

Copyright © 2019 by Rockridge Press, Emeryville, California

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions
Department, Rockridge Press, 6005 Shellmound Street, Suite 175, Emeryville, CA 94608.

Limit of Liability/Disclaimer of Warranty: The Publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the
contents of this work and specifically disclaim all warranties, including without limitation
warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding that the
Publisher is not engaged in rendering medical, legal, or other professional advice or
services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the Publisher nor the author shall be liable for
damages arising herefrom. The fact that an individual, organization, or website is
referred to in this work as a citation and/or potential source of further information does
not mean that the author or the Publisher endorses the information the individual,
organization, or website may provide or recommendations they/it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical
support, please contact our Customer Care Department within the United States at
(866) 744-2665, or outside the United States at (510) 253-0500.

Rockridge Press publishes its books in a variety of electronic and print formats. Some
content that appears in print may not be available in electronic books, and vice versa.

TRADEMARKS: Rockridge Press and the Rockridge Press logo are trademarks or
registered trademarks of Callisto Media Inc. and/or its affiliates, in the United States and
other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Rockridge Press is not associated with any
product or vendor mentioned in this book.

python.org images used with permission from the Python Software Foundation.

Interior and Cover Designer: Merideth Harte
Photo Art Director: Sue Bischofberger
Editor: Susan Randol
Production Editor: Andrew Yackira
Illustrations: Amir Abou Roumié

ISBN: Print 978-1-64152-175-8 | eBook 978-1-64152-176-5

http://python.org

R1

To the technologists of tomorrow

CONTENTS

Introduction

CHAPTER 1: Welcome to Python!

CHAPTER 2: print(“Hello!”)

CHAPTER 3: Fun with Numbers

CHAPTER 4: Strings and Other Things

CHAPTER 5: Looking at Loops

CHAPTER 6: May the Turtle Be with You

CHAPTER 7: Reusable Code

Final Bits and Bytes

Answer Key
Glossary

Resources
Acknowledgments

About the Author

INTRODUCTION

Coding for Kids: Python is a unique and fun introduction to the
Python programming language. Written for someone with
absolutely no experience with coding, this book uses silly
analogies, helpful examples, and many activities and games to
help anyone learn how to code in Python!

Let me share a little about myself, your excited author: I am
currently a full-time software engineer who finds joy and
fulfillment in helping new and potential coders of all kinds. I’ve
spent many hours volunteering at local elementary and high
schools, speaking to students about careers in software
development, and teaching the basics of coding. It is so fun to see
the spark in someone’s eye when they see the power of code. I
wrote this book to spark the imagination and wonder of many
more people!

Code is at the core of almost everything we use and love. We
can write code to make games, create music and art, bring robots
to life, and power almost anything that is electronic. When you
realize how much coding is a part of the world of the future, it
becomes so important to learn how it works! This book will help
you do just that.

Coding is literally translating human ideas and actions into a
language that computers can understand. Python is one of the
languages, but there are many others—for example: JavaScript,
C#, Ruby, and C++. Each of these languages tells the computer
how to do something, but each one does it a bit differently. I
chose Python for this book because it is very close to our
speaking language of English, which makes the coding concepts I
will introduce a little easier to understand. :)

The best part about coding is that you just need a computer
and this book! From the first chapter to the last, I’ll guide you
through the coding concepts you need to know, with step-by-

step instructions and examples, plenty of helpful screenshots,
and simple explanations of the new programming terms you’ll
learn (all of which are also available for you in the handy glossary
at the back of the book!). By the time you’ve finished this book,
you’ll be creating some really cool programs and even simple
games that you can play with friends! Hangman, anyone?

Coding is one skill that you’ll only learn by doing. That’s why
I’ve structured each chapter to walk you through the code as you
follow along. This makes the book truly interactive, as you’ll learn
about a concept, write some code, understand what it’s doing,
read and learn a bit more, maybe fix a bug or two, and see the
results of your code in real time! And to really help you
understand the different coding concepts in this book, I’ve also
included activities at the end of each chapter to help you test
your knowledge, combine multiple concepts, and write more
code. After all, practice makes perfect—especially with coding!
Finally, if some of the activities are too easy for you, or if you just
want to keep coding, I’ve included even more difficult challenges
after each chapter to really stretch your brain and give you more
chances to show off your creativity!

This book will help you start an incredible adventure into the
world of programming. By the end of it, you’ll be ready for the
world of the future! What are you waiting for?

WELCOME TO PYTHON!
Hey there! Since you’re reading this book, you must be a pretty
curious and cool person. Why? Because you want to learn how to
code! And who wouldn’t? Coding is an awesome skill that can
help you build all kinds of things and solve a lot of problems.
When you code, you take human ideas and then translate them
into a language that a machine can understand.

Coding is built around the concept of input and output. We
give the computer some input, which is any information or data
provided by us humans, and expect some output, which can be
words, pictures, an action, or some other result, after the
computer has processed the input we gave it. Sounds interesting,
doesn’t it?

How many things can you think of that follow this
input/output, or I/O, concept? For example, when we press
buttons on a controller or swipe our fingers left and right on a
mobile game, that’s input. And when our character jumps, ducks,
moves left, or moves right, that’s output. How about baking? All of
the ingredients we need to make cookies can be considered
input. After following the instructions and using the ingredients,
we get our output, which are the baked cookies!

Using examples like these, as well as silly scenarios and
conversations with a computer, we’ll explore how to code in
Python, and you’ll understand what we’re doing in no time! The
coolest thing about coding is that you can do it from almost

anywhere. All you need is a laptop or computer (Windows PC or
Mac is fine), and I’ll help you with the rest.

Are you ready to learn how to speak to a computer? Hooray!
Let’s go!

WHY PYTHON?
Just like humans can understand many different languages, a
computer can understand the ideas and concepts that we input
to it through several different programming languages. In this
book, we’ll focus on the Python programming language because
Python is easy to understand, can be used in many different
ways, and is quick to learn. Also, it is a popular language that runs
on almost every machine and is used at many big, important
organizations like Google, Instagram, NASA, and Spotify.

INSTALLING PYTHON
I know we want to dive right into coding, but we can’t do that until
we have the right tools. I’ll walk you through the step-by-step
process of installing Python. Let’s get started!

ON A PC

If you are on a Windows machine, you probably don’t have
Python installed already. This is because Windows operating

systems don’t usually come with the Python language. That’s
okay, though! We can get it ourselves. :)

1. On your computer, open an Internet browser like Google
Chrome or Mozilla Firefox.

2. In the address bar, type “https://www.python.org/downloads/”
to go to the official Python website’s Downloads section.

3. Through the magic of coding, the website will probably know
what type of computer you are using, and the DOWNLOAD
button will show you the correct version of Python to install! In
our case, we want the latest version, which was Python 3.7.0
when I wrote the book. Don’t worry if it tells you to download a
newer version. Go ahead and click the DOWNLOAD button.

4. A download will start and will probably go to the bottom of
your window like in the picture.

http://www.python.org/downloads

5 . Once your download is complete, click on it to begin the
installation. When you do, a window should pop up.

6. Go ahead and click the RUN button. Then, you’ll see this
window (yours may say 32-bit if that’s right for your machine):

7 . Make sure to check the ADD PYTHON 3.7 TO PATH
checkbox.

8. Click INSTALL NOW. Python should begin installing. You
should see a window like this one:

9. Wait for the install to finish and the green bar to be full. Once it
is done, the final screen should appear, saying that your
installation was successful.

10. Whoo-hoo! You’re done! Click the CLOSE button and you’re
ready to go. You’ve installed Python on Windows!

ON A MAC

1. On your computer, open an Internet browser like Google
Chrome or Mozilla Firefox.

2. In the address bar, type “https://www.python.org/downloads/”
to go to the official Python website’s Downloads section.

3. Through the magic of coding, the website will probably know
what type of computer you are using, and the DOWNLOAD
button will show you the correct version of Python to install! In
our case, we want the latest version, which was Python 3.7.0
when I wrote the book. Don’t worry if it tells you to download a
newer version. You can also find the installer for your specific
machine in the Files section.

http://www.python.org/downloads/

4. After clicking on the version, a download should start. Wait for
it to finish before starting the installer.

5. When you start the installer, you should see a window like this
one:

6. Click the CONTINUE button. You’ll then be presented with
some important information that you can choose to read or
not.

7 . Click the CONTINUE button. Next you will see the license
information.

8. Keep going! Click the CONTINUE button. You’ll be asked to
agree to the terms of the software license agreement.

9 . Click the AGREE button. You’ll reach this final window:

10. Click the INSTALL button. If you need to, enter your personal
user name and password for your account on your computer.
Mac OS sometimes asks for this to make sure you want to
install something. If you don’t see this pop-up window, you
can skip to the next step.

11 . Installation should begin.

12. Wait for the installation to finish. Once it is done, you should
see this:

13. Congratulate yourself! You’ve just installed Python on your
Mac!

>>> You may have noticed we asked you to type
“https://www.python.org/downloads/”. But is that https:// really necessary, or

http://www.python.org/downloads

could we just start with www? The answer is this: Python is good about
redirecting you to the right site, but adding https:// before typing web addresses
is a good practice to get into, so you can be sure your computer is going to a
secure site!

USING IDLE
When you download and install Python, it will also install an
application called IDLE. IDLE is short for Integrated Development
and Learning Environment (that’s a mouthful!), and it is an
integrated development environment, or IDE, that helps us with
writing Python programs. Think of it as an electronic notepad with
some additional tools to help us write, debug, and run our Python
code. To work in Python, you will need to open IDLE—opening
Python files directly won’t work!

Let’s take a look!

ON A PC

1. Click the Windows Start menu.

2 . Start typing “idle”, then select the search result IDLE (Python
3.7 64-bit). Note: Yours might say IDLE (Python 3.7 32-bit) if
that’s the kind of machine you have.

3. A window should pop up that looks like this:

4. Ta-da! Awesome! You opened IDLE on Windows and are now
ready to start writing some code in Python! :)

ON A MAC

1. Navigate to GO > APPLICATIONS.

2. Find the Python 3.7 folder and open it.

3. Double-click on the IDLE icon.

4. A window should pop up that looks like this:

5. Whoo-hoo! Congratulations! You opened IDLE on a Mac and
are now ready to start writing some code in Python! :)

SAY HI TO PYTHON!
Now that you’ve installed Python and IDLE on your computer,
let’s say hi! Open up IDLE on your computer (if it’s not already
open). Whenever you open up the IDLE program on your
computer, you will always be brought to the shell first. The shell is
the interactive window that allows you to write Python code
within it and then see the results of your code right away. You’ll
know when you’re in the shell because it will say Python 3.7.0 Shell
in the title bar of the window.

In your shell, go ahead and type the following code:
print("Hi	Python!")

Now, hit the ENTER key. Do you see something like this?

Great job! You’ve written your first line of Python code! Give
yourself a pat on the back, or high-five the person closest to you.
You’re about to learn some awesome things.

SAVING YOUR WORK
When we get into the later chapters, our programs will probably
be a little longer than the ones we write in the beginning.
Wouldn’t it be useful if we could save our progress so we don’t
have to re-type all the code we write? Of course it would! This is
where saving your work comes in handy.

Even though it’s a short program, let’s save our Python
greeting to its own file so you can see how easy it is to save your
work.

First, let’s create a new file:

1. On the MENU bar in your shell, click the FILE tab to open its

context menu, which is a list of actions that you can perform.

2. Click NEW FILE.

3 . A new window should pop up, like this:

4. Type in your greeting, using Python code: print("Hi Python!")
We have to put our greeting into this piece of Python code so

that the computer knows to “write” this message for us onto the
screen. (You’ll learn more about this later.)

Great! Now you have your code in a file that we can save. This
is important, because the first code we wrote was in the shell,
which means it won’t be saved once you close the window.
Writing code directly in the shell is just a quicker way to run
Python code and see the results right away. Always create a new
file and save it to keep track of your work and save your progress!

Now that we have created a file with our greeting code, let’s
save it.

You can save your program in IDLE by following these next
steps.

5. On the MENU bar of your shell, click the FILE tab to open its
context menu.

6 . Click SAVE.

7. The next window will ask you to name your file. Go ahead and

give it a name. I’ll call mine “greeting.”

8 . Make sure to save your Python program in a place that you
won’t forget! If you don’t choose another place, new files are
usually saved in the same folder as the Python download, so
go ahead and change the “Save In” place to a better spot. I
created a folder called COOL PYTHON in my DOCUMENTS
directory, so that’s where I’ll save my programs.

9. Click SAVE. That’s it!

HELPFUL HACKS: KEYBOARD SHORTCUTS

Saving files and our code is a big part of programming. We
programmers do it so much that there are shortcuts created
just for saving, among other things. Here’s a list of very
helpful keyboard shortcuts to use while coding.

CTRL key + S key: This is the standard save shortcut. You can
press these two keys together to save your progress while
coding or to save a new file!

CTRL key + N key: This shortcut will create a new file for you.

CTRL key + C key: This shortcut copies any text you have
selected. Here’s how: Use your mouse to highlight some text
or code. To highlight text, place your cursor before the start
of the text you want to copy, click and hold the main mouse
button, drag your mouse to the end of the text you want to
copy, and then release the mouse button. After your text is
highlighted, use this shortcut to copy the highlighted text!

CTRL key + V key: After copying some text, use this shortcut
to paste it. This places the text you have highlighted and
copied wherever you choose.

CTRL key + Z key: The most awesome command, this shortcut
performs an undo action. If you ever need to go back a step,
or bring back some code you have accidentally deleted, this
shortcut can save the day! Use this shortcut once, by
pressing the CTRL key and Z key together, and watch your
last change undo itself. You can keep pressing this shortcut
multiple times to keep going back further and reversing more
actions you have just performed. Remember though, this
can’t undo everything—it can only reverse actions up to the
point that the computer has stored in its memory.

RUNNING A PROGRAM
This is the best part—seeing your code in action! After you write
some code, save it, and are ready to see it run, follow these steps
to run your code (skip to step 4 if you already have your program
open in its own window).

1. On the MENU bar in your shell, click the FILE tab to open the
context menu.

2. Click OPEN.

3 . A window will pop up asking you to pick the file you want to
open. Go ahead and find your greeting program and select it.
Click OPEN.

4. Your program should open in its own window.

5. Press the F5 key. That’s it! Your code should now execute,
meaning the computer will carry out the task you asked it to
do in code. You told it to print something, and it did! You

should see your greeting in the shell.

>>> Troubleshooting Tip: Is the F5 key not working for you? Some computers
require you to press the Fn button along with the F5 button. Go ahead, try that
instead!

HELPFUL HACKS: RECENT FILES

Once you start writing more code, you’ll find that you will
have many Python files and programs in your folders. A cool
thing that the IDLE program does is keep track of the most
recent files you have worked with and make them easily
available for you. To get to a file you have recently worked
with, simply click the FILE tab on the MENU bar and hover
your mouse over RECENT FILES.

You’ll see the list of files appear that you have recently
worked with. Clicking on one will open that file for you.
Sometimes this is an easier way to get to a file you need,
rather than hunting through your computer to find it!

PRINT("HELLO!")
One of the most used lines of code in Python is the print()
function. We use it everywhere. Of course, you’ve already used it
in the first chapter!

print("Hi	Python!")
At its core, the print() function is used when we want to

output a string. A string is a collection of characters, or what we
know as text. Strings are a type—just like it sounds, a type is a
way for the computer to understand what kind of input we are
giving it. There are other types, like integers, Booleans, and lists—
but don’t worry about them yet! We’ll learn about them later.

The print() function takes a few parameters, which are
pieces of information (input) you give a function to do something
with. For now, we’ll only use one parameter, which is the part you
put inside the double quotes. The print() function will take this
piece and print it out to the console window.

Seeing information in the console window is very useful. If we
write some code to show a greeting, we can use the print()
function to see the greeting our code produces. Likewise, if we
perform some basic math, the print() function can show us the
resulting answer.

While coding, it is also very helpful to use the print()
function for debugging, which is the quest we undergo to find
issues or mistakes in our code that cause it to not work the way

we want it to. These issues or mistakes in our code are called
bugs. When we are in the middle of debugging, we can print out
parts of our code to double-check that it is doing what we expect
it to do. This process will come in handy later on as we deal with
variables and decision-making blocks of code.

HELPFUL HACKS: COMMENTS AND DEBUGGING

A good habit to get into is to remove any print() functions
you write that are not needed for your main program. You
can remove them by deleting them completely or by using
comments.

Comments are pieces of code that do not get translated
by the computer. You use them as helpful messages you
leave for yourself within your code, or as parts of code you

want the computer to ignore. You can create a comment by
putting a hash character (#) before the line you’d like the
computer to ignore. This is also called commenting out a line.
As you’ll see, comments also become a noticeable red color
to show you they are comments.
#	print("I	should	not	be	printed!")

So, if there’s part of your code that you think is causing
you problems, you don’t have to delete it. You can test it by
commenting it out:

print("Hello")
#	print("You	are	a	silly	shoe!")

In the code above, it would print the first line (“Hello”), but
not the second (“You are a silly shoe!”)—because the hash
character signals to the computer, “Don’t print this line!” How
cool is that?

There are also times where you just need comments to
help you remember or understand what your code is doing:
#	This	code	prints	out	text	to	the	shell
print("Hello	there!")

These types of comments will become very useful when
you start writing longer programs!

TRICKY PRINTING
For the most part, you can use the print() function to write
whatever you want to the console window. However, there are a
few situations and special characters that the print() function
doesn’t play nice with—kind of like electronic troublemakers.
Let’s see “what,” not “who” they are.

QUOTES AND APOSTROPHES

Let’s say we wanted to print the following sentence: “I’m so happy
to be learning how to code in Python!” Use the code below to
print out the sentence:

print('I'm	so	happy	to	be	learning	how	to	code	in
Python!')

What happens? Are you able to see that sentence in your
console window? If not, that’s okay. In fact, that’s supposed to
happen. You probably just got your first syntax error, too!
Congratulations, sort of.

Here’s what’s happening: When you use the print()
function, you tell the computer, “Hey, I need you to write
something out to the console window for me.” The computer says,
“Sure! Let me see exactly what you want me to write.” The
computer checks the print() function you wrote, and looks for a
starting quote and an ending quote. To the computer, these
quotes act as “flags” for the beginning and end of the information
you wrote. So, once it finds the first and second quote in your
string, it thinks it’s done. It doesn’t expect any other characters
after the second quote it finds. When this happens, it sends a
message back to you in the form of a syntax error (shown in the
shell with the text SyntaxError).

Take another look at the sentence. Can you see where the
problem is?

It is right at the beginning of our sentence! The first quote the
computer finds is our normal starting quote. The next one,

however, is a single quote (‘) or an apostrophe in the word “I’m.” At
this point, the computer says, “Hmm, well, this is the second quote
in the string, so this should be the end. I don’t understand all of
this extra stuff after it, though. Better tell Human I don’t get what
he or she is trying to say.” That’s when you get the following
syntax error.

But wait! You did provide the matching quote at the end of
your sentence! You may be asking yourself, “Why didn’t it find the
right matching quote?” When the computer looks at the print()
function, it only knows to look for the very first and second quote
in the input you provide. Once it finds that second quote,
everything else that comes after it is ignored.

So how do we fix this? We still want to write the full sentence,
but we know that the computer will mistakenly think our ending
flag is the apostrophe in the word “I’m.” One solution is to use
double quotes. For example:

print("I'm	so	happy	to	be	learning	how	to	code	in
Python!")

This works because the computer sees that the first quote is a
double quote. When it continues searching the string, it will only
look for the second matching quote, which also needs to be a
double quote. Note: In Python, you can use either single quotes
or double quotes in coding, but try to stick with one or the other.
This double quote is usually the best way to go when using
strings!

Another solution to this problem is to use escape characters.

Escape Characters

In code, there are special characters called escape characters
that allow us to give the computer a heads-up when we’re going
to pass some tricky information to it. For Python, this character is
the backslash (\) character. There are two slash characters on
your keyboard: the forward slash (/) and the backward slash (\),
also called the backslash. You can keep them straight by
checking which way the top of the slash “leans.” The forward slash
is the one that shares a key with the question mark, and the
backslash is under the BACKSPACE key (delete key on a Mac).

To use it, we simply type a backslash before the tricky
character. Using an escape character helps us “escape” the
problem!

Let’s fix our sentence from the previous section:
print('I\'m	so	happy	to	be	learning	how	to	code	in
Python!')

Now try printing the sentence with our revised code. Did it
work? Yay!

This time, when the computer looks for the matching pair of
quotes, it knows to skip the apostrophe in the word “I’m” because

we told it to. It sees the escape character and says, “Oh, that’s
nice. Human was cool enough to let me know that this is definitely
not the second quote. I’ll keep looking!”

Escape characters are also really handy if you need to print
more than one trouble-making character, like a single
quote/apostrophe (‘) or double quote (“), and especially if they are
all on one line!

For example, try printing this to your console window:
print("\"Kumusta\"	is	\"Hello\"	in	Tagalog!")

Do you see how the computer prints the words “Kumusta” and
“Hello” with double quotes? Great! That’s what we wanted. The
quotes are printed to help show how the two words are closely
related to each other. They are the same word in two different
languages. Human languages, that is.

MULTIPLE LINES

Another troublemaker that the print() function has a hard time
with is multiple lines. How can we print the following sentence,
exactly as it appears?

Here is
a sentence
on many
different lines.

Well, we have a special escape character that the computer
understands as a new line. In programming, we sometimes call a
new line a line break or line feed. It’s a backslash (\) and a
lowercase letter “n” put together. It looks like this: \n. Using what
you know about escape characters, try printing that sentence.

Did you write something like this?
print("Here	is	\na	sentence	\non	many	\ndifferent
lines.")

Great! It looks a little funny when you type it, but as you can

see when you print it out, it’s correct. Remember, everything that
is between your starting and ending quotes will be printed
exactly as it is understood by the computer. This even includes
line spaces!

Here’s what’s happening: Just as the \ escape character told
the computer to ignore the apostrophe in our first example, the
\n escape character tells it, “Hey, can you start writing everything
after this \n flag on a new line?” And like a good friend, the
computer will do just that every time you use the \n escape
character.

THE HISTORY OF THE LINE FEED

We know that the line feed escape character is used
whenever we want to start printing a new line in our shell. But
do you know where the term “line feed” comes from?

In the past, before there were computers, people used
machines called typewriters. These were used to write
papers and books like this one!

You may have seen one before, as they are hard to miss.
This machine requires you to place paper in it in a very
specific way, press really hard on the keys to print a letter
onto the paper, and move different parts of the typewriter
around. In order to move to the next line on your paper, some
typewriters require you to turn the wheel that holds the
paper so you can “feed” the machine another blank line of
paper for you to type on. And that’s where the term “line
feed” comes from!

VARIABLES
Now is a great time to talk about variables. Variables are another
important part of coding because we use them all the time! It will

also be good to get comfortable with them before we move onto
the next sections.

A variable is just a fancy name for a tag, or a way to keep
track of information. It’s just like many tags we see in life:

• Some people wear name tags so we know who they are.

• Nutrition labels on food are tags. They tell us all kinds of
information, like how many calories the food has, the grams of
sugar it contains, or the list of ingredients used.

• Tags on clothing provide tons of information, including the size,
designer, price, and sometimes even the identity of the person
who inspected it.

It’s really interesting to see coding concepts like this in real
life. What’s even cooler is that you probably didn’t know that you
would already be familiar with variables. Let’s put that knowledge
to good use in coding!

When we code, we use variables to hold pieces of information
for us. And just like clothing tags and food labels, coding variables
can hold many kinds of information, such as strings, numbers, lists,
and more.

So how do we create one? Let’s make a variable to keep track
of the name of this book’s author (hey, that’s me!). We would
create a variable like this:

author	=	"Adrienne"

That’s all there is to it! The variable author is now a tag for the
string “Adrienne.”

Here’s what’s happening: When we create the variable, we
give it a name: author. This helps us remember what the
information is about. Next, we type an equal sign (=). This tells the
computer that we are giving the author variable some
information it should keep. This is called assignment, or assigning
a variable, in programming. Finally, we type out the information
our variable is supposed to keep track of. In this example, it’s the

name of the author, “Adrienne.”
Now let’s get your name involved! We’ll create another

variable called reader. Go ahead and assign your name to this
variable. For this example, we’ll use the name Casey. Then, on the
next line, use the print() function to write your variable to the
console. Your final code should look something like this:

reader	=	"Casey"

print(reader)

Now press ENTER. What happened? Do you see your name in
the console window? Cool!

Now, here’s the cooler part about variables: Let’s say you
share this book with your friend Alex. Obviously, our reader
variable would now be incorrect—it should be your friend’s
name! Go ahead and change the reader variable so it is assigned
to your friend’s name, but change nothing else. With the change,
your code should look like this:

reader	=	"Alex"

print(reader)

Now press ENTER. Did your friend’s name print out this time?
It did! So cool! We can thank the computer for this awesome
superpower. How exactly does the computer do this, though?

When a computer sees a variable, it says, “Ooh, Human wants
me to remember this piece of data. I better make some room in
my register and store this data. I should also mark where I am
storing this data so I can quickly get it if Human needs it again.”

So organized, huh? And convenient. Computers are great! The
register is basically a place within the computer’s central
processing unit that holds information. You can think of it as a big,
grid-like bookshelf with many different cubbies to place things in.
This grid system is a way that the computer marks the location of
any data it stores so it can quickly remember where to get it if we
need it again.

The variables we just used held strings (text), but like we
mentioned earlier, variables can also hold other data types. If we
wanted to create a variable to hold our favorite number, how
would we do it?

favorite_number	=	3

We create this in a similar way:

• We give our variable a name: favorite_number
• Then we assign it to a piece of information. In this case, it’s the

number 3.

Did you notice that we didn’t use quotes around our number
this time? Can you guess why?

Just as we use string types to tell the computer we are giving
it text input, we use integer types to tell the computer that we are
using whole numbers. In Python, whole numbers are known as
integers.

Whenever we deal with integers, we just type them out as a
plain number, like we are used to seeing. You don’t use quotes
around them, as that will confuse the computer into thinking you

are using a string! To see what I mean, let’s use a piece of code
from Python called type(). This code will tell us the data type of
the input we give it. Try typing the following code in your shell:

favorite_number	=	3

type(favorite_number)

What type did the computer tell you favorite_number is?
Does it say <class	'int'>? Perfect! Int is an abbreviation for
integer, and it’s exactly what we expect! Now, let’s see what
happens if you store your favorite number within quotes:

favorite_number	=	"3"

type(favorite_number)

What type is it now? A str? Oh no! We’ve tricked the
computer into thinking we were saving a string variable! Whoops.
This is why we don’t use quotes when working with integers (or
any of the other numeric types we will learn about soon). So
remember: we don’t need quotes around integers.

