P(y1/x) using 

 (a) Maximum likelihood method;

 (b) Training a single neuron with logistic (log-sigmoid) function.

 P5.5: Consider the following sigmoidal activation functions: 

 (i) s
l

( ) =
+

-
a

e
a

1

1
 (ii) s (a) = 

1

1

-

+

-

-

e

e

a

a

l

l

  where l is a positive constant.

   Show that in both the cases, the derivative s ¢(a) can be written simply in terms of s (a).

P5.6: Define log-sigmoid and tan-sigmoid activation functions used in neural networks. Show that 

log-sigmoid is related to tan-sigmoid by a simple transformation. 

 P5.7: Explain the difference between batch training and incremental training protocols for training 

neural networks. 

   How is incremental training used for training feedforward neural networks related to 

online training?

 P5.8: Describe the following practical techniques for improving backpropagation-learning 

performance in MLP networks:

  (i) choice of activation functions; (ii) scaling the input; (iii) avoiding overfitting; (iv) adding 

momentum term; (v) weight decay; (vi) number of hidden layers; (vii) number of hidden 

units; (ix) initializing weights; (x) learning rates; (xi) incremental or batch training?; and 

(xii) stopping criterion.
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 P5.9: Consider the error function 

E
q

M

i

N

( )w =

==

ÂÂ12
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( y yq
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� )2 + g wji

i j

2

,

Â

  Derive the gradient descent update rule for minimization of E. What is the purpose of 

adding additional term which is a function of weights, to the error-minimzation criterion?

  (Hint: One method of simplifying the network and avoiding overfitting is to apply the 

heuristic that the weights should be small)

 P5.10: One common strategy in machine learning is to learn nonlinear functions with a linear 

machine: we first transform the data into a new feature space by a fixed nonlinear mapping, 

and then use a linear machine in the new feature space.

   One frequently seeks to identify the smallest set of m functions fl(x) that still conveys 

the essential information contained in the original attributes, and allows the use of linear 

learning in f-space.

 (i) In neural networks, commonly used fl-functions are sigmoidal functions; and in RBF 

networks, these are Gaussian functions; both of these have universal approximation 

property. It is commonly held that feedforward neural networks with sigmoidal 

activation functions are representatives of global approximation schemes, while 

RBF networks are representatives of local approximation schemes. Describe this 

fundamental difference between the two.

 (ii) In RBF networks, we need a judicial selection of minimum number of m functions so 

that patterns which are not linearly seperable in x-space, become linearly seperable 

in f-space. We can easily achieve this feature by letting m Æ • but it increases 

computational complexity. In support vector machines (SVMs), we let m Æ •. Explain 

how computational complexity is taken care of in case of SVMs.

 P5.11: Show through a schematic diagram, a typical structure of RBF networks, clearly indicating 

the involved learning parameters. Explain a method of training such a network.

P5.12: A Gaussian function can be used as a kernel function in SVM regression algorithm. A 

Gaussian function is used as activation function in RBF networks. Are the roles of the 

Gaussian function in two applications same? If not, explain the different roles.

P5.13: The learning environment for an ADALINE comprises a training set of N data samples: 

{x(i), y(i); i = 1, ..., N}, consisting of input vector x = [x1 x2 ... xn]
T, and output y. Develop a 

gradient descent algorithm for batch training. The network weights are w1, w2, ..., wn; and 

the bias parameter is w0.

P5.14: Class y1 consists of the two-dimensional vectors [0.2 0.7]T, [0.3 0.3]T, [0.4 0.5]T, 

[0.6 0.5]T, [0.1 0.4]T; and class y2 of [0.4 0.6]T, [0.6 0.2]T, [0.7 0.4]T, [0.8 0.6]T, 

[0.7 0.5]T.

   Design the sum of error squares linear classifier w1x1 + w2x2 + w0 = 0 using batch 

processing Least Squares Estimation approach.
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P5.15: Consider a two-layer feedforward neural network with two inputs x1 and x2, one hidden 

unit (output z) and one output unit (output y). This network has five weights (w1, w2, w0, 

v1, v0) where (w0, v0) represent the bias terms for the two units with sigmoidal activation 

function for hidden layer and linear function for the output.

   Initialize these weights to the values (0.1, 0.1, 0.1, 0.1, 0.1); then determine their values 

after each of the first two training iterations of the backpropagation algorithm. Assume 

learning rate h = 0.3, incremental weight updates, and the following  training examples:

  x1 x2  y

  1   0  1

  0   1  0

P5.16: Consider the network of Figs 5.14–5.15 in Chapter 5, with the M output sigmoidal units 

replaced with m output linear units. An input signal x = [x1 x2 ... xn]
T comprising features, 

augmented by a constant input component (bias) is applied to this network. The network 

output comprises ŷ  = [ ˆ ˆ ˆy y y
1 2

�
m

]T. The learning environment comprises a set of N data 

points {x(i), y(i); i = 1, ..., N}; x Œ¬n and y Œ¬m. The outputs yl; l = 1, ..., m, correspond to 

the unknown functions yl = fl(x); and ŷ
l
represents the approximation of the function.

   Explain a method of training the network for the multi-output regression task. Write the 

equations for gradient-descent incremental training.

P5.17: Consider a four-input single-node perceptron with a bipolar sigmoidal function (tan-sigmoid) 

  s (a) = 
2

1

1

+

-
-
e

a

  where ‘a’ is the activation value for the node.

 (a) Derive the weight update rule for {wi} for all i. The learning rate h = 0.1. Input 

variables:

   xi ; i = 1, 2, 3, 4. Desired output is y.

 (b) Use the rule in part (a) to update the perceptron weights incrementally for one epoch. 

The set of input and desired output patterns is as follows:

   x(1) = [1 – 2 0 –1]T, y(1) = –1

   x(2) = [0 1.5 –0.5 –1]T, y(2) = –1

   x(3) = [–1 1 0.5 –1]T, y(3) = 1

  The initial weight vector is chosen as 

                                     wT
0 = [1 –1 0 0.5]

  The perceptron does not possess bias term.

 (c) Use the training data and initial weights given in part (b) and update the perceptron 

weights for one epoch in batch mode.

P5.18: We are given the two-layer backpropagation network shown in Fig. P5.18.
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 (a) Derive the weight update rules for {vl} and {wli} for all i and l. Assume that activation 

function for all the nodes is a unipolar sigmoid function 

  s (a) = 
1

1+
-
e

a

  where ‘a’ represents the activation value for the node. The learning constant h = 0.1. 

The desired output is y.
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Figure P5.18

 (b) Use the equations derived in part (a) to update the weights in the network for one step 

with input vector x = [1 0]T, desired output y = 1, and the initial weights:

                                w10 = 1, w11 = 3, w21 = 6, w20 = – 6, w12 = 4, w22 = 5

                                              v0 = – 3.92, n1 = 2, and n2 = 4

 (c) As a check, compute the error with the same input for initial weights and updated 

weights and verify that the error has decreased.

P5.19: We are given two-layer backpropagation network shown in Fig. P5.19.
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Figure P5.19

 (a) Derive the weight update rules in incremental mode for {vl} and {wli} for all i and l; the 

iteration index is k. Assume that the activation function for all nodes in the hidden layer 

is 
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 s (al) = 
1

1+
-

e
al

  and the activation function for the node in the output layer is 

 s ( )a
e e

e e

a a

a a

=
-

+

-

-

  The learning constant h = 0.2. The desired output is y.

 (b) Use the equations derived in part (a) to update the weights in the network for one step 

with input vector x = [0.5 –0.4]T, desired output y = 0.15, and the initial weights:

      w11 = 0.2, w12 = 0.1, w21 = 0.4, w22 = 0.6, w31 = 0.3, w32 = 0.5; v1 = 0.1, v2 = 0.2

  and v3 = 0.1.

P5.20: Reconsider the neural network shown in Fig. P5.19, modified to include the bias weights: 

w10, w20 and w30, for the hidden units and bias weight, v0, for the output unit. All the bias 

weights vary in the range 0.0 to 1.0.

  A binary-coded GA is used to update connection weights including biases. Extend the 

procedure given in Example 5.3 in Chapter 5, to this modified network.

P5.21: Table P5.21 shows hypothetical bank data on consumers’  use of credit card facilities of 

the bank; the variables are x1 (number of years that the customer has been with the bank), 

x2 (customer’s salary in thousands of dollars), and y (equal to 0 if balance was paid off at 

the end of each month: and 1 if customer left an unpaid credit-card balance at the end of at 

least one month in the prior year).