GOOD THINGS TO KNOW ABOUT VARIABLES

Variables will be used often in our coding activities. Here are
some good practices to keep in mind whenever you create one:

Variables Cannot Start with a Number
When naming a variable, you want to be as descriptive as
possible, but also follow the rules of Python. One of those rules is
that variable names can’t start with a number. Try creating one,
and see what happens:

100_days_of_code	=	100

Did you get a syntax error? See, I told you Python doesn’t like
numbers in variable names! This is because when the computer
starts translating, it immediately sees the number and assumes
the rest of the code will be a number. So, when it finds that there’s
more to it and you are actually creating a variable, it gets really

confused!

Variables Should Have the Same Styling
There are all kinds of ways to write your variables. The most
important thing to remember is to pick one way and stick to it.

As you’ve seen so far, I write my variables using all lowercase
letters, and if I need to use more than one word to name one, I
separate the words using an underscore so it is easier to read.
However, there are other ways to write variables, including:
camelCase: the first word of a variable name is not capitalized,
but every other word after is.
Example: numberOfCookies
PascalCase: every word in a variable name is capitalized.
Example: NumberOfCookies

There is no naming method that is the “best.” Just choose the
one that makes the most sense to you and stick to it. Why is this
important? The computer doesn’t recognize variable names
unless they are exactly as you typed them. So, if you suddenly
write FavoriteNumber instead of favorite_number, you will get
an error message, as the computer sees this code as two
different variables!

>>> Troubleshooting Tip: Why do we connect words or use underscores (_)
between words? This is because Python doesn’t recognize spaces in variable
names. We either have to connect words (nospaceatall or NoSpaceAtAll) or use
underscores to connect them (underscores_between_words). If you use spaces,
you’ll get an error message!

Variables Should Have Meaning
Lastly, variable names should be as descriptive as possible. This
means that when you read your code, you should know right
away what your variable is and what kind of data it is storing. You
should be able to understand it!

Here is a list of good variable names:

• mood	=	"happy"
• age	=	10
• favorite_color	=	"purple"
• number_of_books	=	4

And here’s a list of not-so-good variable names:

• a	=	5
• num_pens	=	13
• curDay	=	"Thursday"
• fAvOrItE_DrInK	=	"coffee"

See the difference? Clear names with meaning and a
consistent style are your best bets for great variable names.

We’ve learned some pretty neat things so far, right? There’s so
much more we can do, though. Let’s get going!

FANCY PRINTING
Now that we know how to use variables, we can use them to do
some fancier things with our print() function. I’ll you show some
of them now.

FORMATTED STRING LITERALS

Don’t let the term “formatted string literals” scare you off—let me
explain. Strings are more useful when we change certain parts of
them or move certain parts around. If you remember in our earlier
section, most of the strings we printed were full phrases or
sentences. We also knew exactly what to print and didn’t really
need to change it.

But, what if we did need to change it? Let’s go back to our
example (which I’ve changed to use double quotes):

print("I'm	so	happy	to	be	learning	how	to	code	in
Python!")

Imagine that, instead of simply being happy to be learning
how to code in Python, you’re ecstatic! Or overjoyed! Or
delighted! How would you change your sentence to the word
that describes how you feel about learning how to code in
Python?

With formatted string literals!
In Python, we can use formatted string literals, or f-strings, to

produce formatted strings, which are like normal strings, but set
up in a specific way or pattern. Using f-strings gives us an easy
way to replace parts of a string or change their order. To do this,
we first escape our entire string with the letter f and then use
special characters known as braces, which look like this: { }, to do
the replacing or reordering. Here’s an example:

To use an f-string, you first have to create a variable:
food	=	"cake"

Without one, the f-string wouldn’t know what to replace! Next,
our actual f-string:

f"I	like	{food}"

If you coded along in the shell while reading, then you should
see this:

'I	like	cake'

Here’s what’s happening: When you use the f character
before a string, the computer knows that you are about to create
an f-string. Once it knows this, it starts looking for the opening
and closing quotes of the string like normal, but when it comes
across some braces ({}), it says, “Oh, here’s a part of the string
Human wants me to replace. What does it say? ‘food’? Oh! I know
that variable! And I know exactly where I stored it! Let me get that
real quick . . . Got it! It’s actually a tag for ‘cake.’ Now, let me just
put the word ‘cake’ in there and remove this f-string placeholder.
Nice!” Once it finishes replacing all the parts of our string, it
outputs the final version to our console window.

Super cool!
So now, back to our earlier question about how to change

“happy” to “ecstatic”. How do we use f-strings to change our
print() function? Let’s break it down:

Since we know the adjective (“happy”) is the only part that will
be changing, and will probably be different each time we change
it, it’s probably a good idea to store it in a variable. Let’s do that:

feeling	=	"happy"

For now, we created a feeling variable and assigned it to
“happy”, since that’s how we currently feel!

Next, we know that our sentence will mostly stay the same,
except for the adjective we are using to describe how we feel
about coding in Python. So, let’s change the parameter in our
print() function to be an f-string instead:

print(f"I'm	so	{feeling}	to	be	learning	how	to
code	in	Python!")

Great! Now our print() function will always print out the
current feeling we have about learning Python! :D

Go ahead and save this code in its own file. Once you’re done
giving it a file name, open it in its own window, change your
feeling variable to a different adjective, and save your code
again. Now run your code (press F5). Do you see your new
sentence with your new adjective? Awesome! This will become
extremely helpful when we need to start replacing more parts of
our strings.

Easier Multi-Line Strings
Remember how we printed multi-line strings earlier in the
chapter? There, we used \n escape characters, but the code
looked a little funny and kind of hard to read, like this:

print("Here	is	\na	sentence	\non	many	\ndifferent
lines.")

With f-strings, we can make our code a lot cleaner and easier
to read. Let’s rewrite our multi-line sentence like this:

multiline_sentence	=	"""

Here	is
a	sentence
on	many
different	lines.

"""

print(f"{multiline_sentence}")

Looks a lot simpler, doesn’t it?
Here’s what’s happening: We create a variable called

multiline_sentence. We then assign that variable to our actual
multi-line sentence, which is typed out exactly as we want it on its
different lines. You’ll notice that, instead of our normal quotes, we
use another special type of escape character for multi-line strings
—these are called triple quotes. All that means is that we are
using a pair of three double quotes or a pair of three single
quotes (remember, don’t mix and match!) as the starting and
ending quotes for our multi-line string. This tells the computer to
print out what we put in between these triple quotes exactly the
way we have it. After that, we use our handy f-string to print it!

CODE COMPLETE!
Chapter 2 is done! In this chapter, we learned about the print()
function and some of its quirks. Remember:

• The print() function is used to write text output from our
code, which can be seen in our shell.

• The print() function sometimes has trouble printing certain
characters or kinds of text, but we can usually get around that
with escape characters.

• We can print single or multi-line text.
Another important topic we covered is variables. These are

the tags that hold information for us and are used almost
everywhere in programming. We learned:

• Variables can’t start with a number.

• Variables should have the same styling, meaning they should
use capitalization, underscores, or no spaces consistently.

• Variables should be descriptive and have meaning so we can
understand them.

Finally, we learned about fancier ways to print text,
specifically by using f-strings. We learned:

• F-strings allow us to use variables in our output text.

• F-strings let us print something exactly as we type it, even with
multi-line text.

• F-strings make our code a lot cleaner and easier to read.
Get ready—next, we’ll dive into numbers, other kinds of

numerical types in Python, and operators. But first, check out the
following activities that put what we’ve learned into action!

CHAPTER 2 ✮ ACTIVITIES

Now that we’ve learned what the print() function does and why
it is one of the most important functions in Python, try these
activities!

ACTIVITY 1: INTRODUCE YOURSELF

We’re going to be working with the computer a lot and asking it to
do a bunch of cool things for us. We might as well introduce
ourselves and make friends!

What to Do
Use the print() function to introduce yourself to the computer.

Your introduction should be seen in the console window (see
here for the lesson that will help you do this).

Sample Expected Output
"Hi!	My	name	is	Adrienne."

ACTIVITY 2: TO QUOTE A QUOTE

A quote in non-coding terms is a sentence or short phrase that
you want to repeat from a person word for word. You usually see
it written like this:

“These are the words you are repeating a.k.a. quoting.”—
Person Who Said This

What to Do
Find a quote online or use one of your own. It can be about
something that inspires you, a funny line from a movie, or even
something a family member said. Use the print() function to
write a proper quote (as shown) in the console window.
Remember, in order to print out characters like double quotes,
you need to properly escape them with the backslash (\)
character (see here for the lesson that will help you do this).

Sample Expected Output
"Coding	is	a	superpower!	You	can	do	so	many	cool
things	with	your	imagination	and	code."	—Adrienne
Tacke

ACTIVITY 3: MOOD IS VARIABLE

Usually, our mood changes every day. One day we might be
energetic, and the next day we might be tired. Or, if it’s a Friday,
many of us are happy! Whatever our mood is, we can use a
variable to store it.

What to Do

Use a variable to store the mood you are feeling today. Then, use
an f-string and your variable to output how you are feeling today
in your console window (see here for the lesson that will help you
do this).

Sample Expected Output
"Today,	I	feel	curious!"

ACTIVITY 4: HAIKU, ABOUT YOU!

Have you ever heard of a haiku? It’s a form of Japanese poetry
that has three lines. The first and last lines have five syllables, and
the second line has seven. A syllable is each part of a word that
you say. For example, Py-thon has two syllables: “Py” and “thon.”

What to Do
Let’s try writing a haiku together and printing it in its correct form!
Here’s one I wrote as an example:

Adrienne enjoys
Coffee, lots of coding, and
Teaching you Python

Once you have three sentences that match haiku form (see
how the first line is five syllables, the second line is seven syllables,
and the last line is five syllables?), create a new file and follow the
steps to print your haiku to your console window.

Haiku Steps
1. Declare a variable to hold your haiku:

haiku	=	"""

Adrienne	enjoys
Coffee,	lots	of	coding,	and
Teaching	you	Python

"""

2. Start typing your print() function: print(

3. Type an “f” to start an f-string: print(f

4. Type your starting quote: print(f"

5. Type in your replacement for the f-string. In this case, it will be
our haiku variable:

print(f"{haiku}

6. Almost done! Close your parameter with an ending quote and
close your function with an ending parenthesis:
print(f"{haiku}")

Awesome! You have just written a Japanese poem in Python
code using multiple lines. Save your file and then run your code
(press F5) to see it output to the console window. Now you’re a
coder and a poet!

ACTIVITY 5: SILLY STORIES

Have you ever played Mad Libs? It’s a funny game in which you
ask another person to give you different kinds of words—like
colors, numbers, adjectives, and more—to fill in the blanks in a
short story that they cannot see. After you are done asking the
other person for their word choices, you read the full story back
to them, using the words that they gave you! Sometimes, the
stories can get really funny!

What to Do
Knowing that you can use f-strings to replace parts of strings,
write a program that will output your silly story with words from a
friend.

Here are some steps to get you started:

1. Create a new file to hold your silly story program.

2. Create four or five variables of different kinds of words. For

example:

name	=	""

adjective	=	""

favorite_snack	=	""

number	=	""

type_of_tree	=	""

Notice that we didn’t assign anything to our variables yet. This
is so you can fill them out later when you ask a friend for some
words.

3. Create another variable to hold your silly story. You can use
this template or write your own:
silly_story	=	f"""

Hi,	my	name	is	{name}.
I	really	like	{adjective}	{favorite_snack}!
I	like	it	so	much,	I	try	to	eat	it	at	least
{number}	times
every	day.
It	tastes	even	better	when	you	eat	it	under	a
{type_of_tree}!

"""

4. Finally, use a print() function to output your silly story:

print(silly_story)

5. That’s it! Now, go find a friend and ask them for some words
(your variables). Change your variables to the words they give
you, save your program, and then run it to see your silly story!

ACTIVITY 6: REUSABLE VARIABLES

Variables can be assigned to other variables. Let’s see how we
can reuse a variable in this way to write our names without
duplicating code.

What to Do
Create a variable to hold your first name:

first_name	=	'Adrienne'

Now, create a second variable called full_name. Without
typing your first name again, assign your full name to your
full_name variable using f-strings and your existing first_name
variable! Print out your full_name variable (see here for the
lesson that will help you do this).

Sample Expected Output
"Adrienne	Tacke"

ACTIVITY 7: BETTER VARIABLE NAMES

Hey, look—one of the programs our friend has written
accidentally got hacked! Someone changed all of their variable
names to the following:

80	=	"Adrienne"

98_cookie_39	=	"Chocolate	chip	cookies"

fIrSt_NAMe	=	20

LAST_name	=	"Blue"

309384	=	"Adrienne	Tacke"

Hellllooooooooooooo_8392982r	=	"Software	Engineer"

Uh-oh. The program will never work with some of those
variable names, and the others are just plain bad!

What to Do
Can you change the variables to something that won’t give errors
and is more consistent and descriptive? Once you do, use an f-
string to print out all of your variables to make sure they work
(see here for the lesson that will help you do this).

Sample Expected Output
"Adrienne	Chocolate	chip	cookies	20	Blue	Adrienne
Tacke	Software	Engineer"

CHAPTER 2 ✮ CHALLENGE

CHALLENGE 1: MULTILAYER CAKE

Let’s bake a cake! An electronic one made of characters, anyway.
Here are some examples:

Using what you know about multi-line strings, f-strings, and
variables, write a program to print out your electronic cake!

FUN WITH NUMBERS
Along with strings, numeric types are another important building
block in coding. They help us count objects, perform math
operations, keep track of things, and so much more. Knowing all
of the different numeric types, what you can do with them, and
how to do it will be very important as you move on to the later
chapters. Don’t worry, you can do this. Let’s get started!

NUMERIC TYPES
There are two main numeric types that we’ll be using in Python:
integers and floats. The first one is one that you’re already familiar
with and will use most of the time. These are integers, which are
the whole numbers (positive or negative) that we are used to.
Even though we won’t use the other numeric type as much, it’s
still a good idea to know what it is. Let’s talk about floats briefly.

FLOATS

Floating point numbers, or simply floats, are numbers that can
have whole and fractional parts and are written using decimal
points.

my_gpa	=	3.47

Even though these look like decimal numbers, they are not
completely the same. This numeric type is used when we need
precise calculations, which happens most often in math and
science. We actually have a built-in module in Python called the
decimal module, which is based on the float type. The big
difference is that the decimal module was written with some
helpers from the Python language that give it two benefits: First,
the helpers make the decimal module faster to use; and second,
the decimal module gives us numbers to work with that are closer
to what we are used to seeing as humans. We also use the
decimal module when we want to deal with money or any type of
currency calculations.

OPERATORS

You already learned about integers when we played around with
variables, so you’re ahead of the game! Now, let’s see how we can
use integers with operators.

In programming, operators are special symbols or keywords
that represent an action. They are usually used with operands,
which are the values you are performing the action on. In this
section, our operands will be numbers. If you’ve ever used a
calculator, then you should be familiar with a set of operators that
are specifically used for math. These are called arithmetic
operators.

ARITHMETIC OPERATORS

Also known as the math operators, arithmetic operators are used
to perform the basic functions of math. As you’ll see in the
following chart, most arithmetic operators work just like they do
in regular mathematics, with a few exceptions:

Operator Symbol Operator Name Action Taken Examples Resulting Output

+ Addition Adds values
together 4 + 5 9

- Subtraction
Subtracts one

value from
another

10 - 5

5 - 10

5

-5

* Multiplication Multiplies
values together 9 * 6 54

/ Division

Divides one
value by

another (answer
will always be a

float type)

8 / 4

9 / 4

2.0

2.25

%
Modulus

Divides one
value by

another, and
returns the
remainder

12 % 5

12 % 6

2

0

// Floor Division

Divides one
value by

another, returns
the answer

rounded to the
next smallest

whole number

4 // 3

4 // 2

1

2

** Exponentiation

Raises one
value to the

power of
another

2 ** 5 32

To see these operations in action, go ahead and set the following
variables in your shell:

a	=	6

b	=	3

Now you can begin using different operators on these
variables directly in your shell. Try out a few, like these:

a	+	b

b	**	a

a	%	b

Cool, right? Now, to really get comfortable with them, try out
all of the combinations and see what happens! You can check the
answers on the following chart, although I think the computer is
pretty good at math ;)

Here are all the possible answers that can occur using the
different operators and the variables:

Operator Combination Answer Operator Combination Answer
a + b 9 a + a 12

b + a 9 a - a 0

a - b 3 a * a 36

b - a -3 a / a 1.0

a * b 18 a % a 0

b * a 18 a // a 1

a / b 2.0 a ** a 46656

b / a 0.5 b + b 6

a % b 0 b - b 0

b % a 3 b * b 9

a // b 2 b / b 1.0

b // a 0 b % b 0

a ** b 216 b // b 1

b ** a 729 b ** b 27

ORDER OF OPERATIONS

A special set of rules are followed for arithmetic operators. This
set of rules is called the order of operations. It is the proper order
in which arithmetic operations should be calculated, especially if
you use more than one in a single line of code. Let’s say you have
many calculations for a single variable, similar to how totals are
calculated when we pay for dinner at a restaurant:

total	=	20	+	(20	*	.0825)	-	1.5	+	3

Here, it looks like there’s some sales tax (the multiplication)
added to our price (first addition calculation), a coupon (the
subtraction), and a tip for the waiter (the second addition
calculation). What would the total be in this set of calculations?
Let’s follow the order of operations—here’s how:

1. Parentheses
In calculations like this, the computer always calculates any
expression in parentheses first. Parentheses tell us “I’m most

important” in the rules of precedence in math. So in our example,
we would calculate the sales tax first (the .0825 represents sales
tax of 8.25 percent). In this calculation, 20 * .0825 would equal 1.65
(or technically, 1.6500000000000001 if you code the equation,
but we won’t get that picky!).

2. Exponentiation
The next calculation that is performed is exponentiation. When
the computer sees the ** operator, it raises one number to the
power of another. What this means is, if you type 2 ** 4 in your
shell, you’ll get 16, because 2 to the power of 4 (also 2 x 2 x 2 x 2)
equals 16. Because our dinner calculation does not have any
exponentiation calculations, we move onto the next operation of
importance.

3. Multiplication and Division
In the order of operations, multiplication and division are next.
They have the same level of importance as each other, so if both
a multiplication and division calculation appear in the same line,
we start with the calculation on the left and work our way to the
right. For example, in this calculation:

4	*	3	/	2

We would first calculate 4	*	3 (which would be 12), since it’s
the calculation at the very left. Then, we would calculate the
resulting 12	/	2, since we have worked our way to the right. The
final answer would be 6.

Since our dinner calculation does not have any other
multiplication or division calculations (except for the one we
already calculated in the parentheses step), we can move to the
next rule of importance.

4. Addition and Subtraction
The calculations with the least importance are addition and

subtraction. This means they are performed last. So far, our total
dinner bill now looks like this, with the sales tax calculated first
because it was in parentheses:

total	=	20	+	1.65	-	1.5	+	3

Now, we’re left with a quite a few addition and subtraction
calculations. Since addition and subtraction have the same level
of importance, we use the left-to-right order of calculating them,
just like we did with multiplication and division. Let’s see the
remaining steps:

First add 20 to 1.65 21.65

Next, subtract the 1.5 from
21.65

20.15

Finally, add the last calculation
of 3 to 20.15

23.15

That’s it! Our total is 23.15 after following the order of
operations. Keep in mind, all the steps above aren’t actually going
to show in your shell. We simply went through the same steps
that the computer takes to see how it calculates things!

HELPFUL HACKS: PEMDAS

Sometimes, it’s hard to remember the proper order in which
computers make calculations, and you might not always have
this book in your hand to refer to. Luckily, we can borrow an
acronym from mathematics that stands for the order of
operations. It’s called PEMDAS and is a helpful way to
remember the order of operations. Each letter stands for a
specific operation, and they are ordered from most
important (the left-most letter) to least important (the right-

most letter).
So, PEMDAS stands for:

Parentheses
Exponentiation
Multiplication
Division
Addition
Subtraction

The next time you need help remembering the correct
order of operations, use the PEMDAS acronym to refresh
your memory!

COMPARISON OPERATORS

The next set of operators we use in programming are called
comparison operators. Just like their name, comparison
operators help us compare one value to another. When we use
comparison operators, they give us back a True or False answer
known as a Boolean type. Comparison operators and Booleans
are super important because they help us make decisions in our
code.

There are six main comparison operators, and they are pretty
simple to understand. Let’s talk about each one:

Greater Than
The greater-than operator looks like this: >.

When you use it, the computer decides whether the value on
the left side of the > symbol is larger than the value on the right
side of the > symbol. For example:

3	>	7

When you write this code, the computer says, “Hmm, Human
wants me to figure something out. Let’s see. Is 3 greater than 7?

Um, absolutely not! Better tell Human that this is False!”
Go ahead and type that code into your shell. What does it tell

you? Did it say False? That’s correct! Just as the computer
correctly calculated, 3 is obviously not larger than 7. That’s why it
returned the verdict of False. Easy, right?

Less Than
The less-than operator looks like this: <

This time, we are figuring out if the value on the left of the <
symbol is less than, or smaller, than the value on the right side of
the < symbol. Let’s try running our code with this operator to see
what happens:

3	<	7

What does your shell say? Does it say True? Awesome! That’s
obviously correct, because 3 is less than 7!

Greater Than or Equal To
Okay, here’s what the greater-than-or-equal-to operator looks
like: >=

We’re already familiar with the first symbol, so let’s talk about
the second symbol. We’ve used the equal sign (=) before to
assign pieces of data to variables (remember mood	=	happy?).
When we use it as an operator, though, we are deciding, in part, if
the value on the left of the >= operator is equal to the value on
the right of the >= operator.

But this operator is special.
Because there are two symbols in this operator, we are trying

to decide if the value on left of the >= operator is greater than
the one on the right or if the value on the left is the same as the
value on the right. Only one of these cases needs to be true in
order for the computer to decide that the entire expression is
True. So, in code:

4	>=	3

What do you think this will return? True or False?
Did you say True? You’re right! Because 4 is greater than 3, we

know that the greater-than operator is correct. So even though
the second operator, the equal-to operator, is not correct
(because 4 is obviously not the same as 3), the computer still
returns True because at least one operator is correct (the
greater-than action).

How about this?
3	>=	3

This one is also True! This time, the equal-to operator is
correct, instead of the greater-than operator.

Here’s one more:
1	>=	3

What do you think? False? That’s right! Both operators are
not correct. The number 1 is not greater than 3, so the greater-
than operator is incorrect, and 1 is not the same as 3, which also
makes the equal-to operator incorrect. Because both operators
are not right, the computer’s final decision for this is False. Great
job!

Less Than or Equal To
Starting to see a pattern here? :)

This is the less-than-or-equal-to operator: <=
Just like the greater-than-or-equal-to operator, we are making

sure at least one of the operators is correct. For the less-than-or-
equal-to operator, we are looking at the values to see if the value
on the left of the <= operator is either smaller than the one on the
right of the <= operator or the same as the one on the right.

What do you think this code will return when you write it in
your shell?

1	<=	3

That’s right! This returns True because 1 is smaller than 3. This
makes the less-than operator correct, even if the equal-to
operator isn’t. And since one of the operators is correct, the
whole thing returns True.

How about this expression?
8	<=	8

Yup, same thing. This also returns True, as the equal-to
operator is correct.

Not too bad, right?

Equal To
Almost done, promise!

This is the equal-to operator: ==
This one is much simpler than the last two operators. Just like

it sounds, it asks the computer to decide if the value on the left of
the == symbol is the same as the value on the right of the ==
symbol. Easy!

How will this return?
23	==	22

False!

What about this one?
10	==	10

True!

Here’s a tricky one:
10	==	"10"

What do you think? Did you guess False? You’re right! If you
guessed True, that’s okay, too. This one is a tricky one, but I’ll
make sure you aren’t tricked again!

Here’s what’s happening: When we use the equal-to
operator, we are asking the computer to decide if the values on
the left and right of the == symbol are the same. Though it looks
the same to us, this is what the computer figures out:

“Hmm, here’s another expression Human wants me to figure
out. Let’s see, is 10 equal to “10”? Ha! That’s a clever one! It is
False! The value on the left is the number 10, which is an integer
type. The value on the right is also 10, but it is a string type (the
quotes tell me that). This means that the values aren’t really the
same, because an integer type is never the same as a string type!
Sorry, Human, but the answer is False!”

That’s okay, computer. That’s actually a very smart decision.
Think about it: Do we think of text and numbers as the same
thing? Text can sometimes look like or be numbers (just like most
of the examples we’ve gone through in this chapter), but can you
do any calculations with text? Not really. You wouldn’t add the
number 20 to the word “cookies,” right? What would that answer
even be?!

This is why the computer also doesn’t see integer and string
types as the same types. So when we use the equal-to operator,
remember that the computer will check that the values are the
same type and the same value/number/text.

Not Equal To
Last one! You’re so awesome for making it this far!

Here’s the not-equal-to operator: !=
Also like the name, the not-equal-to operator asks the

computer to figure out if the value on the left side of the !=
symbol is not the same as the value on the right side of the !=
symbol. Go ahead and try to guess the next few examples before
writing the code in your shell:

1. 5	!=	"five"

2. 10	!=	"10"

3. 4	!=	3

4. 9	!=	9
Did you guess correctly? Let’s go over each example now!

1. The first expression is True. Remember, it’s asking if the two
values are not the same. This is True. It’s a little tricky, but I
wanted to remind you of the importance of comparing
different types. So, even though our mind is telling us there’s a
number, or integer type, of 5 on the left, and the word, or string
type, of “five” on the right, the computer will still return True.
Why? Because an integer type is not the same as a string type.
And since the not-equal-to operator is deciding exactly that,
the expression is True!

2. The next example is also True. Even though they look like the
same number, the value on the right is still a string type! So,
just as before, the computer sees “Is this integer type 10 not
the same as this string type ‘10’”? And since they are not the
same type, this returns True.

3. The third example is also True. This one should be a little more
straightforward and not as tricky. We can clearly see that the
number 4 is not the same as the number 3. So this is True.

4. Finally, the last example is False! We see that the value on the
left, which is the number 9, is also the value on the right,
another number 9. But because we are using the not-equal-to
operator, we are asking the computer, “Is this integer type 9
not the same as this integer type 9?” And, of course, the
computer tells us, “Actually, they are the same, so this
expression is False.” So this should return False in your shell.

HELPFUL HACKS: PYTHON’S MATH MODULE

Since there are many common math calculations and

concepts, Python has created a special module, or
prewritten code, that’s ready for us to use called the math
module. It has functions that can do things for you, like
exponentiation or addition calculations, and others that give
you back special numbers in math (like pi).