Table P5.21

s(i) x1 x2 y

i = 1 4 43 0

2 18 65 1

3 1 53 0

4 3 95 0

5 15 88 1

6 6 112 1

   Figure P5.21 shows an example of a typical neural net that could be used for predicting 

the consumers’ use of credit card facilities, with logistic activation for all neurons. Illustrate 

one pass through the network for the first data in the table. Assume the following initial 

weights:
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  w11 = 0.05, w12 = – 0.01, w13 = 0.02, w21 = 0.01, w22 = 0.03, w23 = – 0.01

  w10 = – 0.3, w20 = 0.2, w30 = 0.05

    v1 = 0.01, v2 = 0.05, v3 = 0.015, v0 = – 0.015

  How will you use this regression neural network for the classification task?

x1

x2

w 11

w 21

w12

w22

w
13

w
23

w30

1

w20

1

w10

1

Â

Â

Â

Â

n1

n2

n3

s ( )◊

s ( )◊

s ( )◊

s ( )◊
y

n0

1

Figure P5.21

P5.22: Simulation exercise

  Linear single input-single output dynamic systems can be described by the following 

generic discrete equation:

  y(k) = a1 y (k – 1) + a2 y(k – 2) + ... + an y (k – n) + b1u(k – 1) + b2 u(k – 2) + ◊◊◊ + bn u(k – n)

  where y(k – i) and u(k – i) are past outputs and inputs. 

  The system identification problem of determining a’s and b’s can be viewed as a regression 

problem (refer to Machine Learning Experiment 5).

   Consider the identification of the following second-order system:

              y(k) = 1.615 y(k – 1) – 0.7788 y(k – 2) + 0.08508 u(k – 1) + 0.07824 u(k – 2)

 (a) Generate 50 data pairs from this function. 

 (b) Structure of a linear neuron for identification of a second-order system is shown in Fig. 

P5.22. Use this structure to estimate parameters a1, a2, b1 and b2.

Â

x y k1 = ( – 1)

x y k2 = ( – 2)

x u k3 = ( – 1)

x u k4 = ( – 2)

w1 = a1

w2 = a2

w3 = b1

w4 = b2

ˆ( )y k

Figure P5.22
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 P5.23: Simulation exercise

  Plant model of a temperature control system is 

                   y(k + 1) = F y(k) + 
g

y k
u k F Y

1 0 5 40
1 0

+ -

+ -

exp[ . ( ) ]
( ) ( )

                             F = e–aT; g = 
b

a
[1 – e–aT]

                             a = 1.00 151 ¥ 10–4, b = 8.67973 ¥ 10–3, Y0 = 25°C, T = 30 sec 

                             u = input, limited between 0 and 5 volts.

  Assume that the model is unknown. The only available knowledge about the plant is 

experimentally generated input-output data. Generate this knowledge by simulating the 

given model and rearrange the data in a form suitable for training a NN-based system 

identifier. Outline the procedure of system identification using neural networks (refer to 

Machine Learning Experiment 5).

P5.24: Software exercise 

  Gaussian function is commonly used dataset for testing machine learning algorithms. 

Consider training a two-layer network for a binary classification problem.

 (a) Generate a training set of 100 points, 50 from each category, from the two-dimensional 

Gaussian distributions:

 (i) Class y1; m = 
0

0

1 0

0 1

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙, S =

 (ii) Class y2; m = 
1

0 5

3 1

1 2.
,

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙S =

 (b) Train a network with different number of hidden units, 2 £ m £ 10, and one output 

unit (all neurons with log-sigmoid activation functions). If m* are the number of units 

selected by you, justify your choice. 

 (c) Re-initialize the network with m* hidden units, and comment on the effects of different 

initial weights.

 (d) Initial hidden layer weights must be different from each other; verify this by initial-

izing the weights to have identical values and observing the effects of this choice.

 (e) Generate an independent set of 40 points (20 from each category), and test the accuracy 

of your trained network.

P5.25: Software exercise

  Take suitable network examples and through simulations, demonstrate the following:

 (i) If the activation function of the hidden units is linear, a two-layer network is equivalent 

to a single-layer one, and it cannot solve nonlinear function approximation problems.
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 (ii) Preprocessing data (for example, by subtracting off the mean and scaling standard 

deviation in each dimension) can lead to significant reduction in time of learning.

P5.26: Software exercise 

  Consider the training data given in Table P5.26. 

 (a) Construct a neural network with two sigmoidal hidden units and one sigmoidal output 

unit.

 (b) Initialize all weights randomly in the range {–1, 1} and train a regressor ŷ  = ˆf (x). 

Assume h = 0.1. Use incremental training protocol. Plot a learning curve—the training 

error as a function of epoch. Explain and justify the stopping criterion you use.

 (c) Can you use the trained network for a classification problem wherein y in the table 

represents two categories of output? If yes, explain the technique you use, and the 

weakness of the technique, if any.

 (d) How can we build a better classifier by changing the structure of the network to one 

with more than one output units?

Table P5.26

s(i) x1 x2 x3 y

s(1) 1.58 2.32 – 5.8 1

s(2) 0.67 1.58 – 4.78 1

s(3) 1.04 1.01 – 3.63 1

s(4) –1.49 2.18 – 3.39 1

s(5) – 0.41 1.21 – 4.73 1

s(6) 1.39 3.16 2.87 1

s(7) 1.20 1.40 –1.89 1

s(8) – 0.92 1.44 – 3.22 1

s(9) 0.45 1.33 – 4.38 1

s(10) – 0.76 0.84 –1.96 1

s(11) 0.21 0.03 –2.21 0

s(12) 0.37 0.28 –1.8 0

s(13) 0.18 1.22 0.16 0

s(14) –0.24 0.93 –1.01 0

s(15) –1.18 0.39 – 0.39 0

s(16) 0.74 0.96 –1.16 0

(Contd.)
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s(17) – 0.38 1.94 – 0.48 0

s(18) 0.02 0.72 – 0.17 0

s(19) 0.44 1.31 – 0.14 0

s(20) 0.46 1.49 0.68 0

P5.27: The emerging subject ‘deep learning’ was out of scope of this book. With the background 

of machine learning developed through this book/other sources, it will be a logical step for 

the reader to self-learn this subject though available literature and software tools.

 P6.1: (a) In the following, we suggest a membership function for fuzzy description of the set ‘real 

numbers close to 2’:

                                                   
� �

A x x
A

= { , ( )}m

   where

                                            m
�
A
x

x

x x x

x

( )

;

;

;

=

<

- + - £ £

>

Ï

Ì
Ô

Ó
Ô

0 1

4 3 1 3
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2

   Sketch the membership function (arc of a parabola) and determine its supporting 

interval, and a-cut interval for a = 0.5.

  (b) Sketch the piecewise quadratic membership function

                                     m
�
B

x

x x

x x

x x

( )

( ) ; /

( ) ; / /

( ) ; /

;

=

- £ <
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   and show that it also represents ‘real number close to 2’. Determine its support, and 

a-cut for a = 0.5.

 P6.2: (a) The well known Gaussian distribution in probability is defined by 

f(x) = 
1

2

1
2

2

s p

m

s
e x

x

-
-Ê

ËÁ
ˆ
¯̃ -• < < •;

   where m is the mean and s is the standard deviation of the distribution. Construct a 

normal, convex membership function from this distribution (select parameters m and s) 

that represents ‘real numbers close to 2’. Find its support, and a-cut for a = 0.5. Show 

that the membership function

m
�
A
x

x
( )

( )
=

+ -

1

1 2 2

   also represents ‘real numbers close to 2’. Find its support and a-cut for a = 0.5.

s(i) x1 x2 x3 y
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 P6.3: Consider the piecewise quadratic function

f(x) = 

0 1 3 2

2
2

1 2
2

1

2

2

; /
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Ô
Ô
Ô
Ô

  Construct a normal, convex membership function from f(x) (select parameters a, b and c) that 

represents the set ‘tall men’ on the universe {3, 9}. Determine the crosspoints and support of 

the membership function.

 P6.4: (a) Writer an analytical expression for the membership function m
�
A
x( ) with supporting 

interval [–1, 9] and a-cut interval for a = 1 given as [4, 5].

  (b) Define what we mean by a normal membership function and a convex membership 

function. Is the function described in (a) above (i) normal, (ii) convex?

 P6.5: (a) Let the fuzzy set 
�
A  be the linguistic ‘warm’ with membership function 

m
�
A
x

x a

x a

b a
a x b

b x b

x a

b a
b x a
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2

                                         a1 = 64°F, b1 = 70°F, b2 = 74°F, a2 = 78°F

 (i) Is 
�
A  a normal fuzzy set?

 (ii) Is 
�
A  a convex fuzzy set?

 (iii) Is 
�
A  a singleton fuzzy set?

   If answer to one or more to these is ‘no’, then given an example of such a set.

  (b) For fuzzy set 
�
A  described in part (a), assume that b1 = b2 = 72°F.

   Sketch the resulting membership function and determine its support, crosspoints and 

a-cuts for a = 0.2 and 0.4.

 P6.6: Consider two fuzzy sets 
�
A and 

�
B ; membership functions m

�
A
x( ) and m

�
B

x( ) are shown in Fig. 

P6.6.

  The fuzzy variable x is temperature.

  Sketch the graph of m m
� � �
A A B
x x( ), ( )

«
and m

� �
A B

x
»

( ).

  Which t-norm and t-conorm have you used?
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Figure P6.6

P6.7: Assume the membership function of the fuzzy set 
�
A, big pressure, is 

m
�
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x

x

x
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  Assume the membership function of the fuzzy set 
�
B, small volume, is 

m
�
B y

y

y
y( )
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;

;

=
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1 1

1
1

4
1 5

0 otherwise

  Find the truth values of the following propositions:

 (i) 4 is big pressure.

 (ii) 3 is small volume.

 (iii) 4 is big pressure AND 3 is small volume.

 (iv) 4 is big pressure Æ 3 is small volume.

  Explain the conjunction and implication operations you have used for this purpose.

P6.8: Consider a fuzzy relation 
�
R described by the relationship ‘x is approximately equal to y’ by 

means of the following membership grade:

m
�
R(x, y) = max (1 – 0.5|x – y |, 0)

 (i) Determine m
�
A(x) for the fuzzy set 

�
A  = “approximately 5”. Show the membership plot 

for 
�
A.

 (ii) Show that the membership value 

m
�
R(x, y) = e–(x–y)2

        also describes the relation ‘x is approximately equal to y’.
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P6.9: Two fuzzy sets ‘young man’ and ‘tall man’ are given in Fig. P6.9, defined on different 

universes of discourse ‘age’ and ‘height’. This figure also shows a discretization of the 

fuzzy sets. Using MIN operator for intersection, determine a relation 
�
R (find m

�
R (age, 

height)) for the concept ‘young and tall’ man.

   Graphically obtain a surface which represents the membership function m
�
R (age, height) 

of the relation given by the relation matrix 
�
R  (you may use MATLAB or any other software 

tool).

m(age)

1

0.5

15 20 25 30 35 age
(years)

175180 185 190 height
(cm)

m(height)

Figure P6.9

P6.10: Describe the three operations: cylindrical extension, intersection, and projection, involved 

in composition of fuzzy relations.

P6.11: The following function was used to calculate membership values for the set ‘healthy’; 

x stands for BMI (Body Mass Index) values. A membership value of 1 is healthy, a 

membership value of 0 is not-healthy, and a membership value between 0 and 1 is the 

degree of membership in the healthy set.

healthy(x) = 

0 18

18 2 18 20

1 20 25

27 2 25 27

0

;

( )/ ;

;

( )/ ;

;

if

if

if
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Ó

Ô
Ô
Ô 27

 (a) Draw the graphic for the fuzzy set ‘healthy’.

 (b) What is the degree of membership to the set ‘healthy’ for a person having BMI of 

26.2?

P6.12: In Example 6.8 in Chapter 6, 
�
R  represents the relation between height in cm and weight 

in kg for a ‘healthy male adult’. Assume your height is 160 cm. Transform this crisp value 

to a discrete fuzzy set 
�
A, and then using max-min composition operator, determine a fuzzy 

set that gives the weight possibility distribution for you to be a healthy male adult. 
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P6.13: Consider the following statements:

  

Input is very small

Rule IF is small THEN is large

In

�
�

�
� �

¢

¢ ¢

A

A B

fference is very large�
�

¢B

  If 
�
R is a fuzzy relation from X to Y representing the implication rule, and 

�
¢A is a fuzzy 

subset of X, then the fuzzy subset 
�

¢B of Y, which is induced by 
�

¢A , is given by 

� �

�

�

¢ = ¢B A R

  where  operation (composition) is carried out by taking cylindrical extension of 
�

¢A , taking 

the intersection with 
�
R, and projecting the result onto Y.

  Define cylindrical extension, intersection, and projection operations that lead to max-min 

compositional rule of inference.

P6.14: Consider the fuzzy approximate reasoning problem of determining fuzzy set for humidity, 

given the fuzzy rule 

  “IF temperature (x) is high THEN humidity (y) is fairly high”

  and the input fuzzy set “temperature is fairly high”.

�
A =

x 20 30 40
= ‘temperature is high’

m
�
A(x) 0.1 0.5 0.9

�
B =

y 20 50 70 90

= ‘humidity is fairly high’
m

�
B(y) 0.2 0.6 0.7 1

�
¢A =

x 20 30 40
= ‘temperature is fairly high’

m
�

¢A
(x) 0.01 0.25 0.81

  Determine fuzzy set 
�

¢B for humidity.

P6.15: Describe the structure of a fuzzy rule-based system. List and define the five basic 

components of this learning system.

P6.16: Given fuzzy inputs, a fuzzy inference system produces fuzzy output. Therefore, we require 

fuzzification of crisp inputs, and defuzzification of inferred fuzzy set to obtain crisp output 

from fuzzy set. 

   Describe widely-used methods for fuzzification and defuzzification. 

P6.17: Figure P6.17 shows the fuzzy output of a certain control problem. Defuzzify by using the 

center of area method, to obtain the value of crisp control action.
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Figure P6.17

P6.18: In fuzzy inference system based on Mamdani model, the underlying nonlinearity for 

decision-making is shaped heuristically in the design process. Describe the steps involved 

in the design process, through an example.

P6.19: Find and present graphically the output fuzzy set for the single-input single-output system 

in Fig. P6.19, described by following two rules:

  Rule 1 : IF x is small THEN y is high

  Rule 2 : IF x is medium THEN y is medium 

  For the input x0 = 20, find the crisp value y¢.

 (i) Give the results for different defuzzification methods. 

 (ii) Give the results for min and product implication operators.

–40 –20 0 20 40 60 –6 –4 –2 0 2 4 6
y

1

x

m( )x

–10 30 70

Figure P6.19

P6.20: Consider the fuzzy system concerning the terminal voltage and speed of an electric motor, 

described by the membership functions

x 100 150 200 250 300

m
�
A(x) 1 0.8 0.5 0.2 0.1
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y 1600 1800 2000 2200 2400

m
�
B(y) 1 0.9 0.7 0.3 0

Input Voltage is rather small ( is )

Rule IF voltage is sm

�
�

�

x A¢

aall ( is ) THEN speed is small is

Inference Speed is r

x A y B
� �

�

( )

aather small is( )y B
�

¢

  Assume that the fuzzy set 
�

¢A is a singleton at x0 = 125. Determine the inference fuzzy set 

�
¢B of the fuzzy system. Defuzzify this set to obtain crisp value for speed.

  Use piecewise continuous approximations of graphs of m
�
A(x) and m

�
B(y) to describe your 

solution. 

P6.21: Consider the two-input, one-output fuzzy system:

  

Input is AND is

Rule 1 IF is AND is THEN is 

Ru

�
� �

�
� � �

x A y B

x A y B z C

¢ ¢

1 1 1

lle 2 IF is AND is THEN is 

Inference is 

�
� � �

�
�

x A y B z C

z C

2 2 2

¢

  The fuzzy sets 
� � �
A B C

i i i
, and ; i = 1, 2, have the membership functions
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  Assume fuzzy sets 
�

¢A and 
�

¢B are singletons at x0 = 4 and y0 = 8. Determine the inference 

fuzzy set 
�

¢C  of the fuzzy system. Defuzzify 
�

¢C .

P6.22: The control objective is to design an automatic braking system for motor cars. We need two 

analog signals: vehicle speed (V), and a measure of distance (D) from the vehicle in the 



Problems  595

front. A fuzzy logic control system will process these, giving a single output: braking force 

(B), which controls the brakes.

  Term set for each of the variables (V, D, and B) is of the form:

{PS (positive small), PM (positive medium), PL (positive large)}

  Membership functions for each term-set are given in Fig. P6.22

  Suppose that for the control problem, two rules have to be fired:

  Rule 1: If D = PS AND V = PM THEN B = PL 

    Rule 2: If D = PM AND V = PL THEN B = PM 

  For the sensor readings of V = 55 km/hr, and D = 27m from the car in front, find graphically 

 (i) the firing strengths of the two rules;

 (ii) the aggregated output; and 

 (iii) defuzzified control action.

m

1
PS PM PL

0 10 20 30 40 50 60 V(km/hr) 0 10 20 30 40 50 60

1

0 20 40 60 80 100 Braking force (%)B

m

PS PM PL

m

1

D(m)

PS PM PL

Figure P6.22

P6.23: The control objective is to automate the wash time when using a washing machine. Experts 

select for inputs dirt and grease of the clothes to be washed, and for output parameter the 

wash time, as follows:

                Dirt (x) �  {SD (small dirt),MD (medium dirt), LD (large dirt)}

  Grease (y) �  {NG (no grease), MG (medium grease), LG (large grease)}

                Washtime (z) �  {VS (very short), S(short), M (medium), L (long), VL (very long)}

  The degrees of the dirt and grease are measured on a scale from 0 to 100; washtime is 

measured in minutes from 0 to 60.
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  The selected rules are as follows:

Grease Æ
Dirt 

Ø

NG MG LG

SD VS M L

MD S M L

LD M L VL

     Find a crisp control output for the following sensor readings:

Dirt = 60; Grease = 70

 P6.24: A fuzzy controller is acting according to the following rule base (N = negative, M = medium, 

P = positive):

  R1 : If x1 is N AND x2 is N  THEN u is N

  R2 : If x1 is N OR x2 is P  THEN u is M

  R3 : If x1 is P OR x2 is N  THEN u is M 

  R4 : If x1 is P AND x2 is P  THEN u is P 
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  The membership functions of the input and output variables are given in Fig. P6.24. Actual 

inputs are x1 = 2.5 and x2 = 4. Which rules are active and what will be the controller action 

u? Find u by applying standard fuzzy operations: min for AND, and max for OR.