Be sure to check out all of the functions the math module
has to offer in the resources section, and see how you can
use them in the later chapters!

LOGICAL OPERATORS
Logical operators are used to help us compare True or False
operands. These are very helpful because they can make our
decision-making rules more complex, which means smarter code!
There are three main logical operators: and, or, and not. Let’s see
what each can do.

and
The and operator checks that the values on the right and left of
it are both True.
It looks like this: and

If there’s a point in our code that should only run when two
conditions are met, we should use the and operator. Imagine that
you’re going through a pizza buffet and you need to pick only the
slices of pizza that you like. You like pepperoni and you like

mushrooms, and you’d love to pick up a slice or two of that kind
of pizza if it had both of those toppings.

While walking around, you sadly see that there’s only a pizza
with pepperoni but no mushrooms. Let’s say we had variables
that held this information:

pizza_has_pepperoni	=	True

pizza_has_mushrooms	=	False

To check that the pizza you were evaluating had both
pepperoni and mushrooms, you’d use the and operator like this:

pizza_has_pepperoni	and	pizza_has_mushrooms	True

The and operator allows you to check both conditions: that
the pizza slice has pepperoni and that it has mushrooms. Only
then would you take a slice of pizza, if both conditions were met!
Unfortunately, you won’t be taking a slice, since only one
condition is True. :(

or
The or operator checks to make sure that at least one value
being compared is True.

It looks like this: or
Going back to our pizza example, let’s say that you couldn’t

find any pizza that had both pepperoni and mushroom on it
(bummer). Still wanting pizza, you decide that if the pizza has
either pepperoni or mushroom on it, you’ll select that pizza. Here
is where the or operator will come in handy. To check for either
pepperoni or mushroom, you’d write code like this:

pizza_has_pepperoni	or	pizza_has_mushrooms

That way, if the pizza you were checking had either pepperoni
or mushroom on it, you’d take it.

not

The not operator checks to make sure that the value being
compared is False.
It looks like this: not

Just as you’d take any pizza that had pepperoni or mushroom
on it, you definitely would not take any that had onions on it. Let’s
say we had a variable called pizza_has_onions and its value was
True. To make sure you don’t get any pizza with onions on it, you
could use the not operator:

not	pizza_has_onion

It looks a little funny if you try to read it out loud, but it is
correct! You’re basically saying, “Hey, computer, make sure that
the fact of the pizza having onions is not true.”

CODE COMPLETE!
Chapter 3 introduced us to numbers and the interesting things
we can do with them.

• There are two main numeric types we will work with most often:
integers and floats.

• Operators are special keywords or characters that enable us to
perform actions. The first set we learned about were arithmetic
operators.

• Arithmetic operators are similar to the ones we use in math.

• When working with arithmetic operators, it is important to
remember the order of operations to calculate something
correctly.

• The order of operations, from most important to least
important, is: parentheses, exponentiation, multiplication,
division, addition, and subtraction (PEMDAS).

• If there is more than one calculation with the same level of
importance to evaluate, we go from left to right.

Another set of operators we learned about are comparison
operators. These help us compare two values to each other.

• We have operators to compare if one value is greater than (>),
less than (<), greater than or equal to (>=), less than or equal to
(<=), equal to (==), and not equal to (!=) another.

Finally, we learned about logical operators, which help us
make smarter comparisons.

• The and operator helps us determine if two expressions are
both True.

• The or operator checks that at least one expression we pass to
it is True.

• The not operator determines if the expression we pass to it is
False.

Next up, we’ll learn about more things we can do with strings
and some new types!

CHAPTER 3 ✮ ACTIVITIES

ACTIVITY 1: HOW OLD ARE YOU?

So, we’ve introduced ourselves to the computer. Now, let’s add to
our introduction and tell it how old we are.

What to Do
Change your existing print() function (the one where you
introduced yourself to the computer) to use an f-string (see here
for the lesson that will help you do this). Create two variables: one
called name and one called age. Assign a string with your name to
the name variable. Assign a math operation (that equals your age)
to the age variable. For example:

age	=	20	+	7

Finally, print out your new introduction to the computer using

your f-string and name and age variables!

Sample Expected Output
"Hi!	My	name	is	Adrienne	and	I	am	27	years	old!"

ACTIVITY 2: OPERATION PEMDAS

Just like math, the arithmetic operators follow a special order to
make calculations. Let’s see if you can create a super calculation
using this knowledge!

What to Do
Create a variable called magic_number. Then, assign to it a special
calculation that equals 333 (see here for the lesson that will help
you do this). The calculation must follow these rules:

• You must use the ** operator at least once.

• You must use the % operator at least once.

Once you’ve assigned your magic_number variable to your
calculation, use the print() function to make sure it equals 333!

ACTIVITY 3: COOKIE COMPARISONS

Say you and your friends are eating some chocolate chip cookies.
While you are all happily snacking away, one of your friends says,
“My chocolate chip cookie has the most chocolate chips!” You
think to yourself, “I think mine does.” And now your other friends
are curious, and look down at their chocolate chip cookies to see
how their cookies compare with their friends’. How can you use
coding to confirm whose claim is True? Who has more or less
chocolate chips in their cookie between you and your friend; and
how about among your other friends?

We could write a small program to help us make that decision.
Let’s do it!

Imagine that we built an awesome machine that was able to
scan some cookies and then give you variables with the number

of chocolate chips each contained. How would you use
comparison operators to help you decide?

What to Do
For each pair of friends, write a print() function that outputs the
two friends’ chocolate chip numbers, the comparison you are
using, and if it is True. Here is an example:

Dolores and Teddy both have cookies. Teddy thinks his
cookie has more chocolate chips than Dolores’s cookie. Of
course, Dolores thinks the opposite. Let’s see who is right.

Beep boop scanning noise
Great! We’ve scanned their cookies, and this is what is given to

us by our cookie scanning machine:
dolores_chocolate_chips	=	13

teddy_chocolate_chips	=	9

Teddy thinks he has more chocolate chips in his cookie than
Dolores does in hers. How would we write that comparison in
code?

teddy_chocolate_chips	>	dolores_chocolate_chips

Exactly! Teddy thinks he has more chocolate chips than
Dolores, so we use the greater-than operator (>). Now, how would
we print out the results of this chocolate chip battle, including the
comparison we are making? Hint: We can use f-strings! And
another hint: full code comparisons can be used in the same way
as variables!

print(f"Teddy's	cookie	has	more	chocolate	chips
than	Dolores's.	This	is	{teddy_chocolate_chips	>
dolores_chocolate_chips}!")

Awesome! It’s kind of long, but it works!
Here are some more friends you need to help! Write a similar

print() function for each pair of friends and their claim:

Rey and Finn
Rey says she has less than or equal to the number of

chocolate chips as Finn.
rey_chocolate_chips	=	10
finn_chocolate_chips	=	18

Tom and Jerry
Tom says he does not have the same amount of chocolate

chips in his cookie as Jerry.
tom_chocolate_chips	=	50

jerry_chocolate_chips	=	"50"

Trinity and Neo
Neo says he has the same number of chocolate chips as

Trinity.
neo_chocolate_chips	=	3

trinity_chocolate_chips	=	3

Gigi and Kiki
Kiki says she has less chocolate chips in her cookie than Gigi.
kiki_chocolate_chips	=	30

gigi_chocolate_chips	=	31

Bernard and Elsie
Bernard says he has at least the same amount of chocolate

chips as Elsie, maybe even more!
bernard_chocolate_chips	=	1010

elsie_chocolate_chips	=	10101

ACTIVITY 4: PIE PARTY!

Today’s our lucky day. We get to help the best baker in town
prepare for the pie party! Baker Miguel wants to know how many
of each kind of pie to bake to make sure everyone gets a slice
that they like. We have some information available, but you’ll have

to write some code to figure out exactly how many pies, and
which pies, to bake!

Here’s the information we know:
total_people	=	124

graham_cracker_crust_lovers	=	40
vanilla_wafer_crust_lovers	=	64
oreo_crust_lovers	=	20

Pie Types
Chocolate and Caramel Pie
pie_crust	=	"graham	cracker"
pie_slices	=	10

Triple Berry Pie
pie_crust	=	"vanilla	wafer"
pie_slices	=	12

Pumpkin Pie
pie_crust	=	"graham	cracker"

pie_slices	=	12

Apple Pie
pie_crust	=	"vanilla	wafer"

pie_slices	=	10

Banana Cream Pie
pie_crust	=	"vanilla	wafer"
pie_slices	=	10

Mango Pie
pie_crust	=	"graham	cracker"
pie_slices	=	12

S’mores Pie

pie_crust	=	"oreo"
pie_slices	=	12

What to Do
Using logical operators, the print() function, and f-strings, write
some code for each type of pie that determines if you can evenly
divide the number of slices that type of pie has by the total
number of people in that particular crust lovers’ group!

Sample Expected Output
'The	Chocolate	and	Caramel	pie	can	be	evenly	divided
for	all	Graham	Crust	Lovers?	True'

ACTIVITY 5: OUTFIT CHECKER

Cher and Dionne are about to go to a fancy party. Being the
fashionistas they are, they want to make sure their outfits aren’t
the same, but a few things in common are okay, especially since
they both love pink! Let’s write some code to make sure their
outfits are as individual as they are!

What to Do
Using the variables provided, your knowledge of the print()
function, and the proper logical operators, write code to help you
check Cher and Dionne’s outfits! Here are some variables that

describe each girl’s outfit:

cher_dress_color	=	'pink'
cher_shoe_color	=	'white'
cher_has_earrings	=	True
dionne_dress_color	=	'purple'
dionne_shoe_color	=	'pink'
dionne_has_earrings	=	True

For each outfit check, first determine which variables to use
that best match the scenario. Then, write some code to compare
the variables you have chosen with the proper logical operator.
Finally, use the print() function to print a sentence stating the
outfit check and use your comparison code as a True or False
answer.

Example Outfit Check
At least one person is wearing purple.
Best matching variables to use for this outfit check:
cher_dress_color,	dionne_dress_color

Choose a logical operator that allows you to test the
condition in the outfit check. For this one, we only need to make
sure that at least one person is wearing purple (at least one
expression was True), so using the or operator is probably best.

Finally, use that comparison code to print the answer to the
outfit check!

print(f"At	least	one	person	is	wearing	purple?
{code	to	check	that	either	cher	or	dionne's	dress
is	purple}")

Example Output:
At	least	one	person	is	wearing	purple?	True

Outfit Check 1
Cher and Dionne have different dress colors.

Outfit Check 2
Cher and Dionne are both wearing earrings.
Outfit Check 3
At least one person is wearing pink.
Outfit Check 4
No one is wearing green.
Outfit Check 5
Cher and Dionne have the same shoe color.

Sample Expected Output
Cher	and	Dionne	have	matching	dress	colors?	False

Someone	is	wearing	pink?	True

ACTIVITY 6: LOGICAL LAB!

We’ve learned about the three sets of operators used in Python:
arithmetic, logical, and comparison. This will come in handy now,
because Ada needs our help sorting through her lab materials.

What to Do
Create a new file called adas-materials-report and save it. Then,
declare the following variables:

beakers	=	20
tubes	=	30
rubber_gloves	=	10
safety_glasses	=	4

Ada has three friends coming to her lab to help her out, so
you’ll need to determine if there are enough materials for each
friend. To safely run some experiments, each friend needs to
have:

1 pair of safety glasses
2 rubber gloves

5 beakers
10 tubes

Knowing this, create new variables to hold a Boolean value
(True or False) determining if there are enough items for all the
scientists:

enough_safety_glasses	=	<Write	some	code	here!>
enough_rubber_gloves	=	<Write	some	code	here!>
enough_tubes	=	<Write	some	code	here!>
enough_beakers	=	<Write	some	code	here!>

In the placeholders that say <Write	some	code	here!> ,
write code that uses different arithmetic operators to first figure
out if each friend will receive the proper amount of materials.
Next, combine that code with some comparison operators to
result in either a True or False answer. This will be the Boolean
you assign to your “enough lab materials” variables.

Finally, once you have Booleans assigned to your variables,
use them with logical operators to determine the following
scenarios:

• There are enough gloves and safety glasses for each girl.

• There are enough tubes or enough beakers for each girl.

• Each girl has enough safety glasses and beakers or enough
tubes and beakers.

• Each girl has enough gloves, safety glasses, tubes, and beakers.
For example, in the first scenario, “There are enough gloves

and safety glasses for each girl,” we can use the
enough_rubber_gloves and enough_safety_glasses variables
for comparison with the and operator to check for the scenario’s
conditions.

Put all of this information together in a final_report
variable:

final_report	=	f'''

Here	is	the	final	report	for	lab	materials:
-
Each	girl	has	enough	safety	glasses:	{add	the
right	variable	here}
Each	girl	has	enough	rubber	gloves:	{add	the
right	variable	here}
Each	girl	has	enough	tubes:	{add	the	right
variable	here}
Each	girl	has	enough	beakers:	{add	the	right
variable	here}
-
There	are	enough	gloves	and	safety	glasses	for
each	girl:	{write
some	code	here}
There	are	enough	tubes	and	or	enough	beakers
for	each	girl:	{write
some	code	here}
Each	girl	has	enough	safety	glasses	and	beakers
or	enough	tubes	and
beakers:	{write	some	code	here}
Each	girl	has	enough	gloves,	safety	glasses,
tubes,	and	beakers:
{write	some	code	here}

'''

Use this variable in your print() function (be sure to fill in the
blanks with the information you figured out above) to see the
results!

ACTIVITY 7: MODULUS MATH

What to Do

Practice using the modulus operator (see the chart here) to write
some code that calculates the modulus of numbers that can’t be
evenly divided. Print the remaining number the modulus operator
gives back for these numbers.

Example: 12345	%	88

ACTIVITY 8: PLANETARY EXPONENTIATION

Scientist Angie needs our help! She’s been exploring other
galaxies and has been comparing how many planets they have to
the nine that we have in our solar system (because even though
it’s a dwarf planet, she wants to include Pluto). Can you write
some code to help her calculate the total planets for the other
galaxies?

What to Do
Use the exponentiation operator to print out the total number of
planets the other galaxies have. To do this, take our total number
of planets and raise it to the power of each galaxy’s magic
number. Be sure to use the total_planets variable provided for
your calculations!

total_planets	=	9

Example Galaxy
In the Pentatopia galaxy, their magic number is 5. Write a

print() function that prints out how many planets the

Pentatopia galaxy has!

Sample Code
print(f"The	Pentatopia	galaxy	has	{write	code	to
calculate	what	9	to	the	power	of	5	is}	planets!")

Sample Output
The	Pentatopia	galaxy	has	59049	planets!

Angie’s Galaxy Research
In the Tripolia galaxy, their magic number is 3. Write a

print() function that prints out how many planets the Tripolia
galaxy has.

In the Deka galaxy, their magic number is 10. Write a print()
function that prints out how many planets the Deka galaxy has.

In the Heptaton galaxy, their magic number is 7. Write a
print() function that prints out how many planets the Heptaton
galaxy has.

In the Oktopia galaxy, their magic number is 8. Write a
print() function that prints out how many planets the Oktopia
galaxy has.

CHAPTER 3 ✮ CHALLENGES

CHALLENGE 1: DINNER DECISIONS

Imagine that we are at a buffet, where we are given many
different options of food to choose from. There’s a noodle station
and a pizza station and all kinds of other stations that serve
different cuisines. And then, there’s the most important station:
the dessert station. Unfortunately, the names of all the different
dishes have been mixed up, so we can’t be sure that what we’re
picking is actually the food we think it is!

If we were to write a program to pick different foods for us
from the buffet, using only these name cards, how would we
make sure that only the foods we want are chosen?

What to Do
Using our Silly Stories program from chapter 2 as a guide (here),
let’s create another program to decide our what to eat for dinner.

Create variables for your name and the different parts of your
dinner, filling in each with your choices:

name	=	""
entree	=	""
side_one	=	""
side_two	=	""
dessert_one	=	""
dessert_two	=	""
dessert_three	=	""
Create another variable to hold your dinner choices. You can

use this template or write your own!
dinner_decisions	=	f"""

Hi,	my	name	is	{name}.
I	chose	{entree}	as	my	main	meal!
To	go	with	it,	I	chose	{side_one}	and
{side_two}	as	my	sides.
And	the	best	part,	I	have	{dessert_one},
{dessert_two},	and
{dessert_three}	waiting	for	me	for	dessert!
Let's	eat!

"""

For each variable, make some decisions about your meal by
checking the following variables and seeing if they actually
contain the food you want to eat. If they do, assign that to your
dinner variables.

Buffet Option Name Cards

Entrees
pepperoni_pizza	=	"91334"

hamburger	=	"cheeseburger"

steak	=	"0980sdf3"

pasta	=	"ribs"

fried_chicken	=	"fried	chicken"

Sides
baked_potato	=	"mashed	potatoes"

mashed_potatoes	=	"baked	potato"

french_fries	=	"french	fries"

mac_n_cheese	=	"33333"

steamed_carrots	=	"green"

broccoli	=	"chocolate	chips"

Desserts
chocolate_ice_cream	=	"chocolate	ice	cream"

strawberry_ice_cream	=	"vanilla	ice	cream"

apple_pie	=	"pumpkin	pie"

egg_pie	=	"302948"

watermelon	=	"oranges"

vanilla_donut	=	"cereal"

After using some logical operators to make your choices, use
a print() function to output your final meal:

print(dinner_decisions)

That’s it! Save your program, run it, and see what dinner you
ended up choosing!

STRINGS AND OTHER THINGS

STRINGS + OPERATORS
In the last chapter, we learned about operators and how we use
them with numeric types. Did you know that we can use some of
them with strings, too? Let’s see how!

CONCATENATING STRINGS

Concatenation, a fancy word that means putting things together,
is one thing we can do with strings! This is done using the addition
(+) operator. We know that when we use this operator with
numbers, it will add them together. What do you think will happen
when we add two characters or words together? Try it out:

print("basket"	+	"ball")

Interesting! We have created the new string “basketball” by
adding two separate strings, “basket” and “ball,” together.

Here’s what’s happening: When the computer sees the
addition (+) operator, it says, “Okay, Human wants me to add
some values here. Let’s see what the values are.” Then, when it
sees that you are trying to add two strings together, it says, “Well,
you can’t really add two strings in the same way you would add
two integers. So I’ll put these two strings together and give it back
to Human as a single string.” How logical! That’s exactly how
“adding” two strings would work.

Interestingly enough, you have probably encountered

concatenation before without even realizing it! Have you ever
filled out a form with a section for “First Name” and a separate
section for “Last Name”? Well, the coders who created that form
probably used concatenation to show your full name after you
submit the form. It’s very useful and not at all difficult to do. Let’s
try it out!

First, we need a place to store our first name and last name.
Were you thinking variables? Because that’s the right way to
start!

first_name	=	"Adrienne"

last_name	=	"Tacke"

Now that we have our first and last names stored, how would
we print them out as a full name? As we’ll see more and more in
coding, there is always more than one way to do something! We
could use the addition operator directly in our print() function:

print(first_name	+	last_name)

Or, we could create another variable to hold the full name and
print that instead:

full_name	=	first_name	+	last_name

print(full_name)

Did you notice anything funny when executing this code,
though? Your name probably printed out a little too combined
and close together, like this:

Remember, the computer will do exactly what you want it to,
and in this case, it added our first_name and last_name
variables together exactly as it should! If we want to print our
name out the way we normally see a full name, we need to be
exact and add the space between our names. Again, we can do
this in several ways:

We could concatenate an actual space in between our
first_name and last_name:

full_name	=	first_name	+	"	"	+	last_name

print(full_name)

Or, we could add the space after our first name:
first_name	=	"Adrienne	"

Or before our last name:
last_name	=	"	Tacke"

That way, when we print out our concatenated name, it will
include the space.

full_name	=	first_name	+	last_name

print(full_name)

Can you think of other ways to print out your full name
properly?

3 + “Cookies” = A Confused Computer

What happens when we add integers and strings? Can we even
do that? Try the following code:

print(3	+	"Cookies")

Were you able to print out this concatenated string?
Probably not, but that’s expected.
Here’s what’s happening: Just like before, the computer sees
your addition operator and knows that you’d like to add some
values together. But when it sees that one value is an integer and
the other as a string, it says, “Hmm, integers and strings don’t
really ‘add’ together, so I’m not sure what Human is asking me to
do. Better let them know I don’t understand their code.” And here,
you get your first type error (TypeError), which is the computer’s
way of telling you that it can’t do something you are asking it to
do because of a data type issue.

MULTIPLYING STRINGS (WHAT?!)

Yeah, you read that right. In Python, we can also use the
multiplication (*) operator with strings! What would this look like?
Try this:

print(5	*	"balloon!")

Did you excitedly give your shell five balloons (as in the text
“balloon!” printed five times)?

Neat! How nice of you! As we’ve seen, the multiplication (*)
operator works similarly with strings as it does with integers.
Instead of multiplying an integer a specific number of times, it
multiplies the exact string you give it.

LISTS
One of the most useful data types in Python is lists. A list is
exactly what it sounds like: a list or collection of objects. Lists are
very useful because they allow us to work with a lot of data at the
same time, which is something we do very often in programming.
In code, we create a list by giving it a name and assigning it to a
collection of objects we would like it to hold. This collection of
objects is stored in between brackets, which look like this: [], and
the objects are separated by commas. When working with string
objects, be sure to place each object within single quotes! Here’s
a list holding a collection of my favorite desserts:

my_favorite_desserts	=	['Cookies',	'Cake',	'Ice
Cream',	'Donuts']

Lists can hold all kinds of things. We can create a list of strings,
like this one:

citrus_fruits	=	['Orange',	'Lemon',	'Grapefruit',
'Pomelo',	'Lime']

Or a list of integers:
bunnies_spotted	=	[3,	5,	2,	8,	4,	5,	4,	3,	3]

Even a list of Booleans:
robot_answers	=	[True,	False,	False,	True,	True]

What’s even cooler is that lists don’t always have to be the
same data type. You can have a list of mixed objects as well:

facts_about_adrienne	=	['Adrienne',	'Tacke',	27,
True]

Having this kind of flexibility is one reason lists are so useful.
But wait, there’s more! There are several other interesting
features about lists that make them useful. Let’s talk about each
one!

LISTS ARE ORDERED

When we create a list, we are storing not only a collection of
objects, but their order as well. This is important because it
affects how we change the list, how we access a list’s objects, and
how we compare it with other lists. To see the importance of a
list’s order, try the following code:

citrus_fruits	=	['Orange',	'Lemon',	'Grapefruit',
'Pomelo',	'Lime']

more_citrus_fruits	=	['Orange',	'Grapefruit',
'Lemon',	'Pomelo',	'Lime']

citrus_fruits	==	more_citrus_fruits

What happens? Are they equal lists?

Nope!
Here’s what’s happening: As we learned in chapter 2, the
computer knows that we want to compare two values when we
use the == operator. When it looks at the first value, it says, “Okay,
so we have a list of citrus_fruits here. It has an Orange,
Lemon,	Grapefruit,	Pomelo, and Lime stored in it.” It then
checks the other value we are comparing and says, “Now, the
second value is a list of more_citrus_fruits. It has an Orange,
Grapefruit,	Lemon,	Pomelo, and Lime. So far, so good—both
lists have the same objects, but let’s check the order. Oh!
citrus_fruits has a Lemon at index 1, but
more_citrus_fruits has a Grapefruit instead. Since these two
lists don’t have the same order, they aren’t really equal in my eyes.
Time to tell Human that this is False.”

Now that you know that lists must have the same objects and
the same order to be truly equal, can you create another list that
would return True if we compared them?

LISTS CAN BE ACCESSED WITH AN INDEX

When we work with lists in our code, we often deal with a single
object from a list at a time. This means that we need an easy way
to choose one object from a list, no matter what position it is in.
And luckily, there is an easy way! Indices (the plural of index) give
us this ability. An index is a number that represents the position
of an object within a list. Basically, it tells us where an object is in a
list.

Object/Value ‘Orange’ ‘Lemon’ ‘Grapefruit’ ‘Pomelo’ ‘Lime’

Index 0 1 2 3 4

To use an index, we write code to tell the computer which list
we want to access and what position in the list is holding the
object we want. For our citrus_fruits list, an example would
look like this:

citrus_fruits[2]

This code tells the computer to grab the object that’s stored
at the second index in the citrus_fruits list.

Notice how I didn’t say that we are grabbing “the second
object” from the list; instead, I said we are grabbing the object
that is “stored at the second index” in the list. There is a big
difference! Why? Because there is one very important thing to
know about lists: their order starts at 0, not 1! So, if you tried the
previous code, you may have been surprised to get
'Grapefruit' returned to you instead of 'Lemon', like you were
probably expecting.

This means the first item in a list would be accessed with the 0
index. Try selecting the first item from the citrus_fruits list:

citrus_fruits[0]

Did you get an 'Orange' this time? Sweet!

WHY START AT ZERO?

Even though we count starting from one, computers see
order in a different way. When looking at lists, starting at zero
means that the first object is quite literally “zero” spaces
away from the beginning of the list. This makes sense, as the
first item in a list is always the one closest to the opening
bracket of a list!

LISTS CAN BE SLICED

That may sound painful, but don’t worry, it’s a normal thing for
lists. Just like we slice the piece of pie we want, slicing is the
method of selecting a specific range of items within a list. It’s
similar to how we access items in a list with an index, except we
can choose more than one item. Instead of placing a single index
within the list’s brackets, we give it a slice range, which includes a
starting index, the colon (:) character in the middle, and an ending
index. Here’s what it looks like:

citrus_fruits[2:4]

This tells the computer, “Hey there, I need some items from
the citrus_fruits list. I need all items starting at the second
index all the way up to, but not including, the item at the fourth
index.”

So, this code would result in this output:
['Grapefruit',	'Pomelo']

Here’s what’s happening: The first index we give in the
citrus_fruits list is 2. This is our starting index, which is the
location of the first item we select in our slice range. We only
begin selecting items at this index. The colon (:) character tells the
computer we are slicing the list. Once it knows this, it will be
looking for an ending index, which is the location of the last item

in the slice range. This lets the computer know when to stop
selecting items. In this case, the ending index is 4. The computer
will keep selecting items until the ending index, but will not
include the item at the ending index itself. This is why Lime is not
part of this sliced range.

Let’s say we wanted the first three items in our
citrus_fruits array. We can slice it like so:

citrus_fruits[:4]

which would give us this output:
['Orange',	'Lemon',	'Grapefruit',	'Pomelo']

You’ll notice I didn’t give a starting index in this slicing range.
This is because the computer assumes you want to start at the
beginning of the list if you don’t give it a starting index. So, we can
write a slice range without the starting index if we know that we
need items from the beginning of a list.