N P

m

1

0 1 2 3 4
x1

N P

m

1

0 1 2 3 4
x2

N P

m

1

0 1 2 3 4
u

M

Figure P6.24

 P6.25: Consider the following fuzzy model of a system with inputs x and y and output z:

  Rule 1 : If x is A3 OR y is B1 THEN z is C1

  Rule 2 : If x is A2 AND y is B2 THEN z is C2

  Rule 3 : If x is A1 THEN z is C3

  The membership functions of the input and output variables are given in Fig. P6.25. Actual 

inputs are x1 and y1. Find the output z by applying standard fuzzy operation: min for AND, 

and max for OR.

m

1

0.5

0.2

A1 A2 A3

x1

m

1

0.7

0.1

B1 B2

y1

1

0

C1 C2 C3

m

20 35

25 30

55 70

60 65

100
zyx

Figure P6.25

 P6.26: A fuzzy controller is acting according to the following rule base (N = negative, P = positive):

  R1 : If x1 is N AND x2 is N  THEN u is k1

  R2 : If x1 is N OR x2 is P  THEN u is k2

  R3 : If x1 is P OR x2 is N  THEN u is k2

  R4 : If x1 is P AND x2 is P  THEN u is k3

  The membership functions of the input variables are given in Fig. P6.24 and the membership 

functions of the output variable (which is a controller action) u are singletons placed at k1 

= 1, k2 = 2, k3 = 3. Actual inputs are x1 = 2.5 and x2 = 4. Find u by applying standard fuzzy 

operations: min for AND, and max for OR.

P6.27: Consider a Mamdani fuzzy model for a manufacturing process. The process is characterized 

by two input variables, x1 and x2, and one output variable y. The membership function 

distribution (isosceles triangles of base widths q1, q2, q3) of x1, x2 and y are shown in Fig. 

P6.27, and a rule base is given in Table P6.27. Determine the output of the model for x1 = 

10, x2 = 28.
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Table P6.27

x2 Æ
x1 

Ø

�
A
21

�
A22

�
A
23

�
A
24

�
A11

�
S

�
S

�
M

�
L

�
A
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�
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�
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�
L

�
A
13

�
M

�
M

�
L XL

~

�
A
14

�
M

�
L XL

~
XL
~
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P6.28: We are given a thermal process shown in Fig. P6.28(a), where qi is the perturbation 

(from steady-state operating condition) in temperature of the liquid entering the insulated 

chamber, q is the perturbation in temperature of the liquid leaving the chamber. The heating 

element has a knob to control the steam for circulation through the radiator. The higher the 

setting of the knob the hotter the fluid gets; the setting ‘0’ of the knob indicating the steam 

supply for steady-state operating condition. The desired value for the variable q is qd = 0.

   The control system we use is shown in Fig. P6.28(b). Fuzzy logic controller (FLC) inputs 

are error e and error-rate �e, and output is change-in-control Du (change in heat knob setting); 

with input membership functions shown in Fig. P6.28(c) and output membership functions 

shown in Fig. P6.28(d), where P, Z, N denote Positive, Negative and Zero, respectively. 

We use nine rules in the rule-base given by Table 6.1 in Chapter 6. Furthermore, we use 

min operator to quantify the premise and implication; singleton fuzzification; and COG 

defuzzification.

  Assume that the input variables have the following crisp values:

  e = 15°C; �e  = 4°C/sec

 (a) Use Mamdani model and find the individual implied fuzzy sets. Show the overall 

implied fuzzy set graphically.

 (b) Defuzzify using COG defuzzification method.
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Heat Knob

Steam
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Fluid out

Steam
exhaust
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(q )
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u t T u( – ) + D
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(FLC)

qd = 0 +

–

q( )t

( ) ( )
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e t e t T
T
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P6.29: Two widely-used fuzzy inference models are Mamdani model, and T-S fuzzy model. 

Describe the characteristics of the two models.

P6.30: In a fuzzy inference system based on Takagi-Sugeno approach, identification of the 

nonlinearity is first carried out in terms of T-S fuzzy model; the T-S fuzzy model is then 

used for designing decision-support system. Assuming that nonlinear system is effectively 

represented as a fuzzy cluster of linear static systems, describe the procedure of obtaining 

cluster of linear T-S fuzzy models from input-output data.

P6.31: Describe a procedure for the design of  T-S fuzzy model (linear static mappings). How does 

ANFIS develop this type of model?

P6.32: Software exercise

  Consider a two-dimensional sinc equation defined by 

y = sinc(x1, x2) = 
sin ( ) sin ( )x x

x x

1 2

1 2

  Training data are sampled uniformly from the input range [–10, 10] ¥ [–10, 10]. With two 

symmetric triangular membership functions assigned to each input variable, construct a 

Takagi-Sugeno fuzzy model (linear static mappings) for the sinc function. Give defining 

equations for determination of the premise and consequent parameters of the model.
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 P6.33: Software exercise

  To identify the nonlinear system 

  y = (1 + (x1)
0.5 + (x2)

–1 + (x3)
–1.5)2

  we assign two membership functions to each input variable. Training and testing data are 

sampled uniformly from the input ranges [1, 6] ¥ [1, 6] ¥ [1, 6] and [1.5, 5.5] ¥ [1.5, 5.5] ¥ 

[1.5, 5.5], respectively. Extract Takagi-Sugeno fuzzy rules from the numerical input-output 

training data that could be employed in an ANFIS model.

 P6.34: Consider a T-S fuzzy model for a manufacturing process. The process is characterized 

by two input variables, x1 and x2, and one output variable, y. The membership function 

distributions of x1 and x2 are shown in Fig. P6.34. Domain intervals of xi are divided into 

Ki = 3 fuzzy sets. Therefore, there is a maximum of K1 ¥ K2 = 9 feasible rules. The output 

of the rth rule is expressed as 

  ŷ
(r) = aj

(r)x1 + bk
(r)x2

  where j, k = 1, 2, 3; a1
(r) = 1, a2

(r) = 2 and a3
(r) = 3 if x1 is found to be 

� � �
A A A11 12 13, ,and  

respectively; b1
(r) = 1, b2

(r) = 2, b3
(r) = 3 if x2 is found to be 

� � �
A A A21 22 23, ,and  respectively. 

Determine the output of the model if x1 = 6.0 and x2 = 2.2.
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P6.35: Assume that a fuzzy inference system has two inputs x1 and x2, and one output y. The rule- 

base contains two T-S fuzzy rules as follows:

  Rule 1 : If x1 is 
�
A11AND x2 is 

�
A
21

THEN y(1) = a0
(1) + a1

(1) x1 + a2
(1) x2

  Rule 2 : If x1 is 
�
A
12

 AND x2 is 
�
A22 THEN y(2) = a0

(2) + a1
(2) x1 + a2

(2) x2



602  Applied Machine Learning

  
�
Aij  are Gaussian functions.

  For given input values x1 and x2, the inferrred output is calculate by 

ŷ  = 
m m

m m

( ) ( ) ( ) ( )

( ) ( )

1 1 2 2

1 2

y y+

+

  where u(r), r = 1, 2 are firing strengths of the two rules. Product inference is used to calculate 

the firing strengths of the rules.

  Develop ANFIS architecture for this modeling problem, and derive learning algorithms 

based on least squares estimation and the gradient-descent methods.

 P6.36: A fuzzy logic-based expert system is to be developed that will work based on T-S fuzzy 

model architecture to predict the output of a process. The database of the fuzzy system is 

shown in Fig. P6.36; x1 and x2 are two inputs with specified minimum values x1
min and x2

min, 

respectively. The base-widths q1 and q2 are assumed to vary in the ranges:

  0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0

  There are is a maximum of R = 4 feasible rules; the output of rth rule (r = 1,2, ..., R) is 

expressed as follows:

  ŷ
(r) = a0

(r) + a1
(r)x1+ a2

(r) x2

  The parameters a0
(r), a1

(r), a2
(r) are assumed to vary in the range:

  0.001 £ a0
(r), a1

(r), a2
(r) £ 1.0 

  To optimize the performance of the fuzzy system using GA, a set of training examples {x(i), 

y(i); i = 1, ..., N} is used. A typical GA-string in the population of solutions is of the form:

  {q1q2 a0
(1) a1

(1) a2
(1) a0

(2) a1
(2) a2

(2) a0
(3) a1

(3) a2
(3) a0

(4) a1
(4) a2

(4)}

  with four binary bits assigned to represent each of the parameters.

  Randomly select an initial population of solutions, and determine the deviation in prediction 

for the training example {x(1), y(1)} = {x1
(1) = 1.1, x2

(1) = 6.0, y(1) = 5.0} using the first 

GA-string.

11
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�

12
A
�1

0

q1

min

1
1x =

21
A
�

22
A
�1

0

q2

min

2
5x =

x2x1

m m

Figure P6.36
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P6.37: A fuzzy logic-based expert system is to be developed that will work based on Mamdani 

model to predict the output of a process. The database of the fuzzy system is shown in Figs 

P6.36 and P6.37; x1 and x2 are two inputs with specified minimum values x1
min and x2

min, 

respectively, and y is the output with specified minimum value ymin. The base-widths q1, 

q2 and q3 of these isosceles triangles are tunable. The ranges of the tunable parameters are 

assumed to be 

  0.8 £ q1 £ 1.5; 4.0 £ q2 £ 6.0,; 0.5 £ q3 £ 3

m

1

0

S
�

M
�

L
�

ymin = 0

q3

y

Figure P6.37

  The Rule Base of the fuzzy system is given in Table P6.37

Table P6.37

x2 Æ
x1

Ø  �
A
21

�
A22

�
A11

�
S

�
M

�
A
12

�
M

�
L

  To optimize the performance of the fuzzy system using GA, a set of training examples{x(i), 

y(i); i = 1, ..., N} is used. A typical GA-string in the population of solutions is of the form 

  {q1, q2, q3}

  with four binary bits assigned to represent each of the parameters.

  Randomly select an initial population of solutions, and determine the deviation in prediction 

for the training example {x(1), y(1)} = {x1
(1) = 1.1, x2

(1) = 6.0, y(1) = 5.0} using the first 

GA-string.

 P7.1: K-means clustering method is ‘hard’ in that it requires each object to belong exclusively to 

only one cluster. Describe two ‘soft’ clustering methods wherein K-means is a special case 

of the methods. Explain why K-means is a special case.
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 P7.2: Clustering is recognized as an important machine learning tool with broad applications. Give 

one application example for each of the following:

 (a) Using clustering as a preprocessing tool for data preparation 

 (b) Using clustering as a major tool for decision-making 

 P7.3: Given the data points:

x1 2 2 8 5 7 6 1 4

x2 10 5 4 8 5 4 2 9

  The task is to cluster these points into three clusters. We initially assign 
2

10

5

8

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙,  and 

1

2

È

Î
Í

˘

˚
˙  

as the center of each cluster. Using K-means algorithm with Euclidean distance as similarity 

measure, find 

 (a) the three cluster centers after the first round of execution; 

 (b) the final three clusters.

 P7.4: Describe each of the following clustering algorithms in terms of the following criteria:

 (1) shapes of clusters that can be determined;

 (2) input parameters that must be specified; and

 (3) limitations.

 (a) K-means

 (b) Fuzzy K-means

 (c) Gaussian Mixture Model

 P7.5: Consider the dataset given in Table P7.5. 

 (a) The task is to cluster these data points into two clusters. We initially assign [1  1  1]T, 

and [–1  1  –1]T as the center of each cluster. Using K-means algorithm with Euclidean 

distance as similarity measure, find the three cluster centers.

 (b) Now assign [0  0  0]T and [1 1 –1]T as initial cluster centers and repeat part(a). 

Compare your result with that from part(a) and explain any differences, including the 

number of iterations for convergence.

Table 7.5

s(i) x1 x2 x3

s(1) –7.82 – 4.58 –3.97

s(2) – 6.68 3.16 2.71

s(3) 4.36 –2.19 2.09

s(4) 6.72 0.88 2.80

(Contd.)



Problems  605

s(5) –8.64 3.06 3.50

s(6) –6.87 0.57 –5.45

s(7) 4.47 –2.62 5.76

s(8) 6.73 –2.01 4.18

s(9) –7.71 2.34 –6.33

s(10) –6.91 –0.49 –5.68

s(11) 6.18 2.81 5.82

s(12) 6.72 –0.93 –4.04

s(13) – 6.25 –0.26 0.56

s(14) – 6.94 –1.22 1.13

s(15) 8.09 0.20 2.25

s(16) 6.81 0.17 –4.15

s(17) –5.19 4.24 4.04

s(18) –6.38 –1.74 1.43

s(19) 4.08 1.30 5.33

s(20) 6.27 0.93 –2.78

 P7.6: Repeat P7.5, but use instead fuzzy K-means algorithm with m = 2 (Table 7.2 in Chapter 7).

P7.7: Consider a problem in which the data D is a set of instances, assumed to be generated by 

probability distribution that is a mixture of K distinct normal distributions. Each instance 

is generated using a two-step process. First one of the K normal distributions are selected 

at random. Second, a single random instance x(i) is generated according to this selected 

distribution. Consider a spacial case where the selection of the single normal distribution at 

each step is based on choosing each with uniform probability, where each of the K normal 

distributions has the same variance s 2 and s 2 is known.

   Use EM algorithm to output a hypothesis that estimates the means of each of the K 

distributions in the Gaussian Mixture Model (GMM).

 P7.8: K-means algorithm does hard partitioning but it is always better to do a soft partitioning 

so that instances in between two clusters can contribute to the parameters (the covariance 

matrix) of more than one cluster allowing a smooth transition between clusters.

   Write the equations derived for EM algorithm, for estimating the means and covariances 

of the K normal distributions of Gaussian Mixture model (GMM). Show that this model 

uses Mahalanobis distance rather than Euclidean distance (which  implies that features 

have the same scale and are independent), and hence taking care of differences in scale and 

dependencies.
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P7.9: A numerical attribute Temp (°F) in a dataset, alongwith class labels of the dataset is given 

below.

  75 80 85 72 69 72 83 64 81 71 65 75 68 70

  +       –      –      –      +     +      +      +      +      –      –      +      +      +

  For discretization of this data using entropy-based method, a cut-point at 75 (£ 75; > 75) is 

to be examined. Calculate the Gain Ratio induced by this cut-point.

P7.10: Taking a suitable example of 10 data pairs (x1, x2), perform the following steps analytically: 

  Step 1: Subtract the mean 

  Step 2: Calculate the covariance matrix 

  Step 3: Calculate the eigenvalues and eigenvectors of the covariance matrix 

  Step 4: Choose principle components and form a feature vector

  Step 5: Derive new dataset 

P7.11: Consider now the dataset given in Table P7.11. Using an appropriate software tool, 

perform the five steps given in P7.10, and represent all the three-dimensional data in two 

dimensions. What are the eigenvectors and eigenvalues?

Table P7.11

x1 7 4 6 8 8 7 5 9 7 8

x2 4 1 3 6 5 2 3 5 4 2

x3 3 8 5 1 7 9 3 8 5 2

 P7.12: Reconsider the dataset given in P3.17. Use PCA for dimensionality reduction from two 

dimensions to one dimension. Confirm that classification performance on reduced dataset 

is better using Fisher’s Linear Discriminant analysis compared to PCA. Explain why so?

 P7.13: A dealer of used cars has currently ten cars. The car dealer notes in his documents four 

features of each car: number of doors, horsepower, color, and make. A decision system 

built from this information system defines car make as the decision attribute, and other 

three features as condition attributes (Table P7.13).

 (a) Using rough-set analysis, show that the decision attribute y depends on the condition 

attributes X to a degree g  = 0.8. It indicates that we cannot unambiguously infer on the 

membership of the objects of the space U to the condition-attribute set corresponding 

to class labels q = 1, 2, and 3.

 (b) A decision system by deleting objects 4 and 5 has now been created. Show that in this 

system, the decision attribute y depends on the condition attributes X to a degree g  = 1.
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Table P7.13

Objects

(U)

Number of

doors (x1)

Horsepower

(x2)

Color

(x3)

Make

(y)

1 2 60 blue Opel

2 2 100 black Nissan

3 2 200 black Ferrari

4 2 200 red Ferrari

5 2 200 red Opel

6 3 100 red Opel

7 3 100 red Opel

8 3 200 black Ferrari

9 4 100 blue Nissan

10 4 100 blue Nissan

 P7.14: The car dealer decided to add the type of fuel used, the type of upholstery, and wheel rims, 

to the features considered in P7.13. The new set of condition attributes is x1, x2, x3, x4, x5, 

x6 shown in Table P7.14.

 (a) Obtain the dependency degree g.

 (b) Show that added attributes x4, x5, x6 are of low significance.

Table P7.14

Objects

(U)

Number of

doors (x1)

Horsepower

(x2)

Color 

(x3)

Fuel

(x4)

Upholstery

(x5)

Rims

(x6)

Make

(y)

1 2 60 blue Ethyl

gasoline

woven 

fabric

steel Opel

2 2 100 black Diesel oil woven 

fabric

steel Nissan

3 2 200 black Ethyl

gasoline

leather Al Ferrari

4 2 200 red Ethyl

gasoline

leather Al Ferrari

5 2 200 red Ethyl

gasoline

woven 

fabric

steel Opel

6 3 100 red Diesel oil leather steel Opel

7 3 100 red gas woven 

fabric

steel Opel

8 3 200 black Ethyl

gasoline

leather Al Ferrari

9 4 100 blue gas woven 

fabric

steel Nissan

10 4 100 blue Diesel oil woven 

fabric

Al Nissan



608  Applied Machine Learning

 P7.15: Consider the dataset given in Table 7.4 of Chapter 7.

 (a) Find the elementary sets U/IND(Z) for various subsets:

                                  {x1,}, {x2}, {x3), {x1, x2}, {x2, x3}, {x1, x2, x3}

 (b) Find dependency degree of decision attribute y on these sets of condition attributes.

 (c) Find the set R of all reducts, and the reduct Rmin of minimal cardinality.

 P7.16: Various methods have been reported in literature for data clustering. Out of them, an 

overview of widely-used ones has been given in this book.