This works on the ending index, too. Similarly, to grab only the
last three items, we’d write:

citrus_fruits[2:]

which returns this output:
['Grapefruit',	'Pomelo',	'Lime']

Similar to the starting index, when you don’t give the
computer an ending index, it assumes you want to select items
until the end of the list. So, you can write slice ranges without an
ending index if you know that you want items until the end of a
list.

LISTS ARE MUTABLE

Once we create a list, we can add new objects, delete existing
ones, and move objects around. Being able to change a list in this
way means it is mutable. The other data types we have learned
so far—like strings, integers, and Booleans—cannot change in
this way once we’ve created them. These kinds of data types that

cannot change are described as immutable.
Earlier, I told you about my favorite desserts. Since lists are

mutable, let’s change the my_favorite_desserts list to store
your favorite desserts!

For our first change, let’s empty out the list by assigning it to
an empty list:

my_favorite_desserts	=	[]

By doing this, we’ve made a mutation, or change, to our
my_favorite_desserts list. If you look into your list through the
shell, it should now be empty:

Now, let’s make another mutation. Go ahead and add your
favorite desserts! (I’ll add some different ones here to continue
the example, but feel free to add your actual favorite desserts
while coding along.)

To do this, we can use something called the addition
assignment operator (+=) to give our list some new desserts. See
how it works:

my_favorite_desserts	+=	['Brownies',	'Muffins',
'Chocolate']

Let’s check our list again.

Great! Our original list has mutated again! This time, it went
from being empty to having three new desserts in it. Mutable lists
allow us to make tasty changes.

MEMBERSHIP OPERATORS

A common thing we do with lists is check to see if something
is or is not within it. We have a special set of operators that
do this for us called membership operators. These operators
go through some input we give them, and will tell us if
something we are looking for is or is not in the input.

in
If we wanted to check that a specific item was within a list,
we’d use the in operator. This looks for a positive
confirmation that something exists. So, if we wanted to make
sure that Pomelo was in our citrus_fruits list, we’d write:

'Pomelo'	in	citrus_fruits

and this would be True:

not in
Alternatively, if we want to make sure some item is not in our
input, we use the not in operator. This looks for a
confirmation that something does not exist. Let’s say we
wanted to make sure that no desserts were in our
citrus_fruits list. We’d use the not in operator like this:

'Donuts'	not	in	citrus_fruits

Here, we also get True, which is correct, as there are no
'Donuts' in our list:

If we were to check for a 'Lime':
'Lime'	not	in	citrus_fruits

our computer would return False, as there is a 'Lime' in
our list:

These operators will be very useful in later chapters when
we need to filter through lots of data in a collection of items!

MAKING MORE CHANGES TO LISTS

You’ve already used one method to add to a list, which is the

addition assignment operator (+=). There are quite a few more
methods, including methods that Python already has built in, for
you to make changes to lists. Let’s see what they are!

append()
Another way to add an item to a list is to use the built-in append()
function. This adds an item to the end of the list. Let’s say you
forgot to add another dessert to your my_favorite_desserts
list. You can add it quickly, like so:

my_favorite_desserts.append('Creme	Brulee')

Which would result in:
['Brownies',	'Muffins',	'Chocolate',	'Creme
Brulee']

Since we’re on a roll, let’s add one more dessert!
my_favorite_desserts.append('Apple	Pie')

Our new list is now:
['Brownies',	'Muffins',	'Chocolate',	'Creme
Brulee',	'Apple	Pie']

remove()
If we ever need to delete an item from a list, one method we can
use is the built-in remove() function.

As we take another look at our my_favorite_desserts list,
we realize that maybe muffins aren’t as great as we initially
thought, and that we should really delete them from our list. We
can use the remove() function to do that:

my_favorite_desserts.remove('Muffins')

After this code, our list would be:
['Brownies',	'Chocolate',	'Creme	Brulee',	'Apple
Pie']

del
Another way we can remove items from the list is using the del
keyword. As you can guess, del is short for delete. We use this
method of deleting an item together with list indices. So, if we
needed to remove the item at the first index, we’d write:

del	my_favorite_desserts[1]

And since Chocolate is the item at the first index, that’s the
item that is deleted. So our resulting list would be:

['Brownies',	'Creme	Brulee',	'Apple	Pie']

Keep in mind that slice ranges work , too! So, we could write
something like this:

del	my_favorite_desserts[1:]

That would remove 'Creme	Brulee' and 'Apple	Pie' from
our list. But why would we want to do that? In case you deleted
them by mistake, you can use either the append() function or the
addition assignment operator (+=) to add them back!

Changes Using Indices and Slice Ranges
Just like we use indices and slice ranges to select one or more
items in a list, we can use them to make changes to our list, as well!

For example, if we want to add 'Pumpkin	Pie' as the second
item in our my_favorite_desserts list, we can do so like this:

my_favorite_desserts[1:1]	=	['Pumpkin	Pie']

We write code in this way because there is already an item at
the first index. Otherwise, the computer will get confused and do
what it thinks you’re asking it to do. For example, this won’t work
the way you think it would:

my_favorite_desserts[1]	=	'Pumpkin	Pie'

This will replace the item that’s already at that index (in this
case, the 'Creme	Brulee') and put 'Pumpkin	Pie' there

instead. That’s why you have to be careful when inserting new
items at indices that already have items in them. We use the slice
range of the same starting and ending index to tell the computer
to simply add a new item at that index, without changing the rest
of the items in the list. After inserting a new item correctly, our list
now looks like this:

['Brownies',	'Pumpkin	Pie',	'Creme	Brulee',	'Apple
Pie']

Keep in mind that if you are inserting new items into an
existing list using this slice range method, it doesn’t matter how
many items you are adding. So, if we wanted to add Chocolate
Souffle, Crepe Cake, and Affogato (gelato drowned in espresso)
to our my_favorite_desserts list after 'Creme	Brulee', we’d
do this:

my_favorite_desserts[2:2]	=	['Chocolate	Souffle',
'Crepe	Cake',	'Affogato']

This would make our my_favorite_desserts list like so:

['Brownies',	'Pumpkin	Pie',	'Creme	Brulee',
'Chocolate	Souffle',	'Crepe	Cake',	'Affogato',
'Apple	Pie']

Pretty neat . . . and delicious!

TUPLES
Tuples (I like to pronounce them like this: “too-pells,” but others
pronounce it like this: “tuh-pells”—you decide!) are another type
in Python that hold a collection of items or objects. They are very
similar to lists, and everything you know about lists is most likely
the same for tuples! This means they are ordered, can be
accessed with indices, work with slice ranges, and can be made of
the same or different types of items. However, there are two
major differences between tuples and lists:

TUPLES USE PARENTHESES

Tuples use parentheses () to hold their items, instead of the
brackets [] used with lists. This means they are created like this:

rgb_colors	=	('red',	'green',	'blue')

But the most important difference of all is that tuples are
immutable.

TUPLES ARE IMMUTABLE

Remember, immutable means unable to change. This is a very
important difference tuples have from lists. Adding, removing, or
changing the contents of tuples is not possible, since this is a
special characteristic of tuples! So, this means methods like the
append() and remove() functions and del will not work with
tuples.

WHEN TO USE TUPLES OVER LISTS

You’re probably wondering: When should I use a tuple and when
should I use a list? That’s a great question! For the most part, lists
will probably be the type to choose when dealing with collections
of items. A big sign that should nudge you to use a tuple is that
the collection of items you will be storing shouldn’t be changed.
Our earlier tuple is a great example of this, as the RGB colors can’t
change and never should!

IF STATEMENTS
For just a moment, try to think of all the decisions you make in a
single day. Even if you narrow it down to just the morning, there
are already so many things to decide: Do you wake up when your
alarm rings or hit the snooze button one more time? When you
finally get up, what outfit do you choose to wear? What do you
eat for breakfast? Or do you skip breakfast because you’re
already running late?

Though it may seem like a hassle, our lives are much more
flexible and interesting because we can make so many decisions.

Not surprisingly, decision-making also makes our Python
programs more flexible and interesting—and therefore smarter.

Just as we make decisions in life, we can make decisions in
code by using if statements. An if statement is a block of code
that allows you to control the path the computer will take when it
executes your code. This is important because when we write
more complex and longer programs, we don’t really want the
computer to run all of our code. We only want to run certain parts
of our code when it makes sense, or when we decide it’s the right
time to do so. if statements give us this decision-making ability.
How? They allow us to set up a condition that needs to be met
before any additional code is executed. This condition is usually a
Boolean expression, which is a condition that the computer
evaluates and decides is either True or False. You can think of
Boolean expressions as “Yes or No” questions, where a “Yes” is
True and a “No” is False. When your if statement’s Boolean
expression is True, it tells the computer that it should keep going
on to the next line of code. The next line of related code is usually
right after the if statement and is indented. Indentation is the
amount of space that comes before certain lines of code to help
the computer group the blocks of code that belong together.

Here’s how to write an if statement:

if	mood	==	'tired':

hit_snooze_button	=	True
print("Adrienne	is	tired.	She	hits	the	snooze
button.")

Pretty logical, right? If our mood is tired, we will probably
choose to hit the snooze button.

Here’s what’s happening: In this scenario, the Boolean
expression we are determining is our mood. When the computer
gets to that line of code, it asks itself the question, “Is the mood
equal to 'tired'?” It either answers, “Yes, the mood is definitely
equal to 'tired', which means this Boolean expression is True.
This means I can keep going to the next line of code,” or it says,
“No, the mood is not equal to 'tired', which means this Boolean
expression is False. That means I can’t keep going onto the next
line of code. I’ll have to skip to the next line of code I see that has
the same indentation as this line.” This is important to remember,
as the computer will only keep going to the next line of code after
the colon (:) if it can answer “Yes” to the question (or condition)
you give it. If it can’t, it skips that code and finds the next line that
isn’t indented.

start if statement Boolean expression (Yes/No question) if True, step into next line
of code:

if	mood	==	'tired':
hit_snooze_button	=	True
action to do if condition is True

What if we aren’t tired, though? What if we want to get up
right away because we had a good night’s sleep? We can add
that decision into our code, too, using an else if statement, which
is shortened to elif.

The code would look like this:
if	mood	==	'tired':

hit_snooze_button	=	True

print("Adrienne	is	tired.	She	hits	the	snooze
button.")

elif	mood	==	'well-rested':

get_out_of_bed	=	True
print("Adrienne	is	well-rested.	She's	already
out	of	bed!")

Here, we added an elif statement to our code. Always used
after a regular if statement, an elif statement allows you to
make a different decision if a different condition is met! It’s like
asking a different question if the first one you asked was
answered with a “No.” Using an elif statement is perfect for our
example, since we are checking for a different condition (mood	==
'rested'), and are doing something completely different if that
condition is True (getting out of bed instead of hitting the snooze
button).

It’s also important to remember that the code after our if
statement is indented. Indentation is very important in Python, as
the computer uses these spaces to figure out which blocks of
code belong together. When you want to indent your code, move
your cursor to the beginning of the line that you want to indent
and simply press the Tab key on your keyboard. This will add the
space you need in front of your code. Most of the time, the
computer will indent automatically for you, but there will be times
you will need to do this yourself.

After adding our elif statement, keep in mind that we will
only hit the snooze button or we will only get out of bed. We will
never do both!

Here’s why: When the computer checks our Boolean
expressions, it will keep checking each one in our code until it
finds one that is True. Once it does, it will move to the next line of
code that is indented, run all other lines of code that have the
same indentation, and then ignore the rest of the Boolean
expressions.

In our example, the computer will be able to answer “Yes”
when determining if our mood is tired or not. Since it answered
“Yes,” it moves onto the next line of code that sets the
hit_snooze_button variable to True. It will also print out our
message ("Adrienne	is	tired.	She	hits	the	snooze
button."), since that line of code is also indented like the one
before. Since those are the only two lines of code that belong to
that indentation group, and seeing that the next line of code is
not indented in the same way, the computer will know that it is
finished with the if statement.

This also means that the computer won’t try to evaluate the
other Boolean expressions. It ignores the rest because, once it
finds a Boolean expression that is True, it is almost certain that
the other Boolean expressions in the if statement would be
False. (It’s almost certain because we could have a bug or some
incorrect logic written in our code.)

This makes total sense! We can’t be “tired” and “rested” at the
same time! If we asked the computer “Is our mood tired?”, it can’t
answer both “Yes” and “No”! This is why the computer safely
ignores all other Boolean expressions in an if statement the
moment it finds one that is True.

DEALING WITH ERRORS AND EXCEPTIONS

As you learn to code, you will deal with many different types
of errors and exceptions. This is completely normal! Knowing
what kinds of errors and exceptions you’ll come across is
very helpful, though, so let’s go through some of the main
types:

Syntax Errors
We’ve seen this type of error in an earlier chapter. This error
means that some part of your code cannot be understood or

translated by the computer. Usually, it’s caused by an extra
character in the wrong spot, a blank space, or a wrong
character that is not part of the Python language. When you
get these types of errors, keep an eye out for these common
bugs and be sure to check your shell! It will usually tell you
where the bug is happening.

Type Errors
Type errors are data type problems in code. These can
happen when you use a data type that the computer is not
expecting or if you try to use a data type in a way that is not
allowed by that data type. For example, if you have some
code that needs integers as your parameters and you pass
strings as your input, you will probably get a type error.

Exceptions
Exceptions are issues with your code that are only found
when you run your program. This means that your code can
be translated by the computer with no problem, but when it
actually performs the actions in your code, the actions
themselves cannot be done or cause an issue in another part
of your code. A very common exception is one called a zero
division error (ZeroDivisionError). This exception
happens when a part of your code tries to divide by zero. The
original code you write may not have any code that clearly
divides by zero, but you could have a calculation that
happens whose result is zero. If that calculation is then used
somewhere else, like in another division calculation, it may
then cause a zero division error, even though you didn’t
mean for it to!

As an example, let’s say you have some code that takes
cookies and divides them by the number of kids available.
You expect these two variables to be used like so:

def	divideCookiesEqually(cookies,	kids):

return	cookies	/	kids

But what if you passed into your code 10 cookies and 0
kids? When your code finally executes like this:

divideCookiesEqually(10,	0)

it tries to do this:
10	/	0

which would then cause a division by zero error
(ZeroDivisionError)!

Don’t be afraid or disappointed if you run into these or
other kinds of errors. It’s part of coding, and it can actually
help you think about how to solve many different kinds of
problems. It will really stretch your brain! If you ever feel stuck
or frustrated, take a break, walk away from the computer, and
do something else. Then, come back with a fresh mind and
maybe a snack. You will probably see what the error is when
you return, or at least you’ll have the patience to keep
investigating!

CODE COMPLETE!
Phew! We learned a lot more about strings in this chapter, and
how they work with some of the operators we learned about in
chapter 2.

• Strings can be added together to create new strings.

• Strings cannot be added to numeric data types.

• Strings, however, can be multiplied.
We were also introduced to our first mutable (changeable)

data type, which is the list.

• Lists are a collection of items of the same data type or a mix.

• Lists use brackets [] to hold their items.

• Lists are ordered and start at 0.

• You can grab specific objects within a list using an index.

• You can change lists by adding, reordering, and deleting
objects within them.

We learned about tuples, which are an immutable
(unchangeable) data type similar to lists.

• Tuples can be used in many of the same ways as lists.

• Tuples use parentheses () to hold their items instead of
brackets [].

• Tuples are not changeable, which is their most important
distinction.

• Tuples should be used when the collection of items they hold
shouldn’t change.

Finally, we also learned how to control the path of our code
through if statements.

• If statements allow us to make decisions in code.

• Indentation is important and helps us group lines of code that
belong together.

• If statements let us tell the computer which parts of our code
to run and how.

• If statements use Boolean expressions to figure out what path
to take in our code.

In the next chapter, we’ll learn about loops! Loops are very
useful when it comes to repeating blocks of code or going
through larger sets of input data. See you there!

CHAPTER 4 ✮ ACTIVITIES

ACTIVITY 1: THESE ARE A FEW OF MY FAVORITE THINGS

Now that you know how to create lists, try creating one with five
of your favorite things! Remember, lists can have a mix of objects
in them.

What to Do
Create a list named my_favorite_things and add five things to
it. Print out a message that says “These are {your name}’s favorite
things: [‘your’, ‘favorite’, ‘things’]. Use an f-string to print out this
message with your name and your list of favorite things!

Sample Expected Output
'These	are	Adrienne's	favorite	things:	['Blue',	3,
'Desserts',
'Running',	33.3].'

ACTIVITY 2: SHAPESHIFTERS

One day, you and your friend decide to go to the park and watch
the clouds. You want to keep track of the different clouds you
see and what shapes they look like to each of you, so you both
create empty lists (in brackets []) before you begin:

your_cloud_shapes	=	[]

friend_cloud_shapes	=	[]

While watching, you continue to add the shapes of clouds you
see to your lists. Once you go home, you take a look at each
other’s lists:

your_cloud_shapes	=	['circle',	'turtle',
'dolphin',	'truck',	'apple',	'spoon']

friend_cloud_shapes	=	['apple',	'turtle',	'spoon',
'truck',	'circle',	'dolphin']

Interesting! Both of you mostly have the same shapes, but
probably saw them at different times!

What to Do
Using if statements, the == operator, and indices, write some
code to check if your cloud shape matches your friend’s cloud

shape at the same position in each of your lists. You can do this
by comparing your object with your friend’s object at each index.
If your shapes match at the same position, print out “We saw the
same shape!” If they don’t match, print out “We saw different
shapes this time.” Go one by one, and compare each item in your
list.

Helpful Hints
Remember, you can access specific items in lists by using the
indices! Example: your_list[2]

ACTIVITY 3: RANDOM FACTORY

What to Do
Using your knowledge of string concatenation and accessing list
items by index, use the following list of random_items to create a
proper answer to each scenario that follows. Use f-strings to print
the result of your code.

random_items	=	['basket',	'tennis',	'bread',
'table',	'ball',	'game',	'box']

Example

Marie is playing ping-pong with her friends. Another friend,
Pierre, says that ping-pong is called something different in his
country. Can you form the other name for ping-pong using the
random_items list?

print(f"{random_items[3]}	{random_items[1]}")

Example Output
table	tennis

Scenario 1
Andre is about to play tennis with some friends. He has his

tennis racket, but he needs one more thing. Write some code to
print out what he needs!

Scenario 2
Jean just baked some fresh bread. He wants to bring a few

loaves home to share. What can you make from the
random_items list that can help him carry his bread home?

Scenario 3
Christina is singing the words to a popular song that is usually

sung at a baseball game. Can you finish the lyrics? “Take me out
to the__________ __________!”

Scenario 4
Leslie is writing a story about her favorite sport. It involves a

hoop, five players on each team, and a recognizable orange ball
with black stripes. Which sport is it?

Scenario 5
Julia just received one of the fresh loaves of bread from Jean.

Thanking him, she quickly puts the loaf she received in this item
to keep it warm.

Scenario 6
Mario has a lot of board games and video games. Luckily, he

can store most of them in this item to keep his room nice and
clean!

ACTIVITY 4: PET PARADE

The local animal shelter is putting on an animal parade for the
neighborhood to show off all of the newest animals that need a
home! They’ve asked you to help them organize the order of the
pets, based on some different factors.

What to Do
You’ve learned about the different ways to make changes to lists.
Use all of them to help you sort and organize this pet parade! So
far, this is the order in which the shelter wants the animals to be
shown:

pet_parade_order	=	['Pete	the	Pug',	'Sally	the
Siamese	Cat',	'Beau	the	Boxer',	'Lulu	the
Labrador',	'Lily	the	Lynx',	'Pauline	the	Parrot',
'Gina	the	Gerbil',	'Tubby	the	Tabby	Cat']

But wait! A good thing has happened! Gina just got adopted,
so she no longer needs to be in the pet parade.

Go ahead and remove Gina.
As the planning continues, the animal shelter director decides
that Pauline the Parrot should be first in line. Since Pauline can
talk, she can start the parade off right by saying hello to the
crowd!

Move Pauline to the front of the pet parade order.
Things are moving along, but suddenly, two more animals get
dropped off at the shelter (boo). We need to add them to our
parade. The first animal is Mimi the Maltese Cat. The second
animal is Cory the Corgi. Both of them should go after Lily.

Place Mimi and Cory together so they come after Lily.
Wait a sec, more good news! Lulu and Lily just got adopted by the
same owner. He likes both of them very much and thinks they can
be good friends.

Remove Lulu and Lily from the pet parade.
That should be it! The pet parade is ready to start. Print out the
resulting order of your pet parade after all of the changes we
have made.

Expected Output
The	order	of	the	Pet	Parade	is:	['Pauline	the
Parrot',	'Mimi	the	Maltese	Cat',	'Cory	the	Corgi',
'Pete	the	Pug',	'Sally	the	Siamese	Cat',	'Beau	the
Boxer',	'Tubby	the	Tabby	Cat'.]

ACTIVITY 5: IF THIS, THEN THAT

As we grow older, who we are, what we look like, and what we are
interested in will probably change. Let’s capture that in an if
statement and print out what we think we will be like in the next 5,
10, 15, and 20 years.

What to Do
Write an if statement that checks for the year, and then output
the different predictions you have about yourself for that year!
As you can see, I’ve helped you get started. Write the remaining
elif statements and make sure to update your variables
properly for each year.

Let’s capture three things to output with some variables.

Create age, favorite_outfit, and favorite_hobby variables,
and assign each of them to what they are today.

year	==	2019

age	=	10

favorite_outfit	=	"red	dress"

favorite_hobby	=	"coding"

Next, start your if statement and check for the current year:

if	year	==	2019:

Then, print out your current description:
if	year	==	2019:

print(f"It	is	2019.	I	am	currently	{age}	years
old,	love	wearing	a	{favorite_outfit},	and
currently,	{favorite_hobby}	takes	up	all	my
time!")

Now, create four more elif statements for 5, 10, 15, and 20
years from now. Adjust your variables, too!

ACTIVITY 6: SLICING AND DICING

Now that you know how to use slice ranges, maybe you can offer
some help to Chef Tony. He has crates of fruits and vegetables
coming in and needs someone to sort them. If the crate has
vegetables, they need to be taken out and moved to the “dicing”
area, so his helpers can begin dicing them for the restaurant. If
you find fruits, though, they need to be brought to the “slicing”
area, so his bakers can prepare the fruits for their desserts.

What to Do
Using slice ranges and the different methods we’ve learned to
add items to a list, write some code for each crate to properly
separate the fruits and vegetables and add them to the right
area.

I’ve created two variables for you to start:
slicing_area	=	[]

dicing_area	=	[]

Once you’ve gone through all of the crates, print out all of the
separated fruits and vegetables.

Here are the crates:
crate_1	=	['onions',	'peppers',	'mushrooms',
'apples',	'peaches']

crate_2	=	['lemons',	'limes',	'broccoli',
'cauliflower',	'tangerines']

crate_3	=	['squash',	'potatoes',	'cherries',
'cucumbers',	'carrots']

ACTIVITY 7: TO CHANGE OR NOT TO CHANGE

Now that you know the difference between lists and tuples, you
can create one or the other for the following collections of items.

What to Do
For each collection of items, create either a tuple or list and store
those items within it. Then, print out the contents of the list and
which type it is stored in.

Collection 1:
first_name,	last_name,	eye_color,	hair_color,
number_of_fingers,	number_of_toes
Collection 1 Data: "Adrienne",	"Tacke",	"brown",	"black",
10,	10

Collection 2: favorite animals
Collection 2 Data: "cats",	"dogs",	"turtles",	"bunnies"

Collection 3: colors of the rainbow
Collection 3 Data:

"red",	"orange",	"yellow",	"green",	"blue",	"indigo",
"violet"

Sample Expected Output
('red',	'green',	'blue')	are	stored	in	a	tuple!

CHAPTER 4 ✮ CHALLENGES

CHALLENGE 1: CHOOSE YOUR ADVENTURE

Now that we can make decisions with our code using if
statements, let’s create a short Choose Your Adventure story!
This game allows you to pick and choose what to do while you go
through the story, resulting in a different ending for different
decisions! To help you get started, follow these instructions:

1. First, create a Python file called choose-your-adventure and
save it.

2. Use the following code to start defining your game:

#	Change	to	your	name	so	you	can	have	your	own
game!

name	=	"Your	name	here"

#	Adventure	begins.

print(f"Welcome	to	{name}'s	Choose	Your	Own
Adventure	game!	As	you	follow	the	story,	you	will
be	presented	with	choices	that	decide	your	fate.
Take	care	and	choose	wisely!	Let's	begin.")

print("You	find	yourself	in	a	dark	room	with	2
doors.	The	first	door	is	red,	the	second	is
white!")

#	This	input	function	allows	you	to	type	in	your
choice.	By	assigning	it	to	a	variable,	you	can	use

the	choice	that	has	been	made	to	decide	on	the
next

#	part	of	the	story!

door_choice	=	input("Which	door	do	you	want	to
choose?	red=red	door	or	white=white	door")

if	door_choice	==	"red":

print("Great,	you	walk	through	the	red	door	and
are	now	in	the	future!	You	meet	a	scientist	who
gives	you	a	mission	of	helping	him	save	the
world!")

choice_one	=	input("What	do	you	want	to	do?
1=Accept	or	2=Decline")
if	choice_one=="1":

print("""___________SUCCESS____________
You	helped	the	scientist	save	the	world!	In
gratitude,	the	scientist	builds	a	time
machine	and	sends	you	home!""")

else:
print("""___________GAME
OVER_______________
Too	bad!	You	declined	the	scientist's	offer
and	now	you	are	stuck	in	the	future!""")

else:

print("Great,	you	walked	through	the	white	door
and	now	you	are	in	the	past!	You	meet	a
princess	who	asks	you	to	go	on	a	quest.")

quest_choice	=	input("Do	you	want	to	accept	her
offer	and	go	on	the	quest,	or	do	you	want	to
stay	where	you	are?	1=Accept	and	go	on	quest	or
2=Stay")

if	quest_choice=="1":
print("The	princess	thanks	you	for
accepting	her	offer.	You	begin	the	quest.")

else:
print("""___________GAME	OVER____________
Well,	I	guess	your	story	ends	here!""")

Use what you’ve learned about if statements, along with your
knowledge of variables, the print() function, and several data
types to continue this story. Change the outcomes, have more
than one decision to make, or set your story in a different setting.
It’s up to you! Once you are finished, save your game and then
run it. You or a friend can now choose your own adventure, and it
will be the game you created!

LOOKING AT LOOPS
A big part of why computers are so powerful is that they can
repeat many actions or calculations very quickly. One of the ways
we can tell a computer to do this is through loops. A loop is a
special kind of programming statement that allows you to repeat
a block of code. Like all programming languages, Python has two
kinds of main loops: for loops and while loops.

FOR LOOP
The first kind of loop is called a for loop. This kind of loop repeats
a block of code a specific number of times. We usually use for
loops with lists and when we know how many times we need to
repeat a block of code.