   Give an overview (your qualitative understanding) of the following clustering methods:

  1. K-means

  2. Fuzzy K-means

  3. Probabilistic clusters

  4. Hierarchical clustering

  5. Spectral clustering

  6. Clustering using Self-Organizing Maps

P7.17: Describe the steps involved in the design process (including relevant equations) for the 

following clustering methods:

  1. K-means clustering algorithm

  2. Fuzzy K-means algorithm

  3. Gaussian mixtures clustering algorithm

P7.18: Data cleansing is an important data preprocessing requirement. Describe the major data 

problems that require cleansing operation.

P7.19: Discretization of numeric attributes in data matrix is a requirement for some machine 

learning algorithms. Describe various discretization methods known to you.

   What are the merits of entropy-based data discritization? Describe this discretization 

method with the help of an example.

P7.20: Describe the basic features of the following attribute-reduction methods. Also outline the 

steps involved.

  1. Principal Component Analysis (PCA)

  2. Rough-set approach

 P8.1: People decide to drive the car or take the public transportation to go to work according to 

the weather and traffic situation. An example dataset is given in Table P8.1. The attributes 

are Temperature (x1), Wind (x2), and Traffic-Jam (x3); and the target variable is Car Driving 

Decision (y).
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Table P8.1

Day s(i) Temperature x1 Wind x2 Traffic-Jam x3 Car Driving y

s(1) hot weak long no

s(2) hot strong long no

s(3) hot weak long yes

s(4) mild weak long yes

s(5) cool weak short yes

s(6) cool strong short no

s(7) cool strong short yes

s(8) mild weak long no

s(9) cool weak short yes

s(10) mild weak short yes

s(11) mild strong short yes

s(12) mild strong long yes

s(13) hot weak short yes

s(14) mild strong long no

  The given dataset D has 14 examples altogether, including nine positive examples (car 

driving: yes), and five negative examples (car driving: no).

 (a) Calculate the information gain for x1, x2 and x3

 (b) Choose the root node for the decision tree.

 (c) Show a partial decision tree from root node along with training examples sorted to each 

of its descendent node. 

 (d) You are required to continue with the decision-tree growing process till all nodes are pure 

(they contain examples that all have the same classification). Will it be possible to reach 

this situation for the given dataset? If not, why not? (Hint: Look for inconsistencies in 

the given dataset)

P8.2: For the dataset given in Table P8.2, the following prior knowledge for fuzzification of data 

is assumed.

  Attribute x1 (universe of discourse: {–10, 50})

            m1(cool) = 

1 0

1
15

0 15

0 15

1

1
1

1

;

;

;

x

x
x

x

<

- £ £

>

Ï

Ì

Ô
Ô

Ó

Ô
Ô
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  m2(mild) = 

0 0

15

1

3
0 20

1 20 30

5
7 30 35

0 35

1

1
1

1

1
1

1

;

;

;

;

;

x

x
x

x

x
x

x

<

- £ <

£ <

- + £ £

>

Ï

Ì

Ô
Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
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    m3(hot) = 

0 25

10
2 5 25 35

1 35

1

1
1

1

;

. ;

;

x

x
x

x

<

- £ £

>

Ï

Ì

Ô
Ô

Ó

Ô
Ô

  Attribute x2 (universe of discourse: {0, 10})

  m1(weak) = 

1 3

2 5
2

3 5

0 5

2

2
2

2

;

. ;

;

x

x
x

x

<

- £ £

>

Ï

Ì

Ô
Ô

Ó

Ô
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  m2(strong) = 

0 3

5
0 6 3 8

1 8

2

2
2

2

;

. ;

;
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 (a) Give a graphical representation of the membership functions.

 (b) Can we use fuzzy K-means clustering algorithm for fuzzification? If yes, describe the 

procedure. If not, why not? 
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P8.3: To build fuzzy decision tree for the dataset of Table P8.1, the prior knowledge on fuzzification 

of attributes x1, x2 and x3 is given in problem P8.2.

 (a) Choose the root node for the fuzzy decision tree.

 (b) Show a partial fuzzy decision tree from root node along with training examples sorted 

to each of its descendent node.

  (Hint: Membership functions for the data D, mD(s(i)); i = 1, ..., 14, are not given. Assume the 

dataset to be crisp: mD(s(i)) = 1)

 P8.4: Consider the dataset given in Table 8.5 of Chapter 8, with only two attributes x1 (height) and 

x2 (weight).

 (a) Using fuzzy K-means algorithm, find membership functions of each attribute: Attribute 

x1(m1(low), m2(middle), m3(high), Attribute x2(m1(low), m2(middle), m3(heavy)).

 (b) Choose the root node for the fuzzy decision tree.

 (c) Show a partial decision tree from root node along with training examples sorted to each 

of its descendent node.

  You are advised to use an appropriate software tool (e.g., MATLAB) for fuzzification.

 P8.5: Consider the training dataset given in Table P3.5. 

 (a) Construct a decision tree from the given data using “information gain” based splitting.

 (b) For the given dataset, we want decision-tree induction based on “ Gini index”. We 

know that Gini index considers binary split for each attribute. Outline the procedure 

that need be adopted for construction of decision tree for the given dataset.

 P8.6: A decision tree for the concept buys-computer, indicating whether a customer of a 

departmental store is likely to purchase a computer, is shown in Fig. P8.6. Each leaf node 

represents a class (either buys_computer = no or buys_computer = yes).

  Convert the decision tree to classification IF-THEN rules.

age

student
credit-
rating

young senior

middle-age

yes

yesyesno no

no yes
fair excellent

Figure P8.6

P8.7: Given a decision tree, we can (a) convert the decision tree to rules and then prune the 

resulting rules, or (b) prune the decision tree and then convert the pruned tree to rules. 

Describe relative merits of each option. 
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P8.8: Briefly outline the major steps of decision tree classification? How is tree pruning useful in 

decision tree induction?

P8.9: Describe the following popular impurity measures used for decision tree induction:

  1. Information gain/entropy reduction

  2. Gain ratio

  3. Gini index

P8.10: Describe the procedure for fuzzy decision tree induction, highlighting parallels and 

differences with crisp decision tree induction.

P9.1: The fields: analytics, business intelligence, predictive analytics, machine learning, data 

mining; do not have precise boundaries for the spectrum of their functions. Their functions 

overlap. Understanding of the essence of these tools for data-driven decision making is all 

that is important. Give your qualitative understanding of these terms.

P9.2: Data science is a collection of tools and techniques useful for data-driven decision making. 

With respect to this description of the term ‘data science’, list all the tools and techniques 

you have learnt from this book and other sources.

P9.3: Data exploration helps provide insights into the past, and is an essential ingredient for 

understanding the future. Summary statistics, data visualization, data clustering are some 

of the tools employed for data exploration

   Many open-source/commercial software tools provide extensive breadth and depth in 

data exploration. Using software tools, learn the way how to get ‘360° view’ of business 

through data exploration.

P9.4: On-Line Analytical Processing (OLAP) provides an easy-to-use GUI to query large data 

collections in data warehouses, for the purpose of data exploration. Describe the basic 

OLAP features provided in data warehouses.

P9.5: Describe the CRISP-DM process model employed for data-driven business decision 

making.

P9.6: Give two business applications of association-rule mining.

P9.7: Describe precision-recall performance curves and F-score for measuring accuracy of infor-

mation retrieval systems.

   Show that precision-recall curves are essentially equivalent to ROC curves.

P9.8: Describe the cosine similarity measure. How is it different from Euclidean distance 

measure?

P9.9: Big-data analytics was out of scope of this book; however, an overview has been given. 

Based on this overview, and your own experience/learning of this emerging field, describe 

how do you see this evolving in future.
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A

Accuracy of learning system; 55, 59-60, 61-62

Activation functions; 188-193, 230

Activation value; 190

AdaBoost; 54

ADALINE; see Adaptive linear elements

Adaptive boosting; 54

Adaptive dynamic programming; 532, 534

Adaptive linear elements; 182, 200, 206-207

Adaptive neuro-fuzzy inference system; 318-324

Aggregated fuzzy set; 291

Algorithm; 41, 102

Alpha-cut of fuzzy set; 258

Analytics; 446

Analytics design cycle; 451-456

Analytics techniques; 449

ANFIS; see adaptive neuro-fuzzy inference system

Ant colony optimization; 24

Approximate dynamic programming; 530

Approximate reasoning; 277

Approximating function; see hypothesis function

Apriori algorithm; 474-477

Apriori probability; 89

Artificial intelligence; 184

Artificial neural networks; see neural networks

Artificial neuron; 186-188

Association learning; 6, 22

Association rules mining; 467-479

Atomic fuzzy proposition; 260, 278

Attributes; see features

Attribute reduction; 340, 377, 382-387, 399-400

Audio retrieval; 488-489

Audiovisual data; 489

B

Backpropagation learning rule; 210, 213-223

Bag-of-words; 485, 503

Bagging; 54, 502

Balanced data; 94

Bank telemarketing; 556-559

Batch training; 215

Bayes classifier; 88

Bayes theorem; 88-92

Bayesian belief network; 98-102

Belief networks; 92, 98-102

Bell-shaped membership function; 264

Bias; 43

Bias-variance dilemma; 42-46, 51

Bias-variance trade-off; see bias-variance dilemma

Big data analytic methods; 500-503

Big data analytics; 498-507

Big data sources; 498-500

Big data technologies; 503-507

Binary classification; 108, 132-136
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Binary split; 424