Let’s say we create a list of numbers. Let’s also say that we
want to add 2 to each number in this list and then print the new
numbers out. How do we do that? With a for loop!

First, let’s declare our numbers list. We do this because loops

always need a group of items to go through. This process of going
through a group of items is also called iterating through a loop.
Iteration means going through a group of things one by one.

Let’s also fill the numbers list with some . . . well . . . numbers!

numbers	=	[1,	2,	3,	4,	5]

Awesome! Now, let’s begin coding a for loop by using the for
keyword. This keyword signals to the computer that we want to
do a for loop:

numbers	=	[1,	2,	3,	4,	5]

for

Great! Now the computer knows you want to do a loop, but
it’s like, “Hey Human, it’s cool you want me to do a loop and all, but
what do you want me to loop through?” We’re getting there,
machine! Next, let’s tell the computer which group of items to go
through and how many times to do it. In our case, we want to go
through every number in our numbers list, so we write the loop to
do that:

numbers	=	[1,	2,	3,	4,	5]

for	number	in	numbers:

The code we just wrote is the same as telling the computer,
for every number in the numbers list, do something. Cool. Now
the computer knows which group of items to iterate through.
Finally, let’s tell the computer to iterate through each number in
our list, add 2 to it (because that’s the cool thing to do), and print
that new number to the console. Remember, the block of code
that comes after a colon (:) means it belongs to the related line of
code above it and should always be indented:

numbers	=	[1,	2,	3,	4,	5]

for	number	in	numbers:

print(number	+	2)

And that’s it! If you run this code, you should see the results of
your for loop in your shell.

ITERATING THROUGH FOR LOOPS

As we’ve learned, for loops iterate a specific amount of times.
The computer knows how many times to iterate based on the
iterator we give it. In our earlier example, we iterated through
every item in the list we passed to our for loop:

for	number	in	numbers:

This works great if we want to go through every item in a list or
tuple. But what if we don’t want to go through every item? What if
we only want to iterate, say, 3 times? Or only go through a specific
range of numbers? We can do all of these things!

Every for loop requires an iterator and a group of items.
When you look at the code for a for loop, you can think of it like
this:

for	<iterator>	in	<group	of	items>:

The <iterator> and <group	of	items> are the parts you
replace when you create your own for loop. So, if we wanted to
simply iterate 3 times, rather than iterate through an entire list or
tuple with items in it, we would replace the <iterator> and
<group	of	items> with the following:

for	i	in	range(3):

Our <iterator> is now a new variable i, which is the standard
name for an iterator variable in programming, and our <group	of
items> is now a range of numbers, which is provided to us by the
built-in range() function. This function can take up to three
parameters (we’ll see how to use each of them shortly).

So, this code tells the computer, for every iteration in the
range of numbers 0–3, do something. If we add a print()
function to see how the iterator variable changes, you’ll see how
this range works:

for	i	in	range(3):

print(i)
This results in this output:
0

1
2

This example shows the range() function taking a single
parameter, which is a stopping point. However, it can also take

another parameter that is a starting point. This allows us to do
something similar to slicing in lists and tuples by iterating over a
specific range of numbers. So, if we wanted to skip straight to the
number 10 and then iterate through the numbers 10 to 20, we’d
use the range() function like this, using two parameters:

for	i	in	range(10,	21):

print(i)
which results in this output:
10

11
12
13
14
15
16
17
18
19
20
Okay, there’s another cool thing we can do with the range()

function. When we give the range() function all three
parameters, the third one is used as the step, or the number of
items to skip when iterating. So, if we only wanted to print the
multiples of 10 in the numbers between 0 and 100, we’d use the
range() function like so:

for	i	in	range(0,	101,	10):

print(i)
which results in this output:
0

10
20
30

40
50
60
70
80
90
100
Pretty neat and very useful!

WHILE LOOP
The second type of loop is a while loop. This kind of loop also
repeats a block of code over and over, but it will keep repeating
as long as a Boolean expression continues to be True to the
computer. We also use this type of loop with groups of items just
like in for loops. However, the while loop is very different than a
for loop, because we tend to use the while loop when we don’t
know how many times we need to repeat a block of code.
Remember that in for loops, we know exactly the number of
times a block of code needs to be repeated.

Let’s say that our numbers list from the previous section
suddenly contained a lot more numbers:

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Now, instead of adding 2 to every number in the list and
printing all of them out to our shell, we decide to go through the
list and only print specific ones. To be exact, we only want to print
the numbers that, with an addition of 2, become a new number
that is less than 20.

How can we do this? Should we use a for loop?
Probably not. We don’t know beforehand exactly how many

times we’ll be repeating the code that adds 2. So for this kind of
problem, we’ll use a while loop!

Let’s begin by declaring our numbers list:

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

Let’s also declare our iterator, the variable that’s used to keep
track of the number of loops we run. In programming, we
sometimes call this a counter variable because it counts the
number of iterations we go through. It is usually named i:

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

This variable is important. Can you guess why? Keep in mind
the differences between for loops and while loops . . .

Have a guess? Or no clue? It’s okay, either way.
Here’s why it’s important: If you remember what makes for

loops different from while loops, it’s that we tell a for loop
exactly how many times to repeat itself. With while loops, we
need to give them a little help. That’s why we created this iterator
variable. When used with our Boolean expression, it acts as a
signal to the while loop to keep going because we haven’t stated
exactly how many times to repeat its code. Make sense?

Now, let’s start our while loop:

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

while

Great! Now let’s give our while loop a Boolean expression to
check against. This rule helps the computer decide if it should
continue repeating the code or if it should stop. In this scenario,
we still want to iterate through all of the numbers in our list. Since
we are keeping track of the number of loops we do, we have to
use a little bit more logic to tell the computer if we have gone

through each object in our numbers list. How would we do this?

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

while(i	<	len(numbers)):

That’s how! We know that our numbers list has a certain
number of objects in it. If we iterate through our list the same
number of times as the total amount of objects in it, then we
know we have gone through them all.

This means our Boolean expression is asking, “Is our iterator
variable less than the total amount of objects in our numbers
list?” If it is, that means we have more numbers to iterate through.
And that also means we repeat our loop. Once our iterator is no
longer less than the total amount of objects, it means we have
iterated through them all, and we can finally stop repeating our
loop.

Did you notice that I used a new piece of code in our Boolean
expression: len()? This is a function, which is a reusable block of
code that returns a value. This simply means that we receive
some sort of output back from the function we use. Usually, the
values we receive back are an integer, but they can also be a
string, Boolean, list, or any other data type that we might find
useful.

The len() function isn’t just any plain function, though. It is
one of Python’s many built-in functions! The len() function, short
for length, takes the input you give it (in this case, our numbers
list), counts the total number of items in it, and gives that total
back to you. That’s exactly what we needed for our Boolean
expression! We’ll learn more about other built-in functions, as well
as how to create our own, in the next few chapters.

So, where were we? Ah, now that we have our Boolean
expression in place, we can begin writing the code to repeat in
our loop. This would be the perfect spot to check and see if the

new number we create after adding 2 will be less than 20:
numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

while(i	<	len(numbers)):

if	(numbers[i]	+	2)	<	20:
Keep in mind that we only want to print the number if the

Boolean expression in our if statement is True! That’s why we
write that code before our actual print statement. Lastly, we
indent our if statement, since it should only run after it passes
the Boolean expression in our while loop.

Next, remember how we access specific items in a list? With
indices! This time, we’ll use them to iterate through each object in
our list, and because we have an iterator variable, we can use it to
access the next object in the list every time we repeat the loop.

Here’s what’s happening: Since we know that we will be
iterating through all objects in the numbers list, and since we
started our iterator variable at 0, the first time we enter the loop,
our Boolean expression in our if statement will be this:

if	(numbers[0]	+	2)	<	20:

That’s exactly what we want as the first time we enter the loop
—we want to deal with the first object in the numbers list. Don’t
forget, lists start at 0!

When we are done with our repeated code, we increment, or
add, one count to our iterator variable. This means our iterator
variable is now set to 1. So, the next loop that repeats means our
Boolean expression will now look like this:

if	(numbers[1]	+	2)	<	20:

Make sense? Because our iterator variable was incremented
the last time we ran the loop, and because we are also using the
iterator as our index, we are able to get the next item in the

numbers list! And, just like before, we increment our iterator
variable when we are done with our repeated code, so when we
repeat the loop the next time, the index we are using also
changes. Pretty cool!

As we iterate through our loop, we ask the computer the same
question: “Hey, if you add 2 to the next number in the numbers
list, will the result be less than 20?” If it is, we finally get to the
print() function and print that number. Again, we indent this
code, as it is a new block that only runs after passing the first two
levels of Boolean expressions.

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

while(i	<	len(numbers)):

if	(numbers[i]	+	2)	<	20:
print(numbers[i]	+	2)

Finally, and probably the most important part of while loops,
we have to add code to increment our iterator variable!
Remember, we are the ones keeping track of how many loops we
have repeated. We also know how important the iterator

variable is, because we use it in our while loop’s Boolean
expression and as our index in our if statement’s Boolean
expression:

numbers	=
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]

i	=	0

while(i	<	len(numbers)):

if	(numbers[i]	+	2)	<	20:
print(numbers[i]	+	2)

i	+=	1
Notice how I put this code on the same indentation level as

the if statement? Because there is no other code that needs to
be repeated, and because we always want to keep count of how
many times we have repeated our loop, we place the increment
code (i	+=	1) here right before it starts the loop all over again.

Now, I said this was the most important part of while loops.
Why? Try running the while loop without the code to increment
our iterator variable. What happens?

You’ve just encountered your first infinite loop! Your shell will
just keep printing the same number over and over again forever:

On no! To stop it, press and hold the CTRL key then press the C
key. Phew, that was wild! An infinite loop is a loop that will repeat
itself forever! And we don’t want that.

Remember, our while loop depends on its Boolean
expression to know when to stop. In our example, part of our
Boolean expression uses the iterator variable. So, if we never
increment our iterator variable, our Boolean expression will
always evaluate to the same thing (usually False). And if it always
evaluates as False, then it will never stop the loop! So be careful
and try not to create any infinite loops in your code (but at least
you know what to do if it happens!).

That’s it! If you run this code (with the code to increment the

iterator), your results should output something like this:

CODE COMPLETE!
In this chapter, we learned about for loops and while loops. We
see how useful they are for repeating blocks of code, and we now
know when to use one over the other.

• For loops are usually used when we know how many times we
need to repeat a block of code.

• While loops are usually used when we don’t know how many
times to repeat a block of code.

• We need to be careful not to write any infinite loops, but there’s
always CTRL + C to stop it!

• You can create even more complex loops by putting if
statements within them.

Next chapter, we’ll take a look at a really cool module that

Python has: Turtle! We’ll draw shapes, change colors, and move
shapes around on the screen. But first, here are some activities to
help you hone your loop skills!

CHAPTER 5 ✮ ACTIVITIES

ACTIVITY 1: THERE’S A LOOP FOR THAT!

Let’s say we wanted to output a greeting to our friends and tell
them what our favorite dessert is:

print("Hi!	My	name	is	Adrienne.	My	favorite
dessert	is	ice	cream.")

This works if your name happens to be Adrienne. Oh, and if
your favorite dessert also happens to be ice cream. What if it was
chocolate? Or cookies? Or cake? What if you had a different
name? How would you change the print() function to output
your name and favorite dessert?

You could write a print() function for each combination. It
would look like this:

print("Hi!	My	name	is	Adrienne.	My	favorite
dessert	is	ice	cream.")

print("Hi!	My	name	is	Mario.	My	favorite	dessert
is	creme	brulee.")

print("Hi!	My	name	is	Neo.	My	favorite	dessert	is

cake.")

That’s a lot of work, though. If you look at the three print()
functions, do you notice any kind of pattern? All of them are
exactly the same, except for the name and the dessert! This
would be a great case to use an f-string and some loops!

What to Do
Write a loop that outputs the name of the person and their
favorite dessert using the two lists below. The order of favorite
desserts matches the order of the people who like them, so don’t
worry about that. Use an f-string to print out the message.

people	=	['Mario',	'Peach',	'Luigi',	'Daisy',
'Toad',	'Yoshi']

desserts	=	['Star	Pudding',	'Peach	Pie',
'Popsicles',	'Honey	Cake',	'Cookies',	'Jelly
Beans']

Expected Result
Hi!	My	name	is	Mario.	My	favorite	dessert	is	Star
Pudding.

Hi!	My	name	is	Peach.	My	favorite	dessert	is	Peach
Pie.

. . . (and continued for rest of list)

ACTIVITY 2: LOOP DE LOOP, WHICH HULA HOOP LOOP?

Nacho the cat is walking through the neighborhood, when he
sees some hula hoops by a playground. He notices that there are
a few placed together by the swings and another group propped
up by the basketball court. Nacho gets the idea to invite his
friends to come and play.

What to Do

Using your knowledge of loops, write either a for loop or while
loop to cycle through Nacho’s cat friends and send them to a
specific set of hula hoops.

Nacho has requested for his more athletic or younger friends
to be sent to the hula hoops by the swings, since those hula
hoops are more difficult to jump through while the swings are in
motion. However, if the cat friends are older or less athletic, they
should go to the hula hoops propped up by the basketball court,
as they are easier to jump through.

Here’s some code to help you get started:
nachos_friends	=	['athletic',	'not	athletic',
'older',	'athletic',	'younger',	'athletic',	'not
athletic',	'older',	'athletic',	'older',
'athletic']

hula_hoops_by_swings	=	0

hula_hoops_by_basketball_court	=	0

As you cycle through Nacho’s friends, determine which group
they belong to, then add another count to that group to keep
track of how many cats are in each. Finally, print how many cats
are at the hula hoops by the swings and how many cats are at the
hula hoops by the basketball court.

Sample Expected Output
Cats	at	Hula	Hoops	by	Swings:	6

Cats	at	Hula	Hoops	by	Basketball	Court:	5

ACTIVITY 3: IFFY LEGS

Imagine that we worked at a zoo and needed to organize the
animals based on the number of legs they have. After organizing
them, we also count the total number of animals we have in each
group. How would we do this? In real life, we would probably take
each animal one by one, look at the number of legs it has, and
then put it in an area we’ve marked as animals having a specific
amount of legs. After sorting, we could then count the total
number of animals in each area.

Let’s try writing a small program to help us sort our animals
instead. Sound good?

What to Do
To start, let’s create some variables for the different groups of
animal legs and assign a starting count of 0 (since we haven’t
sorted any yet!):

has_zero_legs	=	0

has_two_legs	=	0

has_four_legs	=	0

Cool! For now, we know that these are the three types of
groups that an animal from our zoo can be placed into: a group
for animals with no legs, another group for animals with two legs,
and a third group for animals that have four legs. Here’s some
information about the various animals and their number of legs:
moose	=	4
snake	=	0
penguin	=	2
lion	=	4
monkey	=	2
dolphin	=	0
bear	=	2
elephant	=	4
giraffe	=	4
koala	=	2
shark	=	0
kangaroo	=	2
komodo_dragon	=	4

Create a list with the animal leg information, use a loop to
iterate through them all, and keep count of which group we add
each animal to. Print out the total number of animals in each
group.

Sample Expected Output
Animals	with	no	legs:	x
Animals	with	two	legs:	y
Animals	with	four	legs:	z

ACTIVITY 4: PASSWORD-PROTECTED SECRET MESSAGE

There are times when we need to share secrets with our friends.
Wouldn’t it be cool to write a small program that only allows users

to see the contents if they provide the right password? Well, we
can do that using while loops!

What to Do
Create a new Python file called secret-message, and save it. In
your program, create three variables: one for a password, one for
a user’s guess, and another for your secret message. I started
some below for some inspiration:

password	=	'cupcakes'

guess	=	''

secret_message	=	'Tomorrow,	I	will	bring	cookies
for	me	and	you	to

share	at	lunch!'

Now, create a while loop. Our while loop will be checking the
password a person tries through the guess variable. Our program
should continue to ask for a password if the person’s guess is
incorrect!

To make sure that only those with the right password can
view your message, have your while loop check to see that your
password variable is not equal to the guess variable. If it isn’t, that
means the person using your program has not entered the right
password or any input at all. In that case, continue the while loop
and use a print() function to ask the user for a password. Also
within the while loop, keep re-assigning your guess variable to
whatever the user types into your program like this:

guess	=	input()

You should only stop your while loop once the user enters
the correct password. Once that happens, use another print()
function to show your secret message!

Save your program, then run it. You should see it continue to
ask you for the right password and only show you the secret

message once you do!

Sample Expected Output

ACTIVITY 5: GUESS THE NUMBER GAME

Using Python’s built-in random module (see here) and while
loops, build a simple number guessing game! The computer will
pick a random number and assign it to a variable, while you take
turns trying to guess that number. Let’s code!

What to Do
Create a new Python file called guess-the-number-game, and
save it. In your program, import the random module (by typing
import	random as shown) and create two variables: one to store
the number the computer randomly picks, and one for the
number of guesses you will allow in your game:

import	random

#	selects	a	random	number	between	1	and	100

number	=	random.randint(1,100)

number_of_guesses	=	0

Remember, you can change the range of the random number
picked. This is your game!

Now, create a while loop that checks your
number_of_guesses variable to see if it’s less than the maximum
number of guesses you will allow for your game.

<Write	some	code	here>

If it is, that means you still have guesses remaining. In that
case, continue the while loop and write a print() function to
ask for a number between the range you have selected.

<Write	some	code	here>

Also within the while loop, assign a new guess variable to
whatever you type into your program, like this:

guess	=	input()

By default, anything you enter into your shell is of the string
type. To make sure you can check your number of guesses
correctly, transform your guess variable into an int type by using
Python’s built-in int() function:

guess	=	int(guess)

Now that you’ve taken another guess, you should increase
your number_of_guesses variable, as well.

<Write	some	code	here>

Finally, you need to check that the guess you’ve input is equal
to the number the computer chose at the beginning of your
game. Use an if statement for this, and break out of (stop) the
loop if it is. To do this, simply type the reserved code keyword
break

<Write	some	code	here>

You should only stop your while loop once you guess the

correct number or if you’ve run out of chances to guess. In either
case, feel free to write a print() function that tells you it’s game
over or that you’ve correctly guessed the right number!

Save your program, then run it. You should be able to play
your secret number guessing game!

Sample Expected Output

ACTIVITY 6: LOOPING LETTERS

Did you know that you can loop through the letters of a string?
You can with for loops! Let’s loop through our names and count
how many vowels are in them.

What to Do
Let’s try writing a small program to loop through our names and
count how many of each vowel are present. To start, let’s create
some variables to hold information we’ll need:

full_name	=	'Adrienne	Tacke'

number_of_a	=	0
number_of_e	=	0

number_of_i	=	0
number_of_o	=	0
number_of_u	=	0

Now, write a for loop to loop through each letter of your
full_name variable, and if it matches either the letter a, e, i, o, or u,
add a count to the proper variable. When you’re done iterating
through your name, print out the total number of each vowel in
your name.

Sample Expected Output

CHAPTER 5 ✮ CHALLENGES

CHALLENGE 1: THE CHOCOLATEY COOKIE CHOOSER

Imagine that there is a huge pile of chocolate chip cookies in
front of you. Obviously, since you are a chocolate lover, you want
to go through the cookies and choose the ones with the most
chocolate chips. This means only choosing cookies with at least 5
chocolate chips in them. To make sure you get the most
chocolatey cookies possible, you also only want the chocolate
cookies that were baked in chocolate batter (versus the regular
batter). Can you write the ultimate chocolate lover function to get
the most chocolatey cookies?

The cookie tray is represented by the cookies list declared
here:

cookies	=	['R6',	'C5',	'C3',	'C8',	'R7',	'R7',

'C6',	'C9',	'C10',	'R8',	'C2',	'C7',	'R4']

The cookies are labeled as follows: R = Regular batter, C =
Chocolate batter, n = number of chocolate chips in the cookie.

Examples:
'R1' means it is a cookie baked in regular batter with only 1
chocolate chip in it (how sad).
'C8' means it is a cookie baked in chocolate batter with 8
chocolate chips in it (bring it on!).

Instructions: Try writing some code that picks the most
chocolatey cookies and prints out the list of cookies that match
the required rules.

CHALLENGE 2: AN EVEN BETTER GUESS THE NUMBER GAME

The Guess the Number game we created in Activity 5 is pretty
fun, but I think we can make it better. Wouldn’t it be helpful if the
game told you that your guess was too high or too low, so you
could make a more educated guess the next time? Also, it would
be nice to know how many guesses you have left as you play your
game.

What to Do
Open your guess-the-number-game file from Activity 5. Make
some changes to your while loop so it tells you if your guess is
too high or too low when your guess is incorrect. Also, after every
incorrect guess, print out how many guesses you have left.

Sample Expected Output

MAY THE TURTLE BE WITH YOU
One of the coolest things about the Python language is that it
comes with a lot of prewritten code for you to play with! These
groups of ready-made code are called modules. The one we’ll be
diving into for this chapter is the turtle module. A module is a
Python file that contains code blocks that work with each other
and are usually grouped together with other blocks of related
code. We’ll learn more about them and how to create your own in
the next chapter. For now, we’ll be using the turtle module to
create a little turtle, make it move, change its color, and so much
more. Let’s get started!

USING THE TURTLE MODULE
To start using the turtle module, or any other module, we first
need to import it, which means making the code in the turtle
module available for us to use. We do this by using the actual
word import followed by the module we want to use:

import	turtle

Go ahead and import the turtle module in your shell as
shown (Note: You won’t see anything happen yet!).

You can think of importing as a way to tell the computer to
grab a specific instruction manual and have it ready before we
continue with the rest of our code. Here, we are saying, “Hey
computer, we really want to draw some turtles and play around
with them. We know that this kind of code is already written for us
in the turtle module, so could you grab the code that belongs in
that module? That way, when we ask you to do something, you
can look up how to do it in the turtle module!” Yes, we tell the
computer all of that in a single import statement!

CREATING A TURTLE

Once you’ve imported the turtle module, you still won’t see
anything on your screen. Don’t worry, this is normal. Behind the
scenes, though, we now have access to the different pieces of
code the turtle module gives us, so that means we can create a
turtle! To do this, use the turtle module’s shape() function to
tell the computer what kind of shape to draw:

turtle.	shape('turtle')

Go ahead and type that into your shell.

What happens after you press ENTER?

Hey! There’s our turtle! It’s so cute. What will you call yours? I’ll
call mine Tooga.

You’ll see that a separate window has opened where Tooga is
just chilling. This is part of the code that’s already written for us in
the turtle module. Whenever you use the turtle module, it
allows you to play around with two things: a Screen object, which
is the window that will hold your turtle, and a turtle object,
which is the little turtle you created. Since the turtle module
creates these two things, and since it is a ready-made module
with all kinds of code already written for us to interact with these
objects, we can get really creative!

One last thing—write this code:
turtle.setup(500,	500)

This will make our window size a little bit smaller so that it’s
easier to work with and make sure that Tooga doesn’t leave a trail
behind (we’ll talk more about this function in a bit). For now, let’s
have some fun with Tooga’s home (a.k.a. the screen)!

TOOGA’S HOME

Tooga seems to be enjoying his window of a home. We can make
it a bit more fun, though! To start, let’s change the color of his
home. We can do this by using the Screen object’s bgcolor()
function. The bgcolor() function is a prewritten block of code
that changes the background color of the turtle’s screen to one
that you decide! We use it like this:

turtle.Screen().bgcolor("blue")

Here’s what’s happening: First, we need to tell the computer
which object we want to interact with. In this case, it’s the Screen.
Because the Screen object belongs to the turtle module, we
make this connection known using dot notation. In modern
programming styles, dot notation is a way to show that certain
blocks of code are related to each other. So, to tell the computer
we want to specifically use the Screen object that belongs to the
turtle module, we use a dot (.) in between them. That’s how we
get the first part:

turtle.Screen()

But we’re not finished yet! We still have to tell the computer to
use a specific function that belongs to the Screen object to
change the color. In our case, it’s the bgcolor() function. Just as
before, we put a dot in between the Screen object and the name
of the function we want to use:

turtle.Screen().bgcolor()

Finally, we give the bgcolor() function a color:

turtle.Screen().bgcolor("blue")

So, altogether, the computer understands our code to mean,
“Please find the turtle module’s Screen object. When you do,
find the bgcolor() function that belongs to it. Finally, do what
the bgcolor() function says to do with the color we’ve given it.”
In this case, it’s blue. Remember, we didn’t write the code for this;
it’s already written for us in the turtle module. That’s why we
needed to import the turtle module first before using it. Now,
the computer can go through the turtle module’s code, find the
objects and functions we are asking it to use, and run the code
that is already written for us. Neat!

TO HAVE PARENTHESES OR TO NOT HAVE
PARENTHESES

Why does Screen have parentheses (), but turtle does not?
If you look back at the code we wrote, you’ll see:
turtle.	Screen().bgcolor("blue")

This is part of a modern programming style called object-
oriented programming. In object-oriented programming,
programmers focus on writing code that is organized into
groups that are related, can be reused, and can work with
each other like building blocks. This way, code can be written
into modules that we use directly, like the turtle module, or
written in a way that we have to create a copy of it, like the
Screen object. In Python’s turtle module, the Screen
object is something we have to create a copy, or instance, of,
because we might want to make changes to it. You’ll notice
this more and more as you work with other modules and
object-oriented languages.

If you’ve followed along so far, Tooga’s home should now be
blue. This means that writing this code:

should result in this home for Tooga:

Whoa! That’s really blue. Also, not the kind of blue I was
hoping to give to Tooga’s home. I like to think of turtles in the
ocean, so I want to choose a nicer and very specific shade of blue
that’s more like ocean water. Luckily, we can do that! But before
we do, let’s talk a little bit about how colors work.

COLORS ARE JUST A LITTLE R, G, AND B

On a computer, all colors are really just specific combinations of
the three primary additive colors, which are red, green, and blue.
Computers use additive color, which means colors are created
by adding different levels of red, green, and blue together. This
makes sense, because computer screens give off light and can
only combine levels of light to make colors! When choosing colors
on a computer, we need to tell it exactly how much of each

primary color to use to get the resulting color we want. This is
called the RGB color model. The RGB color model stands for the
red green blue color model and is written using three numbers,
with each number representing how much red, green, and blue
should be used:

(R,	G,	B)

Each number represents the amount of red, green, and blue
contained in the specific color you want. The first number is how
strong you want the red color to be. If you wanted the strongest
red and absolutely no other color, you’d give the RGB model the
maximum amount of red, zero for green, and zero for blue:

(255,	0,	0)

Similarly, for the strongest green color, you’d give the
maximum amount of green, and no red or blue:

(0,	255,	0)

And lastly, to create a total blue, you would have no red and
no green:

(0,	0,	255)

Why is the maximum amount 255? Let’s explore a little
deeper! We use this number because of how computers store
information. Computers uses the numbers 0 and 1 to process
information. A bit, which is short for binary digit, is the smallest
unit of data a computer can hold. A bit represents either a 0 or a
1, which literally means “off” or “on.” A byte is another unit of
measurement the computer uses to represent information like
letters or numbers. One byte is equal to eight bits. It also happens
to equal exactly one RGB value! So, in 8-bit binary, this makes the
number 0 equal to 00000000 and the number 255 equal to
11111111. As you can see, the most amount of data we can store
is the same as using up all eight bits in a single byte. And since an
RGB value is exactly one byte of data, this translates to the
maximum number of 255 for RGB values. You never know—some

of this stuff might help you win on Jeopardy!

THE HEXADECIMAL SYSTEM

The color I wanted for Tooga’s home is #1DA2D8. Now, you
may be wondering what color #1DA2D8 is. It’s actually the
very specific shade of blue that I wanted to give Tooga’s
home, written in hexadecimal form. The hexadecimal system
is a number system that uses 16 symbols to represent
numbers, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.
Since it has 16 symbols to represent unique numbers, we
consider hexadecimal to be a base-16 number system.

We humans are used to a base-10 system, which we call
the decimal system. We use exactly 10 symbols, which you
are probably familiar with: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. These are
the only symbols we use to create all of our numbers.

The hexadecimal system allows the computer to store
more information with less code, since it uses 16 different
symbols to represent numbers. Just take a look at a sample
of what our decimal numbers are when written as
hexadecimal numbers:

Decimal (Base 10) Hexadecimal (Base 16)
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

16 10

100 64

200 C8

250 FA

255 FF

From the moment we reach 10 in the decimal system, we
are already required to use two characters. In hexadecimal,
we still only use one character for the number 10, which is “A.”
This means we are already saving the space of one character.

In this system, the different characters go together to
create a 6-digit hexadecimal color. The first pair of
characters in a hexadecimal color is the R value, the second
pair is the G value, and the third pair is the B value. The big
difference between this and the decimal system is that we
just use 6 characters—“1DA2D8” instead of a possible 9 (if
you translate this color, though, it’s only eight: 29, 162, 216).
To make these numbers a hexadecimal color, we add a # sign
in front of the numbers, which tells the computer that it is a
hexadecimal number!

TOOGA’S HOME 2.0

Back to Tooga . . .
Now that we know how to get specific colors using the RGB

model, let’s give Tooga the right shade of blue for his home. First,
we have to tell the turtle module that we want to use the RGB
scale of colors, instead of the standard “named” colors. Here’s
how:

turtle.Screen().colormode(255)

Nice! Now the computer will know that we will be giving it
specific red, green, and blue values! Let’s pass them to the
bgcolor() function next:

turtle.Screen().bgcolor(29,	162,	216)

Sweet! Tooga should now have an awesome ocean blue
setting for his home:

Much better! It’s getting a little hard to see little Tooga,
though! But, just as we can change the screen’s color, we can also
change Tooga’s!

TOOGA’S TRUE COLORS
Now that we’ve changed Tooga’s home to be a nicer shade of
blue, let’s make him a nice turtle green! The code is similar to our
earlier example, except we are changing the turtle object
instead of the Screen object. Can you guess what the code will
look like?

turtle.color(9,	185,	13)

Exactly! We are changing the turtle object itself, so we call
our turtle object directly. Then, we use the turtle module’s
color() function to give it a specific shade of green, using RGB
values. Remember, you can always choose your own colors, so

feel free to pick a different color for your turtle! Tooga should be
a nice green now:

He’s green! However, Tooga is still a little hard to see. Let’s try
adding an outline color to him to help make his turtle shape stand
out. We can use the pencolor function for this!

turtle.pencolor(0,	128,	0)

This should now give Tooga a darker green outline:

But even with these color changes, it’s still quite hard to see
Tooga, so let’s make him a little bigger. Yes, we can!

BIG TOOGA OR LITTLE TOOGA?
Since Tooga’s home is quite large, it can be sort of hard to see him
in the middle of all that ocean water. To fix this, let’s make him a

little bit bigger so it’s easier to find him! We can do this by using
the turtlesize() function:

turtle.turtlesize(10,	10,	2)

The turtlesize() function uses three numbers as its input:
The first and second numbers are used to stretch the turtle
lengthwise (up and down) and widthwise (left and right) a certain
amount. The third number sets the size of the turtle’s outline,
which is the part of Tooga that is a darker green. As you can see,
our code above did make Tooga bigger. Whoa! Maybe a little too
big:

No worries! We can bring him back to original size. If you ever
need to reset your turtle to the original size, you can do so by
using the resizemode() function:

turtle.	resizemode('auto')

This will bring your turtle back to the original size. The 'auto'
parameter just tells the computer to use the default values the
turtle module originally gave us. Let’s try resizing Tooga again,
but not as big this time!

turtle.turtlesize(3,	3,	2)

Ahh, just right! These inputs give me a perfect-sized Tooga.
Not too big, but not too small either:

Now, you may be wondering about that third parameter in the
turtlesize() function—something about the outline? Yes, this
number decides how thick or how thin Tooga’s outline should be.
So, if you give the turtlesize() function a third input, it acts as a
shortcut to also resize the outline. Of course, you can always
change the outline thickness directly, without having to change
Tooga’s size. To do this, we just give the turtlesize() function a
single input and what it should be used for:

turtle.turtlesize(outline=10)

When you do this, Tooga’s outline will be a bit thicker!

I think that outline is too thick, so I’m going to change it:
turtle.turtlesize(outline=3)

This looks much better:

Now that Tooga is the right size and color, let’s get him
comfortable with his surroundings!

MOVING TOOGA AROUND
Tooga is quite enjoying his home. There’s so much water to swim
around in! To enjoy it, you can move Tooga around using the
forward() and back() functions. Both functions take a number
as an input and will be the number of pixels Tooga will move
across the screen. Pixels, short for picture element, are the small
little dots that make up what we see on a computer screen. They
are the most common unit of measurement used when we deal
with pictures and drawings! So, to move Tooga forward 200
pixels, you’d write:

turtle.forward(200)

Look at that! He’s moved to the right!

And to move him backward 350 pixels, you’d write:
turtle.back(350)

Now he’s moved back toward the left side of the screen!

Splish-splash, Tooga’s having fun swimming around! He’s
moved to the right, and he’s moved to the left of the screen. Now
he wants to explore the top and bottom parts! How do we do
that?

Well, how would you move toward something that you
wanted to go to? You’d probably turn your body in the direction
of your target, and then start walking toward it, right? We write
the same kind of code to turn Tooga around! Let’s say we wanted
to move Tooga to the top of the screen. What direction would he
first have to turn toward in order to face the top?

Left! So we move Tooga to the left a certain amount:
turtle.left(90)

Nice. Tooga should now be facing the top of the screen. That’s
exactly what we want, as that’s the direction we’re heading!

Here’s what’s happening: The number of units you pass into
the left(), and soon, right(), function act as degrees. Just like
in math, these are measurements that determine how far around
you’ve moved in a circle. If you’ve turned 360 degrees, it means
you’ve turned around in a full circle, and you’d be facing the same
direction as when you started. Turning 180 degrees means you
would end up facing in the complete opposite direction from
where you started. These degree measurements, when passed as
numbers to the left() and right() functions, are very useful in
turning Tooga around so he can move in very specific directions!

Now, you know the rest. Move Tooga forward to bring him to
the top of the screen:

turtle.forward(200)

Whee! Tooga has now explored part of the top of his ocean
screen home!

All that’s left is to explore the bottom of the screen. Think we
can get him near the bottom-right corner? Remember, we first
need to turn him toward the correct direction, and then we can
move him!

One way we could do this is to first turn him way around to
the right:

turtle.	right(150)

Then, we can move him forward enough pixels to get him to
the bottom right:

turtle.forward(300)

Looks like we’re a little short. Let’s move him a few more pixels
forward to get him closer to the bottom-right corner.

turtle.forward(200)

That’s a little better! Now Tooga has explored his home! You
can keep playing around and let Tooga explore his ocean screen
home until you’re comfortable with the forward(), back(),
left(), and right() functions.

DOODLES AND SHAPES
Even though it’s called the turtle module, we can actually use it
for drawing and creating shapes as well. The turtle object gives
us many functions that can be reused for drawing on the Screen

object. Let’s see how we can do that!

CREATING A PEN

To start drawing, we need a tool to draw with! For that, we can
create an instance of the turtle object and call it pen.

pen	=	turtle.Turtle()

Remember, since an instance is a copy of an object, we get all
of the pre-built functions that come with the original object! So,
that means our pen variable can use the same functions we used
earlier. That’s how we can write code like this:

pen.color("blue")

pen.pensize(5)

pen.forward(100)

Do those functions look familiar? That’s because they are! We
used them with Tooga earlier in this chapter. In Tooga’s case, we
used these functions to change Tooga and make him move. Now,
since we want to use the turtle object to draw, we reuse these
same functions to help us draw instead of moving an object
around!

CREATING A SHAPE

Let’s keep using our pen to draw. How would you draw an orange
square? Think about how you would draw one in real life with
your hand. You’d probably pick an orange-colored pen to start. In
code, we’d do the same thing! We would “pick” our color by
changing the color of our pen:

pen.color("orange")

Next, we would move our pen in the shape of a square. This
would mean moving our hand to create four equal lines in four

different directions until our line ends where we started. How
would this look in code? Remember, we can use any of the
functions we’ve already used with Tooga, since we’re using the
same object to power our pen!

To start, we’d draw the first line. So in code, it could be
something like this:

pen.forward(100)

Which means your screen would look like this:

Now, what direction would you move your pen to continue
drawing a square? Probably up, toward the top of the page, right?
In code, that’s the same as turning the direction of the pen. And
we already know how to do that! So, to turn our pen upward, we’d
need to turn it to the left about 90 degrees:

pen.left(90)

Then, we’d draw another line that’s the same size:
pen.forward(100)

Now our square is half complete!

All that’s left are two more sides to our square. I think you
know what to do :)

pen.left(90)

pen.forward(100)

pen.left(90)

pen.forward(100)

After this code, our square should be complete:

Awesome! You may notice that the arrow shape is kind of
blocking our cool new square, though. Luckily, we can hide it so

we can see our full square in all its glory. To do that, use the
hideturtle() function:

pen.hideturtle()

The hideturtle() function does just that: it hides the shape
of the turtle object you are currently using. Although we are
using a copy of the turtle module that we just named “pen,” the
names of the functions that it comes with will still be related to
the original turtle object. That’s why the function is called
hideturtle() and not hidepen, for example.

Now we should see all of our square:

For this shape, we repeated the same code a specific number
of times. This means that we can probably make this code even
better! What block of code can we use to draw this same square
with less repeated code? Did you say a for loop? If so, you’re
right!

for	i	in	range(1,	5):

pen.forward(100)
pen.left(90)

That’s much better! Whenever we can make our code easier

to understand, as we did here by using less code, it’s best to do
so. That way, if we ever need to look back at our code, we’ll know
exactly what’s happening.

FILLING SHAPES WITH COLOR

For most of this chapter, we’ve been drawing shapes that are just
outlines. However, that doesn’t mean we can’t fill them with color!
To draw a shape that is filled in, we first have to tell the computer
what color we want to fill our shape with:

pen.fillcolor('orange')

Then we signal to the computer that we want to fill the shape
we are about to draw:

pen.begin_fill()

Now, you can begin drawing any shape you’d like. Free draw
by giving the pen directions to move it around, or read on and use
one of the built-in functions (which we cover right after this
section). For this section, I’ll choose a circle:

pen.circle(50)

And now we will tell the computer that we’re finished drawing
our shape, so it can finish the color-filling process:

pen.end_fill()

Voilà! A nice orange circle:

USING BUILT-IN FUNCTIONS

Did you know that the turtle object also has some built-in
functions to create some cool drawings? Let’s go over them now!

circle()
The circle() function is used to create . . . you guessed it, circles!
The circle() function takes up to three parameters, all of which
are int types:

circle(radius,	extent,	steps)

When you use this function to draw circles, you have to give
at least one parameter, which will be used as the radius (size)
input. So, if we wrote this:

pen.circle(100)

we would draw a circle with a radius of 100.

This is the simplest way to draw circles. But what happens if
we give the circle() function two parameters? Well, the values
would fill the radius (size) and extent (distance) parameters. So if
we wrote this code:

pen.circle(100,	180)

we are telling the computer to draw a circle with a radius of
100 (first parameter), but to draw it only to the extent of 180
degrees (second parameter). This would result in an exact half of
a circle, or semicircle, because a full circle is equal to 360 degrees.

Finally, if we use all three parameters in the circle()
function, the third parameter steps (direction) would change the
direction of the drawing by the value passed into it. So, this code:

pen.circle(200,	270,	30)

tells the computer, “Hi there, can you draw me a circle with a
radius of 200, but only to the extent of 270 degrees, and turn the
pen by 30 degrees as you are drawing?” That’s a complex set of
instructions! But it results in something fun.

As you can see, it begins drawing a sort of swirl! There are so
many kinds of shapes and doodles you can draw using the
circle() function. Try changing the parameters around to see
what you can create. Don’t forget to change the pen color and
size to get even more creative with your drawings!

stamp()
Another really cool built-in function the turtle object gives us is
the stamp() function. Just like it sounds, the stamp() function
“stamps” a copy of the shape you select each time you use it. To
see this in action, let’s first create a copy of the turtle object, set
it to the turtle shape, and make it green:

turtle_stamp	=	turtle.Turtle()

turtle_stamp.shape('turtle')

turtle_stamp.color('green')

Let’s hide the line that is usually drawn when moving the
turtle object, since we want to see the stamps:

turtle_stamp.penup()

And now the fun part: To start stamping, simply move your
turtle to the next position you want to stamp, and then use the
function:

turtle_stamp.forward(100)

turtle_stamp.stamp()

Whoa! See how that stamps your turtle shape? Let’s create a
few more:

turtle_stamp.left(90)

turtle_stamp.forward(100)

turtle_stamp.stamp()

turtle_stamp.left(90)

turtle_stamp.forward(100)

turtle_stamp.stamp()

turtle_stamp.left(90)

turtle_stamp.forward(100)

turtle_stamp.stamp()

After doing this, you should have four turtle stamps!

Things can get even more interesting when you combine the
stamp() function with for loops! For example, to create a turtle

spiral, try this code:
import	turtle

#	make	the	random	module	available	for	us	to	use
#	this	one	allows	us	to	generate	random	numbers!

import	random

#	create	a	stamp

stamp	=	turtle.Turtle()

#	make	it	a	turtle	shape

stamp.shape('turtle')

#	lift	the	color	of	the	stamp	so	we	don't	draw	a
continuous	line

stamp.penup()

#	set	RGB	color	mode	to	allow	random	colors	in	RGB

turtle.colormode(255)

#	set	some	variables
#	one	for	the	initial	distance	to	move	(paces)
#	and	three	more	to	hold	the	starting	RGB	values

paces	=	20

random_red	=	50

random_green	=	50

random_blue	=	50

#	start	a	for	loop	to	repeat	the	stamping	code
#	repeat	50	times

for	i	in	range(50):

#	use	random	function	to	pick	a	random	number
for	the

#	red	value

random_red	=	random.randint(0,	255)

#	repeat	random	function	for	green
random_green	=	random.randint(0,	255)

#	repeat	random	function	for	blue
random_blue	=	random.randint(0,	255)

#	set	the	stamp	color	with	the	randomly	chosen
RGB

#	values
stamp.color(random_red,	random_green,
random_blue)

#	STAMP!	Stamp	a	turtle	with	the	colors	from
the	last

#	step
stamp.stamp()

#	add	more	paces
paces	+=	3

#	move	forward	by	the	new	number	of	paces
stamp.forward(paces)

#	slightly	turn	direction	as	we	move	to	start
spiraling
stamp.right(25)

Executing this code results in this:

Just like the circle() function, the stamp() function
provides endless possibilities for drawings and even games! Try
out different shapes and colors to see what you can create!

write()
Another fun built-in function the turtle object provides is the
write() function. If you ever need to write text on your screen,
this is the function to use. It’s similar to the print() function:

pen	=	turtle.Turtle()

pen.write("Turtles	rock!")

This will use the current pen size and color for the text. If we
want to change the font, which is the typestyle, and the size of
the text we write, we can give the write() function a second
parameter! I’m going to change my font to one that’s easy to read,
change the size, and make it a normal type (instead of bold or
italicized):

pen.write("Turtles	rock!",	font=("Open	Sans",	60,
"normal"))

See what we did there? The first parameter is the text we
want to output, and the second parameter is a tuple that holds

details about the font! Executing this code, we get this:

Are you getting excited about all the wonderful possibilities
this function and other functions can provide you while coding?
There’s so much you can do!

CODE COMPLETE!
That was fun! We learned about the turtle module, a lot of the
cool things we can do with it, and even made a new friend—
thanks, Tooga!

• Python comes with a turtle module, which has a library of
ready-to-use functions and code for us to play with.

• The turtle module gives us turtle and Screen objects to use
for drawing, creating shapes, and interacting with a screen.

• We learned how to create our little turtle friend.

• We changed the color of the turtle’s home (the screen)!

• We changed the turtle’s colors, outlines, and size.

• We learned how to move and rotate the turtle around the
screen.

While making friends with our little turtle, we also learned
some important things about computers.

• We learned what the RGB color model is and how it can help us
choose specific colors on a computer.

• We learned how information is stored and what bytes and bits

are.

Finally, we learned how to use the turtle module for drawing
and creating shapes.

• We created some pens.

• We learned how to change colors and pen sizes.

• We learned how to draw shapes and fill them with color.

• We learned how to stamp.
So many things in one module! Next, we’ll learn how to create

our own modules and functions.

CHAPTER 6 ✮ ACTIVITIES

ACTIVITY 1: LET’S DRAW A STAR!

Now that we’ve learned about the turtle module and what it can
do, let’s draw a star! We’ll create a small program that can do this
for us.

What to Do
1. Create a Python file and save it with the name star.

2. Import the turtle module:
import	turtle

3. Set the colormode to 255:

turtle.colormode(255)

4. Create a pen variable and assign it a turtle object. This makes
it easier to understand that we’re drawing something instead

of dealing with a turtle!

pen	=	turtle.Turtle()

5. Choose some RGB values for a shade of yellow you like, or
choose a different color. For this activity, I’m using a bright
yellow:
pen.color(255,	215,	0)

6. Let’s also change the pen size so our star is nice and visible!
You can choose whatever size you want:
pen.pensize(5)

7. Now let’s hide the shape so we can see our star a bit better:
pen.ht()

8. Let’s draw! We’ll move our pen forward by 100 units, then turn
our pen 144 degrees to the right. We’ll do this five times to
create a five-pointed star. So, the code will look like this:
pen.forward(100)

pen.right(144)

pen.forward(100)

pen.right(144)

pen.forward(100)

pen.right(144)

pen.forward(100)

pen.right(144)

pen.right(144)

9. Finished! Save your code by pressing the CTRL and S keys
together. Then press the F5 key to see your star drawn in front
of you! Bonus: Can you optimize the code above to use a for
loop instead?

Sample Expected Output

ACTIVITY 2: FORTUNE-TELLER

What to Do
Create a new file called fortune-teller, and save it. Within it, import
the turtle module and random module:

import	turtle

import	random

Create a new copy of the turtle object, and call it pointer;
you can leave it as the default arrow shape because that’s what
we’ll need! Also, set its size:

pointer	=	turtle.Turtle()

pointer.turtlesize(3,	3,	2)

Create another copy of the turtle object, and call it a pen.
We’ll use this to create our fortune-teller board:

pen	=	turtle.Turtle()

Finally, create a variable to hold your spinner amount, and use
the random module to pick a random number:

spin_amount	=	random.randint(1,360)

Now, lift your pen so that it doesn’t start drawing. We only
want it to draw at the spots we tell it to:

pen.penup()

Use the goto() function to move your pen to the four sides of
your screen. On each side, write some answers that your fortune-
teller pointer can land on. These can be simple “Yes” or “No”
answers or silly ones like “Never in a million years!” To help you
out, I’ve provided the coordinates for the four sides of the screen:

#	right	side

pen.goto(200,	0)

pen.pendown()

pen.write("Yes!",	font=('Open	Sans',	30))

pen.penup()

#	left	side

pen.goto(-400,	0)

pen.pendown()

pen.write("Absolutely	not!",	font=('Open	Sans',
30))

pen.penup()

#	top	side

pen.goto(-100,	300)

pen.pendown()

pen.write("Uhh,	maybe?",	font=('Open	Sans',	30))

pen.penup()

#	bottom	side

pen.goto(0,	-200)

pen.pendown()

pen.write("Yes,	but	after	50	years!",	font=('Open
Sans',	30))

pen.ht()

Finally, pass your spin_amount variable into your pointer’s
left() or right() function to make it spin a certain direction.

Save your file. Now, every time you run your fortune-teller
program, you will get a random answer to your questions!

ACTIVITY 3: RAINBOW TURTLES!

What to Do
Using your knowledge of the stamp() function, create a
program that stamps a turtle in each color of the rainbow. Make
sure the turtles are in the same order as the colors of the
rainbow!

Helpful Hints
Use a for loop to iterate through the steps you need to repeat.
This includes changing the color of the turtle, stamping, and
moving the turtle a certain amount.

Sample Expected Output

ACTIVITY 4: CIRCLECEPTION

Create a circle within a circle within a circle . . .

What to Do

Using the circle() function and your knowledge of filling in
shapes with colors, draw one big circle and fill it with a color. Then,
draw a medium-sized circle and fill it with a different color. At this
point, make sure that you can still see the medium-sized circle
and that it’s contained within the big circle. Finally, draw one
smaller circle, fill it with a different color, and make sure it is
contained within the two larger circles.

Helpful Hints
Again, for loops will be your best friend in creating this drawing,
as a lot of steps are repeated! First, keep track of each step you
take to draw a circle and fill it with color. Once you have found the
repeated steps, try moving it into a for loop. Then, figure out
which parts you need to change to create different-sized circles
and change colors.

Sample Expected Output

ACTIVITY 5: TOOGA’S HOUSE

Now that we know how to use the turtle module’s built-in
functions, let’s create a proper home for Tooga!

What to Do
Create a new turtle named Tooga and a new pen to build Tooga’s
home:

tooga	=	turtle.Turtle()

pen	=	turtle.Turtle()

Using the penup() and pendown() functions, and changing
colors and pen sizes, draw some shapes to create a house for
Tooga. Make sure Tooga is actually inside the house you create
for him!

This can be a simple square around Tooga with a triangle
above the square to represent the roof. Get creative with the
colors and pen sizes. Tooga would surely appreciate a non-boring,
colorful home!

Helpful Hints
Use the penup() and pendown() functions to lift and drop the
pen when you need to draw and not draw. This will make sure you
don’t draw on Tooga!

Sample Expected Output

ACTIVITY 6: WRITING IN PYTHON

Use the write() function to write your name programmatically!
Let’s try it out!

What to Do

Using the turtle module’s write() function, write your name on
the screen!

turtle.write("Adrienne")

If you use the write() function’s other parameters, you can
change the way your text looks, including the font, size, and more.
Here’s an example:

turtle.write("Adrienne",	font	=	("Freestyle
Script",50,"normal"))

Helpful Hints
Search for other font names on your computer’s word processing
software, and change what your text looks like! If you want to
change the color, be sure to change your turtle object’s color first
before using the write() function.

Sample Expected Output

CHAPTER 6 ✮ CHALLENGES

CHALLENGE 1: TOOGA’S TRAVELS

Every now and then, Tooga likes to go up to the surface of the
water. He especially likes to go up during the night so he can see
the stars! Sometimes he sees them when it’s a clear night. If it’s a
cloudy night, however, there’s not much to see, so he swims back
down. Let’s create a small program to draw some stars for Tooga,

but only if it’s a clear night!

What to Do
I’ve prepared some code for you to set the scene, so create a file
called tooga-travels-activity and start including the following in
that file:

import	turtle

import	random

#####	Start	of	setup	#####
#	Allow	RGB	values	for	colors

turtle.colormode(255)

#	Set	screen	size	and	background	color

turtle.Screen().setup(1000,	1000)

turtle.Screen().bgcolor(35,	58,	119)

#	Draw	a	border	to	divide	water	and	surface

divider_pen	=	turtle.Turtle()

divider_pen.color(255,	212,	31)

divider_pen.pensize(10)

divider_pen.back(500)

divider_pen.forward(1000)

#	Hide	pen	after	it	is	done	drawing

divider_pen.ht()

#	Create	a	pen	to	draw	stars

pen	=	turtle.Turtle()

#	Don't	show	its	lines	until	we	ask	it	to	start
drawing

pen.penup()

#	Hide	the	pen	as	we	only	want	to	see	Tooga!

pen.ht()

#	Move	the	pen	to	the	top	left	corner

pen.goto(-200,300)

#	Set	the	pen's	color	and	thickness

pen.color(255,	215,	0)

pen.pensize(5)

######	End	of	setup	######
######	Start	of	Tooga's	Travels	Activity	#####
#	Create	a	Tooga

tooga	=	turtle.Turtle()

#	Make	him	a	Turtle

<Write	some	code	here>

#	Make	Tooga	green,	his	outline	dark	green,	and	of
medium	size

tooga.color(9,	185,	13)

tooga.pencolor(0,	128,	0)

tooga.turtlesize(3,	3,	3)

#	Hide	any	lines	drawn	from	Tooga

tooga.penup()

tooga.goto(0,	-100)

#	Our	function	to	draw	a	star

def	draw_star():

pen.pendown()

#	Use	a	for	loop	to	repeat	the

#	pen.forward(100)	and	pen.right(144)	command

#	5	times	to	draw	a	star
<Write	some	code	here>
pen.penup()
pen.goto(pen.xcor()	+	200,	pen.ycor()	+	20)

return

tooga.left(90)

#	Main	Program

for	i	in	range(1,	6):

#	Move	Tooga	forward	150	units
<Write	some	code	here>
cloudy_night	=	random.choice([True,	False])

#	Use	a	print	function	(and	maybe	an	f-string)

#	to	print	out	if	it's	a	cloudy	day	or	not
<Write	some	code	here>
turtle.delay(30)

#	Use	an	if	statement	to	check

#	it	is	NOT	a	cloudy	night	(AKA	a	clear	night!)

#	If	it	is	NOT	a	cloudy	night,	call	your

#	draw_star()	function
<Write	some	code	here>

#	Turn	Tooga	to	the	right	180	units
<Write	some	code	here>

#	Move	Tooga	forward	150	units
<Write	some	code	here>
turtle.delay(50)
tooga.right(180)

You’ll see that I’ve left placeholders like this: <Write	some

code	here> right where some important pieces of our program
should be. When you find one, remove the comment and replace
it with some code. Use your knowledge of for loops, the turtle
module, and the print() function to finish the rest of the
program.