Binary tree; 418, 424-427

Bins; 89, 93, 418

Biological neuron; 184-186

Bipolar activation function; 190

Boosting; 54, 502

Bootstrapping; 58-59

Breast cancer diagnosis; 551-553

Business intelligence; 446

C

C4.5 decision tree; 405, 416, 422-423, 429, 430

C5.0 decision tree; 405, 429

Capacity of hypothesis; 48, 159

CART decision tree; 405, 418, 424-427, 428

Cartesian product; 268, 278

Center average defuzzification; 299

Center-of-gravity defuzzification; 298

Chromosome representation in GA; 512

Chromosomes diploid; 526

Chromosomes haploid; 526

Class-conditional probability density function; 78-79

Classical logic; 253

Classification; 14, 36-37, 107, 132-136

Classification and regression trees; see CART 

Classification problems: loss function; 38

Classification through regression formulation; 141

Class-imabalnced data; 54, 94

Clipped fuzzy set; 288-289

Cloud computing; 505

Clustering; 6, 329-331, 334-339

Cluster analysis applications; 338-339

Clustering: fuzzy K-means; 335, 356-362

Clustering: Gaussian mixtures; 362-372

Clustering: K-means; 352-355

Clustering: self-oragining maps; 349-352

Clustering: spectral; 345-349

Clusters: hard; 343, 353

Clusters: hierarchial; 336, 344-345

Clusters: probabilistic; see clustering: Gaussian mixtures

Clusters: soft; 343, 350, 356, 369

COG defuzzification; see center-of-gravity defuzzification

Competetive learning; 350

Complement of fuzzy sets; 267

Composition of fuzzy relations; 272-276

Compound fuzzy proposition; 278

Computational complexity; 55

Computational learning theory; 42, 46-49

Conditional probabilities; 90

Confusion matrix; 62-66

Correlation coefficient; 82

Cosine distance; 485

Cost-sensitive learning; 54, 62

Covariance; 82-83

Cover’s theorem; 159

Crisp set; 253

Crossover operator in GA; 513

Cross-validation; 57-58

C-SVM; 178

Cylindrical extension; 273

D

Data cleansing; 332, 340, 372-374

Data exploration; 330, 333-334, 501

Data mining; 25

Data mining design cycle; 451-456

Data preparation; 332, 339

Data preprocessing; 332, 340

Data representation; 12-15, 36

Data science; 450

Data similarities; 334-335

Data similarity metrics; 85-87

Data transformations; 332, 339-341

Data visualization; 334, 502

Data warehousing; 447, 456-467

Datasets for realistic problems; 549-566

Decision tree: binary; 418, 424, 428

Decision tree: C4.5; 405, 416, 422-423, 429, 430

Decision tree: C5.0; 405, 429

Decision tree: CART; 405, 418, 424-427, 428

Decision tree: ID3; 405, 416, 419-421

Deductive statistical model; 73

Deep learning; 183-184, 503

Defuzzification; 279, 298-301

Delta learning rule; 208-213

Derived attributes; 340, 374-375
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Descriptive statistics; 74-75, 80-83

Directed acyclic graph SVM; 177

Directed learning; see supervised learning

Discrete fuzzy set; 266

Discretizing numeric attributes; 340, 377-378, 379-382

Discriminant functions; 106-110, 132-136, 158

Divide-and-conquer; 408, 412

Domain knowledge; 18

Dual formulation; 147-148, 154-156, 171-172

Dual variables; 146

Dynamic programming; 530, 535-542

E

Early stopping; 53

Eigenvalues; 32, 385

Eigenvectors; 33, 385

ELM; see extreme learning machine

EM algorithm; see Expectation-Maximization algorithm

Empirical-risk minimization; 38, 39

Ensemble learning; 53-54, 502

Entropy; 128, 411, 434-435

Entropy-based discretization; 377-382

Entropy reduction; 411-416

Epoch; 205

Error insensitivity zone; 167

Euclidean distance; 86

Euclidean vector norm; 30, 86

Evolution strategy; 526

Evolutionary computation; 23, 509

Expectation-Maximization algorithm; 102, 362-365

Expected mean square error; 60

Extreme learning machine; 182

F

False positive rate; 65

Features; 12, 13, 14, 18

Feature extraction using domain knowledge; 18

Feature extraction using trees; 429

Feedforward networks; 194-199

Firing of fuzzy rules; 291

Fisher’s linear discriminant; 120-126

Fitting a function; see regression 

Frequent itemsets; 470

Frequent itemset mining; 473-479

Frequent patterns mining; 467-479

F-score: precision-recall; 483

Fully connected NN; 194

Function approximation; see regression

Fuzzification; 279, 283

Fuzziness and probability; 252, 257

Fuzzy cartesian product; 268, 278, 281

Fuzzy conjunction; 281-282

Fuzzy database; 277

Fuzzy decision trees; 405, 433-444

Fuzzy disjunction; 281-282

Fuzzy entropy; 434-435

Fuzzy implication; 278,283

Fuzzy inference; 277, 284-297

Fuzzy K-means clustering; 335, 356-362, 435

Fuzzy logic; 253-257

Fuzzy operators; 267-268, 274, 282

Fuzzy relations; 268-276

Fuzzy rule base; 249-251, 277-279

Fuzzy sets; 257-266

Fuzzy singleton; 266-267, 283, 287

G

GA; see genetic algorithm

Gain ratio; 416-417

Gas furnace system identification; 564-566

Gaussian distribution; see normal distribution

Gaussian membership function; 264

Gaussian mixture models; 365-372

Gaussian mixtures clustering; 362-372

Generalization error estimation; 56-59

Generalized delta rule; 210, 216

Generalizing feature; 5, 19

Genetic algorithms; 24, 508-526

Genetic fuzzy systems; 324-327

Genetic neural systems; 241-244

Genetic programming; 526

Gini index; 417

Global minimum; 145, 204, 227-228

GMM; see Gaussian mixture model 

Gradient descent; 116-117, 204-207

Graphical user interface; 447, 479
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Grid computing; 504

GUI; see graphical user interface

H

Hard margin; 146

Hard margin classifier: SVM; 147-148

Heuristic search process; 42, 51-55

Hidden layers; 194, 229

Hidden Markov model; 529

Hierarchical clustering; 336, 344-345

Hold-out technique; 56-57

Hypotheses space; 41

Hypothesis capacity; 48

Hypothesis class; 109-112

Hypothesis complexity; 44, 52

Hypothesis function; 41

Hypothesis space complexity; 42

I

ID3 decision tree; 405, 416, 419-421

IF-THEN rules; 246, 248, 283

iid (independently and identically drawn); 15, 37, 39

Ill-posed problem; 39

Image retrieval; 486-488

Immune system optimization; 24, 526

Implied fuzzy set; 291

Impurity measures; 411-418

Impurity reduction; 411, 412, 415

Incremental training; 215, 227

Indicator function; 148

Inductive inference; 41

Inductive learning 41-42

Inductive statistical model; 73

Inference: fuzzy; 277, 284-297

Inferential statistics; 74

Information; 128, 412, 415

Information gain; 411-417, 435

Information retrieval; 67, 479-490

Input terminals: NN; 194

Instance based algorithm; see k-NNclassifier

Intelligent information retrieval; 480

Interactive dichotomizer; see ID3

Interpretability: learning system; 55, 246

Intersection: fuzzy sets; 267, 273

Inverse-document frequency; 484

IR systems accuracy; 481-483

IR; see information retrieval

K

Karush-Kuhn-Tucker conditions; 144, 146, 154, 170

Kernel functions; 111, 160-162

Kernel trick; 160

K-fold cross-validation; 57

KKT conditions; see Karush-Kuhn-Tucker conditions

K-Means clustering; 352-355

k-nearest neighbor classifier; 102-106

k-NN classifier; see k-nearest neighbor classifier

Kohonen self-organizing maps; 349

L

L1 norm; 87

L1 norm SVM; 177

L2 norm; 87

L2 norm SVM; 177

Lagrangian function; 144

Lagrangian SVM; 180

Learning in NN: Batch; 215

Learning in NN: incremental; 215, 227

Learning rate; 137, 204, 231

Least mean square algorithm; 115, 207

Least squares SVM; 179

Leave-one-out cross-validation; 58

Levenberg-Marquardt: NN training; 230

Linear activation; 193

Linear algebra; 26-33

Linear binary classifier; 132-136, 136-140, 141-148, 152-

156, 201-203

Linear classifier: NN; 201-203

Linear classifier: SVM; 152-156

Linear dependence; 31

Linear discriminant functions; 106-110, 132-136

Linear independence; 31

Linear maximum margin classifier; 141-148, 152-156

Linear neuron; see ADALINE

Linear regression: least square error criteria; 112-116, 

197, 201-203
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Linear regressor: NN; 203-208