Once you finish writing code for all of the missing parts, save
your file! When you run it, you’ll see something like this (Hint: It
may vary, depending on how many times you have a cloudy
night!):

Helpful Hints
The comments right above the placeholders will tell you what you
need to do. Pay attention to the exact number, direction, coding
block, or expression that is stated in the comments to keep your
code on track!

CHALLENGE 2: MANDALA

Mandala is a Sanskrit word that means “circle.” Some people like
to draw really pretty and intricate mandalas with different colors
and patterns. In this challenge, you’ll test your knowledge of the
turtle module and loops!

What to Do
Using your knowledge of loops and the turtle module, write a
program to draw a mandala of your own. Use at least two colors
and at least two different shapes or stamps.

CHALLENGE 3: MORE RAINBOW TURTLES!

Building on your Rainbow Turtles in Activity 3, see if you can
move the turtles on your screen to draw an actual rainbow!

What to Do
Using the circle() function with all three parameters, draw
different-sized semicircles for each color of the rainbow. Make
sure all of your turtles are on the right side of the screen when
you’re finished drawing the rainbow!

REUSABLE CODE
At the core of coding is the concept of reusability, or how easy it
is to use something again and again. We write code that can do
repetitive, complex, or time-consuming things for us, but if we had
to write it every single time we needed to use it, coding wouldn’t
be very useful.

Functions and modules provide a way for us to write code
that’s reusable. If you think about it, we’ve already used so many
in this book! We’ve used the print() function since chapter 1,
and we’ve just learned about how fun and interactive the
multipurpose turtle module is in chapter 6!

Most programs are made up of one or many modules, and
each of those modules is usually made up of several functions.
Let’s see how writing code in this way helps us have smarter
programs.

FUNCTIONS
As we’ve learned, functions are reusable blocks of code that can
do something specific or return a value. Usually, we write
functions for things that we often repeat. Let’s say we needed to
greet a person every time they used our program. We could write
a print() function every single time we needed to greet them:

print("Hello,	person!")

print("Hello,	person!")

print("Hello,	person!")

Or, we could move this action of greeting a person into a
function:

def	greet():

print("Hello,	person!")

which we can now use any time by writing code like this:
greet()

Here’s what’s happening: To create a function, we first need
to describe what it will be called and what it will do. We start by
using the def keyword, which signals to the computer that we are
writing a function. It’s short for define. Just like a dictionary
defines what a word means, we define what our function will do
when we use the def keyword.

Next, we name our function. Because we will be greeting
people when we use this function, the name “greet” is a good
choice, as it clearly describes what our function is doing. We then
add some parentheses () to our function name. We may add
parameters in the parentheses later, but for now, we don’t have
any. Lastly, a colon (:) shows that the following indented lines of
code will be part of our function. That’s it!

An important thing to know about functions is that they don’t
run on their own. This means that whenever a computer comes
across one, it automatically skips the code within it. In order to
actually use a function, it needs to be called, meaning we must
clearly tell the computer to start executing the called function’s
code. If we don’t call functions, the code within them will never be
run!

PARAMETERS

Our greet() function is pretty normal. We say “Hello, person!”
whenever we call it. But what if we wanted to greet the person by

their name, instead of the word “person?” That would be a much
nicer greeting, wouldn’t it? Parameters are just the thing we need
to add to our function in order to do this! A parameter is a piece
of input data we give to a function to do something with. A
function can have no parameters, just like our original greet()
function, or it can have one or more parameters. When we create
functions that use parameters, we say that these functions
accept parameters, which lets us know that the function can take
pieces of input data.

To make our greet() function a little nicer, let’s have it accept
one parameter called name and then use it in our greeting! We
add a parameter to a function by placing it in between the
parentheses that come after the function name, like this:

def	greet(name):

print("Hello,	person!")

By adding this parameter to the function, we are now able to
use it within our function. This means we can do something like
this:

def	greet(name):

print(f"Hello,	{name}!")
Now, when we call our greet() function, it will use the

parameter you pass into it, meaning this code:

greet("Adrienne")

will result in this output:
'Hello,	Adrienne!'

Pretty cool! You know what, though? We can make our
greet() function even cooler. Let’s decide that we not only want
to greet someone by their name, but that we also want to change
our greeting depending on the person. We might say, “What’s up,
Adrienne? Nice to see you again!” if we are greeting someone we
know very well, or “Hello, Duke! Nice to meet you!” if it’s someone
new.

Remember, code is all about reusability, so we’re already
ahead of the game by putting our greeting into a function. We
just have to change it a little bit to do these other things we
mentioned! To start, let’s add another parameter to our greet()
function. We’ll add a parameter called is_new, which can tell the
function whether the person we are greeting is someone we
know:

def	greet(name,	is_new):

print(f"Hello,	{name}!")
Great! Now, we just need to add some logic to our function.

Remember, we want to print a different greeting for the people
we know than the one we print for the people we don’t know. In
this case, we can use our newly added is_new parameter to help
us make this decision! So, if we don’t know the person, we can use
a specific greeting:

def	greet(name,	is_new):

if(is_new):
print(f"Hello,	{name}!	Nice	to	meet	you!")

Otherwise, we’ll use the friendlier greeting:
def	greet(name,	is_new):

if(is_new):

print(f"Hello,	{name}!	Nice	to	meet	you!")
else:

print(f"What's	up,	{name}?	Nice	to	see	you
again!")

That’s it! Now, when we use our greet() function, we just
need to pass in a few inputs for the parameters, and it can do the
rest of the work for us! Using the parameters we pass in, the
computer can decide which greeting to use. We can also call our
greet() function as many times as we want, and it will print out a
greeting every time.

Can you imagine having to write an if statement and print a
different f-string each time you needed to do this greeting?
Functions make it much easier and smarter to do actions like this
in code!

RETURN VALUES

As we’ve seen, functions are great for actions we need to repeat.
We can use them to do something for us once or 100 times,
depending on how many times we need it. Functions are also
good at helping us perform calculations or make some changes
to data before we can continue using it in our code. These kinds

of functions usually have return values, which is the resulting
output a function gives us back after calling it.

We’ve already used many functions that return some data to
us throughout this book. If you look back to the turtle module,
we used the xcor() and ycor() functions (here). Do you
remember what return values they gave back? When called,
these functions returned the current x coordinate and current y
coordinate of our turtle!

Function Input/Parameters Accepted Output/Return Value
xcor() none x coordinate of turtle
ycor() none y coordinate of turtle

How about the range() function? When we talked about
loops, we used the range() function to iterate through specific
ranges of numbers. This function accepted a starting and
stopping index (our input parameters). The range() function
then takes these parameters and creates a list of all the numbers
that are between these starting and stopping indices. This newly
created list of numbers is then returned to us (our return value)
so we can iterate through it in the loop we originally called it in.

Function Input/Parameters
Accepted

Output/Return Value

range(stop)
stopping index

ex: range(5)
List of numbers from 0 to stopping index

range(start,
stop)

starting index,
stopping index

ex: range(1,	10)

List of numbers from starting index to
stopping index

range(start,
stop, step)

Starting index,
stopping index,

step

ex: range(1,	100,
5)

List of numbers from starting index to
stopping index, but by step amount

CALLING FUNCTIONS

Calling a function is easy! Whenever there is a point in your code

that you need to use a function, simply call it by writing the
function name followed by parentheses ():

greet()

That’s it! This is the way we call functions that are in the same
file.

Functions in Other Files
You’ll notice that we have already been calling many functions
throughout this book that we haven’t defined ourselves. These
include functions like the print() function and many of the ones
provided by the built-in Python modules. All of these functions
are located in different files, yet we can still use them. How?

When we want to call functions that are in other files, we have
to make sure they are available for the computer to use in our
code. Fun fact: We already know how to do this, and we did it in
chapter 6 with the turtle module! Can you guess how? If you
said importing, then you’re correct!

Just as we imported the entire turtle module in our files in
chapter 6 so we could use all parts of the module, we can import
only the specific functions that we want to use. Let’s say we have
a file called colors.py, and in it, we’ve defined the following
functions:

def	rgb_red():
return	(255,	0,	0)

def	rgb_green():
return	(0,	255,	0)

def	rgb_blue():
return	(0,	0,	255)

def	purple():
return	"red	+	blue"

def	yellow():

return	"blue	+	green"

def	orange():
return	"red	+	yellow"

Later on, we decide to create a game that deals with colors.
We create another file to hold our game and call it color-game.py.
Knowing we have some functions that we can reuse from the
colors.py file, we decide to import them into our color game. For
our purposes, we only need the rgb_red(), purple(), and
yellow() functions from this file. Instead of importing the entire
colors file, we can import just the functions we need, like this:

from	colors	import	rgb_red,	purple,	yellow

Simple, right? The code even makes sense when you read it
out loud. We pretty much tell the computer, “Hey, I need some
functions from the colors file, but I only need the rgb_red(),
purple(), and yellow() functions. Can you bring those into my
file so I can use them? Thanks!”

Now, when you write more code in your color game file, you’ll
be able to call the rgb_red(), purple(), and yellow() functions!

TO HAVE PARENTHESES OR TO NOT HAVE
PARENTHESES

When we import specific functions from a module or file,
you’ll notice that we write their names without the
parentheses:
from	colors	import	rgb_red,	purple,	yellow

This is correct! Remember, if we place parentheses after a
function name, it is the same as calling the function, which
means executing the function’s code. We don’t want to do
that just yet—we simply want to make them available in the
file we are importing them into. Keep this in mind as you
import functions into your files.

CODE COMPLETE!
We learned a lot about writing our own code and using it with
other shared code in the Python language!

• We learned what functions are and how they make up most
modules and programs.

• We learned how to create our own functions.

• We went over functions with and without parameters.

• We discussed what return values are.

• We learned how to call our functions in other parts of our code.

• We learned how to import full modules or only the parts we
need for our own code.

You’re pretty much a coder now! How does it feel?

CHAPTER 7 ✮ ACTIVITIES

ACTIVITY 1: SUPER FUNCTION!

What to Do
Create a function called superpower(). Have your superpower()
function accept two parameters: one called name and another
called power. Using these parameters, have your function print
out an f-string that says who you are and what your superpower
is!

Sample Expected Output
'Hi,	I'm	Super	Adrienne	and	my	superpower	is	coding!'

ACTIVITY 2: FUNNY FUNCTIONS

What to Do
Create a function called funny_greeting(). Have your
funny_greeting() function accept two parameters: one called
color and another called dessert. Using these parameters, have
your function print out an f-string that mixes up the parameters
on purpose to produce a silly message!

Sample Expected Output
'My	favorite	dessert	is	red	because	it	tastes	so
good,	and	my	favorite	color	is	blueberry	pie	because
it	is	very	pretty!!'

ACTIVITY 3: WHAT TIME IS IT OVER THERE?

When you have friends around the world, it can get a little tricky
to keep track of the right times to call them. Depending on where
they are, they can be hours ahead of or behind the time in your
location! To help, let’s write a function that helps us figure out
what time it is in our friends’ cities.

What to Do
Using the datetime() and timedelta() functions from the
datetime module (see here) and some math, write a function that
prints out the current time in your home city and the following
three cities:

Berlin, Germany
Baguio City, Philippines
Tokyo, Japan
My Home: Las Vegas, United States
First, be sure to import the following functions so you can use

them:

from	datetime	import	datetime
from	datetime	import	timedelta

Next, create a function called world_times(). I’ve already
started the function for you, so just fill in the blanks to calculate

the other cities’ times and then print out the final string!

def	world_times():

my_city	=	datetime.now()
berlin	=	<Write	some	code	here>
baguio	=	<Write	some	code	here>
tokyo	=	<Write	some	code	here>
all_times	=	f'''It	is	{my_city:%I:%M}	in	my
city.

That	means	it's	{berlin:%I:%M}	in	Berlin,
{baguio:%I:%M}	in	Baguio	City	and	{tokyo:%I:%M}	in
Tokyo!'''

<Write	some	code	here>	#	print	your	all_times
variable!

To calculate the other cities’ times, you’ll probably need to
add some hours to the my_city variable. You can add hours to a
variable by using the timedelta() function. The timedelta()
function gives us an easy way to properly add units of time (like
days, months, hours, minutes, etc.) to a date or time.

In this activity, you’ll only need to add hours. You do this by
adding a datetime object to a specific amount of hours. So as an
example, if you wanted to add 9 hours to the current time and
then assign this result to a variable called nine_hours_from_now
you’d do the following:

nine_hours_from_now	=	datetime.now()	+
timedelta(hours=9)

>>> Helpful Hint: You can use the Internet to find the time differences between
your home city and the three cities mentioned. Once you figure out those
numbers, use them in your function’s calculations!

>>> Helpful Hint: Don’t change the f-string I’ve provided! The resulting times you
calculate should print out to a nice, readable format.

Sample Expected Output
>>>	world_times()

It	is	07:37	in	Las	Vegas.

That	means	it's	04:37	in	Berlin,	10:37	in	Baguio
City,	and	11:37	in	Tokyo!

ACTIVITY 4: FACTORIAL FUNCTION

One of the most common functions every coder has to write is
called a factorial function. It’s a function that calculates the
factorial of the number you pass into it. And yes, it sounds like
something to do with multiplication, because it is! In math, a
factorial is the product of a number and all the numbers that
come before it. So, if I asked you to calculate the factorial of the
number 4, you would have to multiply 4 * 3 * 2 * 1. The factorial of
4 is 24.

What to Do
Write a function called factorial() that takes one parameter.
This parameter will be a number. Then, write the code to calculate
the factorial of the number that is passed in as a parameter. Have
your factorial() function return the answer!

Sample Expected Output
>>>	factorial(4)

24

ACTIVITY 5: CUPCAKECOOKIE

Dolores and Maeve are having a party together and are setting
up the dessert tables. Dolores likes cupcakes and Maeve loves
cookies! Unfortunately, when they go to the kitchen, all of their
boxes have been mixed up! Each dessert is in a special box, but
all the boxes look the same! Dolores and Maeve don’t fret,
though. They know that they can tell which dessert is which,

because the cookies are in a box with a 3 on them and the
cupcakes are in a box with a 5. Let’s write a function to help them
organize their desserts!

What to Do
Write a function called dessert_sorter() that takes one
parameter. Call the parameter total_desserts. Then, write some
code that will help Dolores and Maeve separate the cupcakes
from the cookies. This should be a for loop that goes through the
total_desserts and checks for these things:

• If it’s a number that’s divisible by 3, print out the word
“cupcake.”

• If it’s a number that’s divisible by 5, print out the word “cookie.”

• If it’s a number that’s divisible by both 3 and 5, print out “it’s a
cupcakecookie!”

When you’re done creating your dessert_sorter() function,
pass in 200 as the total_desserts parameter, because that’s
how many boxes Dolores and Maeve have to sort!

Sample Expected Output

>>>	dessert_sorter(15)

cupcake
cookie
cupcake
cupcake

cookie

cupcake

it's	a	cupcakecookie!

ACTIVITY 6: DRAWING GAME BOARDS

A lot of games require a game board made up of a different

number of squares. Let’s try creating a module that creates any
size game board we need by simply giving it a number!

What to Do
Create a file called game-board and save it. Then, define two
functions: one to print some horizontal lines and one to print
some vertical lines:

def	print_horizontal_line():

def	print_vertical_line():

Next, use the print() function to print out the lines:

def	print_horizontal_line():

print("	---	")

def	print_vertical_line():

print("|	_	")
Next, we need to ask the player what size game board they

need. We should capture their input in a variable:
board_size	=	int(input("What	size	game	board	do
you	need?"))

Finally, create a for loop that iterates as many times as the
board size requested by the player, and print the lines using your
defined print line functions!

<Write	some	code	here>

Now, to correctly print the game board, we need to change
our print line functions a bit. For the print_horizontal_line()
function, how would you change it to print as many lines as the
requested game board size? (Hint: Remember that weird
operator that we can use to “multiply” strings? Hmm . . .)

def	print_horizontal_line():

print("	---	"	<Write	some	code	here>)

For the print_vertical_line() function, you’ll need to
print out as many lines as the requested board size, plus one.

def	print_vertical_line():

print("|	_	"	<Write	some	code	here>)
Finally, print one last horizontal line to finish your board after

your for loop:

print("	---	"	*	board_size)

That’s it! When you save and run your file, it will ask you what
size board you need. Give it a number, and it will print out a board
for you, making the board that number of squares high and wide.
As you can see here, the number 3 gave us a board three squares
wide and three squares high!

Sample Expected Output

ACTIVITY 7: ROCK PAPER SCISSORS

Rock, paper, scissors, go! This game is a very popular game to play
with friends. For as many turns that you like, you and a friend can
choose between rock, paper, or scissors and see who wins
between the two of you. Let’s create this game in Python, where
you can battle friends on the computer!

What to Do
Create a file called rock-paper-scissors-game, and save it. Next,
begin creating your game!

Let’s start by greeting the players:
print("Welcome	to	the	Rock	Paper	Scissors	Game!")

Now, create two variables that will store the names of each
player

player_1	=	<Write	some	code	here>

player_2	=	<Write	some	code	here>

Next, define a function called compare() and have it accept
two parameters. This function will compare the players’ choices
(which are the two parameters it accepts) and tell us who won,
based on the rules of Rock Paper Scissors:

def	compare(item_1,	item_2):

Now, within our compare() function, we have to write a few if
statements! Check for each combination possible in Rock Paper
Scissors, and then print out the winner in each combination. Keep
in mind that each item is stronger than one other item but weaker

than another. To help you write the Boolean expressions for your
if statements, I’ve provided a list of Rock Paper Scissors
combinations and who would win in each combination, based on
the rules:

Choice 1 Choice 2 Winner Between the Two
Rock Paper Paper (paper covers rock)

Rock Scissors Rock (rock breaks scissors)

Rock Rock It’s a tie!

Paper Rock Paper (paper covers rock)

Paper Scissors Scissors (scissors cut paper)

Paper Paper It’s a tie!

Scissors Rock Rock (rock breaks scissors)

Scissors Paper Scissors (scissors cut paper)

Scissors Scissors It’s a tie!

Be sure to add one last elif statement to deal with any
choices that are not rock, paper, or scissors! It would be a good
idea to also tell the players that they have entered a choice that is
not possible if they do this.

Now that we have a compare() function that can check the
combinations for us, the last part is to actually capture the
choices our players choose! Create two variables to store the
player’s choices:

player_1_choice	=	<Write	some	code	here>

player_2_choice	=	<Write	some	code	here>

Lastly, use a print() function to print the results of the
compare() function when you pass the players’ choices into it!

print(compare(player_1_choice,	player_2_choice))

That’s it! Save your file, then press F5 to run it so you can play
Rock Paper Scissors with a friend! Take turns entering your
choices, and see who’s won!

CHAPTER 7 ✮ CHALLENGES

CHALLENGE 1: HANGMAN GAME

Using everything you have learned, try finishing this hangman
game. I have provided the structure for a hangman game below
for you to use. However, it’s up to you to fill in the blanks! Once
you have filled in all of the missing code, noted by the <Write
some	code	here> placeholders, save your file. At this point, you
should be able to play hangman when you press F5 and run your
game!

What to Do
Create a new file called hangman, and save it. Using the template
below, start writing the code into your own hangman.py file. When
you come to a placeholder that says <Write	some	code	here>,
remove the placeholder and replace it with the proper code. Use
the comments to help you figure out what kind of code to write.

#	importing	the	time	module
import	time

#	Welcome	the	user	and	capture	their	name	in	a
name	variable
name	=	input("What	is	your	name?")

#	Use	a	print	function	to	greet	the	user	by	their
name
<Write	some	code	here>

#	Wait	for	1	second
time.sleep(1)

print("Start	guessing...")
time.sleep(0.5)

#	Create	a	variable	called	secret_word	to	store

the	word	to	be	guessed

<Write	some	code	here>

#	Create	a	variable	called	guesses	and	assign	it
to	an	empty	string	''
#	We'll	store	the	letters	the	player	guesses	here

<Write	some	code	here>

#	Create	a	variable	to	store	the	maximum	number	of
turns	the	game	will	allow

<Write	some	code	here>

#	Start	a	while	loop
#	and	check	if	we	have	more	than	0	turns	available

<Write	some	code	here>

#	If	we	have	turns	available:

#	Create	a	counter	variable	that	starts	at	0	to
hold	the	number	of	incorrect

#	guesses	we	make
<Write	some	code	here>

#	Start	a	for	loop

#	and	iterate	through	every	character	in	your
secret_word	variable
<Write	some	code	here>

#	As	you	iterate	through	each	character:

#	use	an	if	statement	to	check	if	the
letter	is

#	in	the	player's	guess,	aka	the	guesses
variable
<Write	some	code	here>

#	If	it	is,	print	then	out	the
character
<Write	some	code	here>

else:

#	If	it	isn't,	print	an	underscore	...
print("_")

#	...and	increase	the	failed	counter	by
1
<Write	some	code	here>

#	Check	if	your	incorrect	guesses	are	equal	to
0
<Write	some	code	here>

#	If	it	is,	tell	the	user	they've	won!
<Write	some	code	here>

#	...then	exit	the	game
break

#	Otherwise,	ask	the	player	to	guess	another
character
guess	=	input("Guess	a	character:")

#	Add	the	player's	guess	to	the	guesses
variable
guesses	+=	guess

#	Create	an	if	statement
#	and	check	if	the	guess	is	not	found	in	the
word
<Write	some	code	here>

#	Decrease	your	turns	by	1
<Write	some	code	here>

#	...and	tell	the	player	their	guess	was
wrong
<Write	some	code	here>

#	Also	tell	the	player	how	many	turns	they
have	left
<Write	some	code	here>

#	Create	an	if	statement	to	check	if	your
turns	are	equal	to	0
<Write	some	code	here>

#	If	they	are,	tell	the	player	they've
lost
<Write	some	code	here>

CHALLENGE 2: TURTLE RACE!

Let’s race some Toogas! We’ll create a race track and some
colorful turtles, and then send them off! Play with your friends by
choosing a turtle at the beginning of the race and seeing if it
finishes first!

What to Do
Create a new file called turtle-race-game, and save it. Then, begin
coding your turtle race game!

First, import the turtle and random modules like this:

from	turtle	import	*

from	random	import	randint

Next, let’s set up the race track:
speed()

penup()

goto(-140,	140)

#	Create	a	for	loop	that	iterates	from	0	-	15

<Write	some	code	here>

#	Use	the	write()	function	to	write	the	number
of	your	for	loop	iterator.

#	Set	the	align	parameter	to	'center'.	These
will	be	your	steps	or	distances

#	in	the	race!
<Write	some	code	here>
right(90)

#	Create	another	for	loop	that	iterates	from	0
-	8
<Write	some	code	here>

#	Use	the	penup(),	forward(),	and	pendown()
functions

#	to	draw	dashes	for	your	race	track

#	First,	lift	your	pen
<Write	some	code	here>

#	Second,	move	forward	10	pixels
<Write	some	code	here>

#	Third,	put	your	pen	down
<Write	some	code	here>

#	Last,	move	forward	another	10	pixels
<Write	some	code	here>

#	Go	backward	so	you	can	draw	the	dashes

#	for	the	other	steps/distances

#	First,	lift	your	pen
<Write	some	code	here>

#	Then,	move	backward	160	pixels
<Write	some	code	here>

#	Turn	left	90	degrees
<Write	some	code	here>

#	Last,	move	forward	20	pixels
<Write	some	code	here>

#	Now,	begin	creating	turtles!	I'll	create	four,
but	feel	free	to	create	more

#	Create	a	turtle
<Write	some	code	here>

#	Set	its	shape	to	a	turtle
<Write	some	code	here>

#	Set	its	color
<Write	some	code	here>

#	Lift	your	pen
<Write	some	code	here>

#	Now,	move	this	first	turtle	to	the	top	left
#	Use	the	goto()	function	to	move	it	to	x	=	-160,
y	=	100
<Write	some	code	here>

#	Put	the	pen	back	down
<Write	some	code	here>
#	Finally,	make	your	first	turtle	do	a	little	spin
#	when	they	get	to	the	starting	line!

#	Create	a	for	loop	that	iterates	from	zero	to	a
number	you	choose

<Write	some	code	here>

#	Turn	your	first	turtle	to	the	right	by	a
number	of	degrees	you	choose
<Write	some	code	here>

#	Create	three	(or	more!)	turtles	with	different
names	and	colors
#	Make	sure	each	turtle	repeats	all	of	the	steps
and	code	we	wrote
#	for	the	first	turtle	:)
#
#	When	you	get	to	the	goto()	function	for	each
turtle
#	use	these	coordinates:
#	2nd	turtle:	x	=	-160,	y	=	70
#	3rd	turtle:	x	=	-160,	y	=	40
#	4th	turtle:	x	=	-160,	y	=	10
#	any	other	turtle	afterward:	x	=	-160,	y	=	the
last	turtle's	y	coordinate	minus	30

<Write	lots	of	code	here>
<Code	for	the	three	other	turtles>

#	Finally,	after	your	code	for	three	other
turtles,
#	make	the	turtles	race!

#	Create	a	for	loop	that	iterates	100	times

<Write	some	code	here>

#	For	each	turtle,	move	them	forward	by	a
random	number

#	chosen	by	the	random	function.	Give	the

random	function

#	a	range	of	1	-	5	to	pick	from
<Write	some	code	here>

That’s it! Save your game, pick a turtle, and press F5 to run
your game. You’ll get to watch your race track be drawn and all of
your turtles race!

FINAL BITS AND BYTES
What Will You Build?
Congratulations, coder! You’ve officially learned how to code in
the Python language!

We’ve learned how to download and install Python so you can
code on any computer. We covered the basic building blocks of
programming, from the print() function and the main data
types, to smarter code blocks and decision-making in code.
Toward the end, we played with the turtle module and learned
how to draw and move shapes. Finally, we learned about the
importance of making code reusable through functions and
modules, and explored how we can combine many of the building
blocks we’ve learned to create our own. We covered a lot of
ground and did a lot of thinking, so you should be proud!

Now that you have the proper tools and knowledge for
coding in Python, what will you build? We’ve created a few games
and have gone through some silly and fun activities, so those are
just a starting point. But there is so much more that you can do.
How about building your own game? Or writing a small program
to create nice pictures and messages for your friends? What if
you created a small program to help someone in need? The
possibilities are endless You just have to imagine it—then
code it!

ANSWER KEY

As an additional resource, this answer key provides sample code
solutions for the activities and challenges outlined in this book.
Keep in mind: these code samples are just one way of achieving
the end result! They are not the only solutions, nor are they the
“correct” or “best” solutions. There are plenty of ways to write
code to achieve the same results, so be sure to give an honest try
before using the code samples here!