Linear regressor: SVM; 169-172

Linear soft margin classifier; 152-156

Linearly inseparable data; 137

Linearly inseparable data classifier; 152-156

Linearly separable data; 136

Linearly separable data classifier; 141-148

LMS algorithm; see least mean square algorithm

Local minima; 227-228

Logistic function; 117

Logistic regression for classification; 116-120, 197

Log-sigmoid activation; 192, 193

Loss functions; 37-38

M

Machine learning applications; 7-12, 490-497

Machine learning definition; 5

Machine learning design cycle; 68-72, 451-456

Machine learning model; 36-37

Machine learning tasks; 5-6, 36, 39

Mahalanobis distance; 86

Mamdani model for fuzzy inference; 301-311

MAP class; see Maximum-a-posteriori class

MAP Reduce; 506-507

Margin; 144, 146, 152

Market basket analysis; 22, 469

Marokovian decision process; 529, 532

Massively parallel processing; 504

Max operator; 268, 274, 282

Maximum likelihood class; 91

Maximum likelihood for logistic regression; 117-119

Maximum margin classifier; 140

Maximum-a-posteriori class; 91

Max-min operator; 274

Max-product operator; 275

MDP; see Markovian decision process

Mean; 80-81, 83

Mean absolute error; 59-60

Mean square error and pseudoinverse; 113-115

Mean square error metric for accuracy; 59-60

Mean-of-maxima defuzzification; 300-301

Mel frequency cepstral coefficients; 489

Membership functions: fuzzy sets; 257-267

Mercer’s theorem; 161

Metrics: classification accuracy; 61-63, 140

Metrics: regression accuracy; 59-61

MFCC; see Mel frequency cepstral coefficients

Minimum description length principle; 42, 126-129

Min-operator; 267, 282, 283

Misclassification error: metric for accuracy; 61-62, 140

Missing values; 19, 372-373,432

ML class; see maximum likelihood class

Momentum gradient descent; 227-228

MSE; see mean square error

Multiclass classification; 14, 36-37

Multi-class discrimination with NN; 232-235

Multi-class SVM; 180

Multiclass to binary; 174-177

Multi-layer perceptron networks; 197-199

Multimedia analytics; 450, 490, 496

Multivariate trees; 431

Mutation operator in GA; 513

N

n-SVM; 178

Naïve Bayes classifier; 93-98

NARMA model; 15, 564

Natural language processing; 485, 503

Neural network regularization; 53

Neural networks; 184

Neuro-dynamic programming; 530

Neuro-fuzzy systems; 317-324

Neuron: mathematical model; 190-193

Ng-Jordan-Weiss algorithm; 347

NN linear classifier; 201-203

NN linear regressor; 203-208

NN training; 229-231

No free lunch theorem; 41

Nonlinear classifier: decision trees; 427, 431

Nonlinear classifier: NN; 232-235

Nonlinear classifier: SVM; 162-167

Nonlinear discriminant function; 109, 118

Nonlinear regressor: NN; 213-224

Nonlinear regressor: SVM; 172-174

Norm; 30-31, 86-87

Normal distribution; 84-85
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Normal fuzzy set; 258

Normalization; 234

NORMAX model; 564

Numeric prediction; see regression

O

1-of-M encoding; 233

OAA; see One-Against-All

OAO; see One-Against-One

Observations; see patterns

Occam’s razor; 42, 50-51

OLAP; see online analytical processing

OLTP; see on-line trasanction processing

One-Against-All; 174-175

One-Against-One; 176-177

On-line analytical processing; 447, 458, 464-466, 479

Online learning; 55

Online training; 215

On-line transaction processing; 457, 479

Optical recognition of handwritten digits; 553-556

Ordinal output; 330

Outliers; 19, 61, 338, 373, 432

Output layer: NN; 194

Overfitting avoidance; 42, 50-51

Overlapping classes; 152

P

PAC;  see Probably-Accurately-Correct

Particle swarm optimization; 24

Parzon window; 102, 106

Pattern recognition; see classification

Patterns; 36

PCA; see principal component analysis

Perceptron algorithm; 136-141, 201

Perceptron; 137, 182, 200

Perfromance criterion; 7

p-norm; 30, 87

Policy iteration; 540-542

Posterior probability; 90

Posterior; see posterior probability

Postpruning decision trees; 427-429, 430

Precision-Recall confusion matrix; 481-482

Precision-Recall F-score; 483

Precision-Recall performance; 67, 481-483

Precision-Recall performance curves; 67, 481, 482

Predictive analytics; 447, 448-449

Prepruning decision trees; 427-429

Primal formulation of SVM; 146

Principal component analysis; 382-390

Prior; see a-priori probability

Probabilistic clustering; see Gaussian mixtures clustering

Probability density function; 76-77, 78-79

Probability distributions; 79-83

Probability mass distribution; 75-76, 78

Probability: joint; 77

Probabilistic NN; 106

Probably-Accurately-Correct model; 42, 49

Product operator; 268, 274, 282, 283

Projection fuzzy relations; 274

Proposition; 253, 260, 278

Proximal SVM; 180

Pruning; 53

Pruning decision trees; 427-429, 430

Pseudoinverse; 29

PSO; see particle swarm optimization

Q

Q-learning; 544-547

QP; see quadratic programming

Quadratic programming; 150

Query; 447

R

Radial basis functions; 236

Random forests; 54

Random subsampling; 57

Ranking; 330

Raw data; 6

RBF networks; 235-241

Receiver operating characteristics; see ROC Curves

Recurrent networks; 199-200

Recursive least square algorithm; 115

Reduction of attributes; 340, 377, 382-387, 399-400

Regression formulation for classification; 141

Regression functions; 6, 108

Regression problems: loss function; 38
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Squashing function; 190

Standard deviation; 84

Statistical distance; 86

Statistical independence; 78

Statistical learning theory; 42

Statistical measures of probability distribution; 80-83

Statistical model; 3, 73-75

Stochastic gradient descent; 115, 207-208

Stock market index prediction; 559-564

Stopping criterion NN training; 231

Stratification; 57

Structural query language; 447, 457, 479, 504

Structural risk minimization; 48, 52

Structured data; 20

Structured human knowledge; 2, 246

Sum operators; 268, 282

Sum-of-error squares; 60

Supervised learning; 21, 36

Support vector machine; 147

Support vectors; 143, 147

Support: fuzzy set; 259

SVM linear classifier; 152-156

SVM linear regressor; 169-172

SVM nonlinear classifier; 162-167

SVM nonlinear regressor; 172-174

SVM-C; 178

SVM-n ; 178

SVM: L-1 norm; 177

SVM: L-2 norm; 177

SVM: Lagrangian; 180

SVM: least squares; 179

SVM: multi-class; 180

SVM: proximal; 180

SVM; see support vector machine

Swarm intelligence; 24, 526

T

Takagi Sugeno fuzzy model; 287, 297,302, 311-317

Tan-sigmoid activation; 193

t-conorm; see triangular conorm

Temporal-difference learning; 534, 542-548

Term frequency; 484-485

Testing dataset; 56

Regression tree; 418, 431

Regression: SVM; 167-169

Regularization; 53

Reinforcement learning; 22, 527-548

Relevance of attributes; 397-399

Reproduction in GA; 519-522

Risk function; 38

RL; see reinforcement learning

Robustness of learning system; 55

ROC curves; 65-67

Root mean square error; 60

Rough-set analysis; 390-403

Rule extraction from trees; 430

S

Samples; see patterns

SARSA learning; 548

Scalability; 55

Scaled fuzzy set; 289

Schema theorem; 525-526

Selection operator in GA; 513

Self-organizing map; 349-352

Semi-structured data; 501

Semi-supervised learning; 329

Sensitivity; see true positive rate

Sequential minimal optimization; 179

Sigmoidal membership functions; 264-266

Signal-to-noise ratio; 382

Similarities in data; 6, 334-335

Singleton fuzzy set; 259, 266-267

Singleton membership function; 266-267

Skewed data; see class-imbalanced data

Slack variables; 152, 169

SMO; see sequential minimal optimization

Soft computing; 4

Soft margin; 152

Soft-margin classifier; 152-156

SOM; see self-organizing map

Sparse data; 373

Specificity; see true negative rate

Spectral clustering; 345-349

Split information; 416-418

SQL; see structural query language
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Testing error; 40

Text analytics; 450, 486, 494

Text data representation; 483-486

Text retrieval; 483-486

Time series model; 15-17

Time-series data; 15, 56

t-norm; see triangular norm

Toy problems; 17, 18

Training dataset; 56

Training error; 39

Trapezoidal membership function; 263

Trial-and-error search; 42, 52

Triangular conorm; 267, 282

Triangular membership function; 262

Triangular norm; 267, 282

True negative rate; 65

True positive rate; 64

True risk; 38

U

Ugly duckling theorem; 41

Unbalanced data; see class imbalanced data

Uncertainties in data; 75

Undirected learning; see unsupervised learning; 6

Union: fuzzy sets; 268

Unipolar activation function; 190

Universal function approximation; 228, 239

Universe of discourse; 253

Unstructured data; 20, 498, 501

Unsupervised learning; 22, 328-329

V

Validation dataset; 56

Value iteration; 539-540

Vapnik-Chervonenkis model; 42

Variance; 81, 83

VC dimension; 48

Video data; 487

Voting scheme; 175, 176

W

Web mining; 461, 496

Weight decay: NN; 53, 230

Weight initialization: NN; 231

Widrow-Hoff learning rule; 182, 206

Winner-takes-all approach; 175
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