CHAPTER 2 ✮ ACTIVITIES

ACTIVITY 1: INTRODUCE YOURSELF

Possible Solution
print("Hi!	My	name	is	Adrienne.")

ACTIVITY 2: TO QUOTE A QUOTE

Possible Solution
print("\"First,	solve	the	problem.	Then,	write	the
code.\"	–	John	Johnson")

ACTIVITY 3: MOOD IS VARIABLE

Possible Solution
mood	=	"curious"

print(f"Today,	I	feel	{mood}!")

ACTIVITY 4: HAIKU, ABOUT YOU!

Possible Solution
haiku	=	"""

Adrienne	enjoys
Coffee,	lots	of	coding,	and
Teaching	you	Python

"""

print(f"{haiku}")

Alternative solution
haiku	=	"""

Adrienne	enjoys
Coffee,	lots	of	coding,	and
Teaching	you	Python

"""

print(haiku)

ACTIVITY 5: SILLY STORIES

Possible Solution
name	=	""

adjective	=	""

favorite_snack	=	""

number	=	""

type_of_tree	=	""

silly_story	=	f"""

Hi,	my	name	is	{name}.
I	really	like	{adjective}	{favorite_snack}!
I	like	it	so	much,	I	try	to	eat	at	least
{number}	every	day.
It	tastes	even	better	when	you	eat	it	under	a
{type_of_tree}!

"""

print(silly_story)

ACTIVITY 6: REUSABLE VARIABLES

Possible Solution
first_name	=	'Adrienne'

full_name	=	f"{first_name}	Tacke"

print(full_name)

ACTIVITY 7: BETTER VARIABLE NAMES

Possible Solutions
first_name	=	"Adrienne"

favorite_snack	=	"Chocolate	chip	cookies"

age	=	20

favorite_color	=	"Blue"

full_name	=	"Adrienne	Tacke"

occupation	=	"Software	Engineer"

print(f"{first_name}	{favorite_snack}	{age}
{favorite_color}	{full_name}	{occupation}")

CHAPTER 2 ✮ CHALLENGES

CHALLENGE 1: MULTILAYER CAKE

Possible Solution

CHAPTER 3 ✮ ACTIVITIES

ACTIVITY 1: HOW OLD ARE YOU?

Possible Solution
name	=	"Adrienne"

age	=	20	+	7

print(f"Hi!	My	name	is	{name}	and	I	am	{age}	years
old!")

ACTIVITY 2: OPERATION PEMDAS

Possible Solution
magic_number	=	(5	**	3	+	175)	+	(27	%	4)	*	11

ACTIVITY 3: COOKIE COMPARISONS

Possible Solution
Rey & Finn
Rey says she has less than or equal to the number of

chocolate chips as Finn.
rey_chocolate_chips	=	10

finn_chocolate_chips	=	18

print(f"Rey's	cookie	has	less	than	or	the	same

amount	of	chocolate	chips	as	Finn's.	This	is
{rey_chocolate_chips	<=	finn_chocolate_chips}!")

Possible Solution
Tom & Jerry
Tom says he does not have the same amount of chocolate

chips in his cookie as Jerry.
tom_chocolate_chips	=	50

jerry_chocolate_chips	=	"50"

print(f"Tom's	cookie	does	not	have	the	same	amount
of	chocolate	chips	as	Jerry's.	This	is
{tom_chocolate_chips	!=	jerry_chocolate_chips}!")

Possible Solution
Trinity & Neo
Neo says he has the same number of chocolate chips as

Trinity.
neo_chocolate_chips	=	3

trinity_chocolate_chips	=	3

print(f"Neo's	cookie	has	the	same	amount	of
chocolate	chips	as	Trinity's.	This	is
{neo_chocolate_chips	==
trinity_chocolate_chips}!")

Possible Solution
Gigi & Kiki
Kiki says she has less chocolate chips in her cookie than Gigi.
kiki_chocolate_chips	=	30

gigi_chocolate_chips	=	31

print(f"Kiki's	cookie	has	less	chocolate	chips

than	Gigi's.	This	is	{kiki_chocolate_chips	<
gigi_chocolate_chips}!")

Possible Solution
Bernard & Elsie
Bernard says he has at least the same amount of chocolate

chips as Elsie, maybe even more!
bernard_chocolate_chips	=	1010

elsie_chocolate_chips	=	10101

print(f"Bernard's	cookie	has	the	same	amount	of
chocolate	chips	or	more	than	Elsie's.	This	is
{bernard_chocolate_chips	>=
elsie_chocolate_chips}!")

ACTIVITY 4: PIE PARTY!

Possible Solution
Chocolate and Caramel Pie
pie_crust	=	"graham	cracker"

pie_slices	=	10

can_evenly_divide_chocolate_caramel_pie	=
(graham_cracker_crust_lovers	%	10)	==	0

print(f"The	Chocolate	and	Caramel	pie	can	be
evenly	divided	for	all	graham	crust	lovers?
{can_evenly_divide_chocolate_caramel_pie}")

Possible Solution
Triple Berry Pie
pie_crust	=	"vanilla	wafer"

pie_slices	=	12

can_evenly_divide_triple_berry_pie	=
(vanilla_wafer_crust_lovers	%	12)	==	0

print(f"The	Triple	Berry	pie	can	be	evenly	divided
for	all	vanilla	wafer	crust	lovers?
{can_evenly_divide_triple_berry_pie	}")

Possible Solution
Pumpkin Pie
pie_crust	=	"graham	cracker"

pie_slices	=	12

can_evenly_divide_pumpkin_pie	=
(graham_cracker_crust_lovers	%	12)	==	0

print(f"The	Pumpkin	pie	can	be	evenly	divided	for
all	graham	crust	lovers?
{can_evenly_divide_pumpkin_pie}")

Possible Solution
Apple Pie
pie_crust	=	"vanilla	wafer"

pie_slices	=	10

can_evenly_divide_apple_pie	=
(vanilla_wafer_crust_lovers	%	10)	==	0

print(f"The	Apple	pie	can	be	evenly	divided	for
all	vanilla	wafer	crust	lovers?
{can_evenly_divide_apple_pie}")

Possible Solution
Banana Cream Pie
pie_crust	=	"vanilla	wafer"

pie_slices	=	10

can_evenly_divide_banana_cream_pie	=
(vanilla_wafer_crust_lovers	%	10)	==	0

print(f"The	Banana	Cream	pie	can	be	evenly	divided
for	all	vanilla	wafer	crust	lovers?
{can_evenly_divide_banana_cream_pie}")

Possible Solution
Mango Pie
pie_crust	=	"graham	cracker"

pie_slices	=	12

can_evenly_divide_mango_pie	=
(graham_cracker_crust_lovers	%	12)	==	0

print(f"The	Mango	pie	can	be	evenly	divided	for
all	graham	crust	lovers?
{can_evenly_divide_mango_pie}")

Possible Solution
S’mores Pie
pie_crust	=	"oreo"

pie_slices	=	12

can_evenly_divide_smores_pie	=	(oreo_crust_wafers
%	12)	==	0

print(f"The	S'mores	pie	can	be	evenly	divided	for
all	oreo	crust	lovers?
{can_evenly_divide_smores_pie}")

ACTIVITY 5: OUTFIT CHECKER

cher_dress_color	=	'pink'

cher_shoe_color	=	'white'

cher_has_earrings	=	True

dionne_dress_color	=	'purple'

dionne_shoe_color	=	'pink'

dionne_has_earrings	=	True

Possible Solution
Outfit Check 1
Cher and Dionne have different dress colors.
print(f"Both	girls	have	different	dress	colors?
{cher_dress_color	!=	'purple'	and
dionne_dress_color	!=	'pink'}")

Possible Solution
Outfit Check 2
Cher and Dionne are both wearing earrings.
print(f"Both	girls	are	wearing	earrings?
{cher_has_earrings	==	True	and	dionne_has_earrings
==	True}")

Possible Solution
Outfit Check 3
At least one person is wearing pink.
print(f"At	least	one	person	is	wearing	pink?
{cher_dress_color	==	'pink'	or	dionne_dress_color
==	'pink'}")

Possible Solution
Outfit Check 4
No one is wearing green.
print(f"No	one	is	wearing	green?	{cher_dress_color

!=	'green'	and	dionne_dress_color	!=	'green'}")

Possible Solution
Outfit Check 5

Cher and Dionne have the same shoe color.
print(f"Both	girls	have	the	same	shoe	colors?
{(cher_shoe_color	==	'pink'	and	dionne_shoe_color
==	'pink')	or	(cher_shoe_color	==	'white'	and
dionne_shoe_color	==	'white')}")

ACTIVITY 6: LOGICAL LAB!

Possible Solution
beakers	=	20

tubes	=	30

rubber_gloves	=	10

safety_glasses	=	4

enough_safety_glasses	=	(safety_glasses	%	4)	==	0

enough_rubber_gloves	=	rubber_gloves	>=	(2	*	4)

enough_tubes	=	tubes	>=	10	*	4

enough_beakers	=	beakers	>=	5	*	4

final_report	=	f'''
Here	is	the	final	report	for	lab	materials:
-
Each	girl	had	enough	safety	glasses:
{enough_safety_glasses}
Each	girl	had	enough	rubber	gloves:
{enough_rubber_gloves	}
Each	girl	had	enough	tubes:	{enough_tubes}
Each	girl	had	enough	beakers:	{enough_beakers}

-
There	are	enough	gloves	and	safety	glasses	for
each	girl:
{enough_rubber_gloves	and
enough_safety_glasses}
There	are	more	than	enough	tubes	and	an	exact
amount	of	beakers	for
each	girl:	{tubes	>	40	and	beakers	==	20}
Each	girl	has	at	least	the	exact	or	greater
amount	of	tubes	or	the
exact	amount	of	beakers:	{tubes	>=	40	or
beakers	==	20}

'''

print(final_report)

ACTIVITY 7: MODULUS MATH

Possible Solution
print(3921	%	4)

print(533	%	7)

ACTIVITY 8: PLANETARY EXPONENTIATION

Possible Solution
Tripolia galaxy - magic number is 3!
print(f"The	Tripolia	galaxy	has	{	9	**	3	}
planets!")

Possible Solution
Deka galaxy - magic number is 10!
print(f"The	Deka	galaxy	has	{	9	**	10	}	planets!")

Possible Solution
Heptaton galaxy - magic number is 7!
print(f"The	Heptaton	galaxy	has	{	9	**	7	}
planets!")

Possible Solution
Oktopia galaxy - magic number is 8!
print(f"The	Oktopia	galaxy	has	{	9	**	8	}
planets!")

CHAPTER 3 ✮ CHALLENGES

CHALLENGE 1: DINNER DECISIONS

name	=	"Adrienne"

entree	=	fried_chicken

side_one	=	french_fries

side_two	=	baked_potato

dessert_one	=	chocolate_ice_cream

dessert_two	=	apple_pie

dessert_three	=	vanilla_donut

dinner_decisions	=	f"""

Hi,	my	name	is	{name}.
I	chose	{entree}	as	my	main	meal!
To	go	with	it,	I	chose	{side_one},	{side_two}
as	my	sides.	And	the	best	part,	I	have
{dessert_one},	{dessert_two},	and
{dessert_three}	waiting	for	me	for	dessert!
Let's	eat!

"""

print(dinner_decisions)

CHAPTER 4 ✮ ACTIVITIES

ACTIVITY 1: THESE ARE A FEW OF MY FAVORITE THINGS

Possible Solution
my_favorite_things	=	['Blue',	3,	'Desserts',
'Running',	33.3]

print(f"These	are	Adrienne's	favorite	things:
{my_favorite_things}")

ACTIVITY 2: SHAPESHIFTERS

Possible Solution
your_cloud_shapes	=	['circle',	'turtle',
'dolphin',	'truck',	'apple',	'spoon']

friend_cloud_shapes	=	['apple',	'turtle',	'spoon',
'truck',	'circle',	'dolphin']

if	your_cloud_shapes[0]	==	friend_cloud_shapes[0]:
print("We	saw	the	same	shape!")

elif	your_cloud_shapes[0]	!=
friend_cloud_shapes[0]:

print("We	saw	different	shapes	this	time.")

if	your_cloud_shapes[1]	==	friend_cloud_shapes[1]:
print("We	saw	the	same	shape!")

elif	your_cloud_shapes[1]	!=
friend_cloud_shapes[1]:

print("We	saw	different	shapes	this	time.")

if	your_cloud_shapes[2]	==	friend_cloud_shapes[2]:
print("We	saw	the	same	shape!")

elif	your_cloud_shapes[2]	!=
friend_cloud_shapes[2]:

print("We	saw	different	shapes	this	time.")

if	your_cloud_shapes[3]	==	friend_cloud_shapes[3]:
print("We	saw	the	same	shape!")

elif	your_cloud_shapes[3]	!=
friend_cloud_shapes[3]:

print("We	saw	different	shapes	this	time.")

if	your_cloud_shapes[4]	==	friend_cloud_shapes[4]:

print("We	saw	the	same	shape!")

elif	your_cloud_shapes[4]	!=
friend_cloud_shapes[4]:

print("We	saw	different	shapes	this	time.")

if	your_cloud_shapes[5]	==	friend_cloud_shapes[5]:
print("We	saw	the	same	shape!")

elif	your_cloud_shapes[5]	!=
friend_cloud_shapes[5]:

print("We	saw	different	shapes	this	time.")

ACTIVITY 3: RANDOM FACTORY

Scenario 1
Andre is about to play tennis with some friends. He has his tennis
racket, but he needs one more thing. Write some code to print
out what he needs!

Possible Solution

print(f"{random_items[1]}	{random_items[4]}")

Scenario 2
Jean just baked some fresh bread. He wants to bring a few loaves
home to share. What can you make from the random items list
that can help him carry his bread home?

Possible Solution
print(f"{random_items[2]}	{random_items[0]}")

Scenario 3
Christina is singing the words to a popular song that is usually
sung at a baseball game. Can you finish the lyrics? “Take me out
to the_____________ _____________!”

Possible Solution
print(f"{random_items[4]}	{random_items[5]}")

Scenario 4
Leslie is writing a story on her favorite sport. It involves a hoop,
five players on each team, and a recognizable orange ball with
black stripes. Which sport is it?

Possible Solution
print(f"{random_items[0]}	{random_items[4]}")

Scenario 5
Julia just received one of the fresh loaves of bread from Jean.
Thanking him, she quickly puts the loaf she received in this item
to keep it warm.

Possible Solution

print(f"{random_items[2]}	{random_items[6]}")

Scenario 6
Mario has a lot of board games and video games. Luckily, he can
store most of them in this item to keep his room nice and clean!

Possible Solution
print(f"{random_items[5]}	{random_items[6]}")

ACTIVITY 4: PET PARADE

pet_parade_order	=	['Pete	the	Pug',	'Sally	the
Siamese	Cat',	'Beau	the	Boxer',	'Lulu	the
Labrador',	'Lily	the	Lynx',	'Pauline	the	Parrot',
'Gina	the	Gerbil',	'Tubby	the	Tabby	Cat']

Instruction 1
Go ahead and remove Gina.

Possible Solution
pet_parade_order.remove('Gina	the	Gerbil')

Alternative solution
del	pet_parade_order[6]

Instruction 2
Move Pauline to the front of the pet parade order.

Possible Solution
del	pet_parade_order[5]

pet_parade_order[0:0]	=	['Pauline	the	Parrot']

Instruction 3
Place Mimi and Cory together so that they come after Lily.

Possible Solution
pet_parade_order[6:6]	=	['Mimi	the	Maltese	Cat',
'Cory	the	Corgi']

Instruction 4
Remove Lulu and Lily from the pet parade.

Possible Solution
del	pet_parade_order[4:6]

print(f"The	order	of	the	Pet	Parade	is:
{pet_parade_order}")

ACTIVITY 5: IF THIS, THEN THAT

Possible Solution
age	=	10

favorite_outfit	=	"red	dress"

favorite_hobby	=	"coding"

year	=	2018

if	year	==	2018:

print(f"It	is	2018.	I	am	currently	{age}	years
old,	love	wearing	a	{favorite_outfit},	and
currently,	{favorite_hobby}	takes	up	all	my
time!")

elif	year	==	2023:

age	+=	5
favorite_outfit	=	"jeans	and	a	t-shirt"

favorite_hobby	=	"making	games"
print(f"It	is	{year}.	I	am	currently	{age}
years	old,	love	wearing	a	{favorite_outfit},
and	currently,	{favorite_hobby}	takes	up	all	my
time!")

elif	year	==	2028:

age	+=	10
favorite_outfit	=	"bike	shorts	and	a	shirt"
favorite_hobby	=	"mountain	biking"
print(f"It	is	{year}.	I	am	currently	{age}
years	old,	love	wearing	a	{favorite_outfit},
and	currently,	{favorite_hobby}	takes	up	all	my
time!")

elif	year	==	2033:

age	+=	15
favorite_outfit	=	"black	dress"
favorite_hobby	=	"playing	the	piano"
print(f"It	is	{year}.	I	am	currently	{age}
years	old,	love	wearing	a	{favorite_outfit},
and	currently,	{favorite_hobby}	takes	up	all	my
time!")

elif	year	==	2038:

age	+=	20
favorite_outfit	=	"white	dress"
favorite_hobby	=	"traveling"
print(f"It	is	{year}.	I	am	currently	{age}
years	old,	love	wearing	a	{favorite_outfit},
and	currently,	{favorite_hobby}	takes	up	all	my
time!")

ACTIVITY 6: SLICING AND DICING

Possible Solution
slicing_area	=	[]

dicing_area	=	[]

crate_1	=	['onions',	'peppers',	'mushrooms',
'apples',	'peaches']

crate_2	=	['lemons',	'limes',	'broccoli',
'cauliflower',	'tangerines']

crate_3	=	['squash',	'potatoes',	'cherries',
'cucumbers',	'carrots']

Crate 1 Solution
slicing_area.append(crate_1[3])

slicing_area.append(crate_1[4])

dicing_area.append(crate_1[0])

dicing_area.append(crate_1[1])

dicing_area.append(crate_1[2])

Crate 2 Solution
dicing_area[3:3]	=	crate_2[2:4]

slicing_area[2:2]	=	crate_2[0:2]

slicing_area.append(crate_2[4])

Crate 3 Solution
dicing_area[5:5]	=	crate_3[0:2]

slicing_area.append(crate_3[2])

dicing_area[7:7]	=	crate_3[3:5]

print(f"Vegetables:	{dicing_area}")

print(f"Fruits:	{slicing_area}")

ACTIVITY 7: TO CHANGE OR NOT TO CHANGE

Collection 1

Possible Solution
person	=	['Adrienne',	'Tacke',	'brown',	'black',
10,	10]

print(f"{person}	are	stored	in	a	list!")

Collection 2

Possible Solution
favorite_animals	=	['cats',	'dogs',	'turtles',
'bunnies']

Collection 3

Possible Solution
rainbow_colors	=	('red',	'orange',	'yellow',
'green',	'blue',	'indigo',	'violet')

print(f"{rainbow_colors}	are	stored	in	a	tuple!")

CHAPTER 4 ✮ CHALLENGES

CHALLENGE 1: CHOOSE YOUR ADVENTURE

Possible Solution
name	=	"Adrienne"

print(f"Welcome	to	{name}'s	Choose	Your	Own
Adventure	game!	As	you	follow	the	story,	you	will
be	presented	with	choices	that	decide	your	fate.

Take	care	and	choose	wisely!	Let's	begin.")

print("You	find	yourself	in	a	dark	room	with	2
doors.	The	first	door	is	red,	the	second	is
white!")

door_choice	=	input("Which	door	do	you	want	to
choose?	red=red	door	or	white=white	door")

if	door_choice	==	"red":

print("Great,	you	walk	through	the	red	door	and
are	now	in	future!	You	meet	a	scientist	that	gives
you	a	mission	of	helping	him	save	the	world!")

choice_one	=	input("What	do	you	want	to	do?
1=Accept	or	2=Decline")

if	choice_one=="1":

print("""___________SUCCESS____________
You	helped	the	scientist	to	save	the	world!	In
gratitude,	the	scientist	builds	a	time	machine
and	sends	you	home!""")

else:

print("""___________GAME	OVER_______________
Too	bad!	You	declined	the	scientist's	offer	and
now	you	are	stuck	in	the	future!""")

else:

print("Great,	you	walked	through	the	white	door
and	now	you	are	in	the	past!	You	meet	a	princess
that	asks	you	to	go	on	a	quest.")	quest_choice	=
input("Do	you	want	to	accept	her	offer	and	go	on
the	quest,	or	do	you	want	to	stay	where	you	are?
1=Accept	and	go	on	quest	or	2=Stay")

if	quest_choice=="1":
print("The	princess	thanks	you	for	accepting
her	offer.	You	begin	the	quest.")

else:

print("""___________GAME	OVER____________
Well,	I	guess	your	story	ends	here!""")

CHAPTER 5 ✮ ACTIVITIES

ACTIVITY 1: THERE’S A LOOP FOR THAT!

Possible Solution
people	=	['Mario',	'Peach',	'Luigi',	'Daisy',	'Toad',
'Yoshi']	desserts	=	['Star	Pudding',	'Peach	Pie',
'Popsicles',	'Honey	Cake',	'Cookies',	'Jelly	Beans']

for	i	in	range(len(people)):

name	=	people[i]
dessert	=	desserts[i]
print(f"Hi!	My	name	is	{name}.	My	favorite
dessert	is	{dessert}.")

ACTIVITY 2: LOOP DE LOOP, WHICH HULA HOOP LOOP?

Possible Solution
nachos_friends	=	['athletic',	'not	athletic',
'older',	'athletic',	'younger',	'athletic',	'not
athletic',	'older',	'athletic',	'older',
'athletic']

hula_hoops_by_swings	=	0
hula_hoops_by_basketball_court	=	0
for	i	in	range(len(nachos_friends)):

if	nachos_friends[i]	==	'athletic'	or
nachos_friends[i]	==	'younger':

hula_hoops_by_swings	+=	1
elif	nachos_friends[i]	==	'not	athletic'	or
nachos_friends[i]	==	'older':

hula_hoops_by_basketball_court	+=	1

print(f"Cats	at	hula	hoops	by	swings:
{hula_hoops_by_swings}")
print(f"Cats	at	hula	hoops	by	basketball	court:
{hula_hoops_by_basketball_court}")

ACTIVITY 3: IFFY LEGS

Possible Solution
has_zero_legs	=	0

has_two_legs	=	0
has_four_legs	=	0

animals	=	[4,	0,	2,	4,	2,	0,	2,	4,	4,	2,	0,	2,	4]
for	i	in	range(len(animals)):

if	animals[i]	==	0:
has_zero_legs	+=	1

elif	animals[i]	==	2:
has_two_legs	+=	1

elif	animals[i]	==	4:
has_four_legs	+=	1

animal_summary	=	f'''
Animals	with	no	legs:	{has_zero_legs}
Animals	with	two	legs:	{has_two_legs}
Animals	with	four	legs:	{has_four_legs}
'''

print(animal_summary)

ACTIVITY 4: PASSWORD-PROTECTED SECRET MESSAGE

Possible Solution
password	=	'cupcakes'

guess	=	''
secret_message	=	'Tomorrow,	I	will	bring	cookies
for	me	and	you	at	lunch	to	share!'
while	guess	!=	password:

print('What	is	the	password?')
guess	=	input()

print(f"Correct	password!	The	secret	message	is:
{secret_message}")

ACTIVITY 5: GUESS THE NUMBER GAME

Possible Solution
import	random

number	=	random.randint(1,	100)
number_of_guesses	=	0

while	number_of_guesses	<	10:

print('Guess	a	number	between	1	and	100:')
guess	=	input()
guess	=	int(guess)
number_of_guesses	=	number_of_guesses	+	1
if	guess	==	number:

print("Whoo!	That's	the	magic	number!")
break

if	number_of_guesses	>=	10:

print(f"Aww,	you	ran	out	of	guesses.	The	magic

number	was	{number}.")

ACTIVITY 6: LOOPING LETTERS

Possible Solution
full_name	=	'Adrienne	Tacke'

number_of_a	=	0
number_of_e	=	0
number_of_i	=	0
number_of_o	=	0
number_of_u	=	0

for	letter	in	full_name:

if	letter.lower()	==	'a':
number_of_a	+=	1

elif	letter.lower()	==	'e':
number_of_e	+=	1

elif	letter.lower()	==	'i':
number_of_i	+=	1

elif	letter.lower()	==	'o':
number_of_o	+=	1

elif	letter.lower()	==	'u':
number_of_u	+=	1

totals	=	f'''

Total	number	of	As:	{number_of_a}
Total	number	of	Es:	{number_of_e}
Total	number	of	Is:	{number_of_i}
Total	number	of	Os:	{number_of_o}
Total	number	of	Us:	{number_of_u}
'''
print(totals)

CHAPTER 5 ✮ CHALLENGES

CHALLENGE 2: AN EVEN BETTER GUESS THE NUMBER GAME

Possible Solution
import	random

number	=	random.randint(1,	100)
number_of_guesses	=	0
number_of_chances	=	20
while	number_of_guesses	<	number_of_chances:
print('Guess	a	number	between	1	and	100:')
guess	=	input()
guess	=	int(guess)
number_of_guesses	=	number_of_guesses	+	1
if	guess	<	number:

print('Your	guess	is	too	low')
if	guess	>	number:

print('Your	guess	is	too	high')
if	guess	==	number:

print("Whoo!	That's	the	magic	number!")
break

print(f"Darn,	that	wasn't	the	right	number.	You
have	{number_	of_chances	-	number_of_guesses}
chances	left	to	guess	the	magic	number!")

print(f"Aww,	you	ran	out	of	guesses.	The	magic
number	was	{number}.")

CHAPTER 6 ✮ ACTIVITIES

ACTIVITY 2: FORTUNE-TELLER

Possible Solution
import	turtle

import	random

pointer	=	turtle.Turtle()
pointer.turtlesize(3,	3,	2)
pen	=	turtle.Turtle()
spin_amount	=	random.randint(1,360)
pen.penup()

pen.goto(200,0)
pen.pendown()
pen.write('Yes!',	font=('Open	Sans',	30))
pen.penup()

pen.goto(-400,	0)
pen.pendown()
pen.write('Absolutely	Not!',	font=('Open	Sans',
30))
pen.penup()

pen.	goto(-100,	300)
pen.pendown()
pen.	write('Uhh,	Maybe?',	font=('Open	Sans',	30))
pen.penup()

pen.	goto(0,	-200)
pen.pendown()
pen.	write('Yes,	but	after	50	years!',	font=('Open
Sans',	30))
pen.ht()
pointer.right(spin_amount)

ACTIVITY 3: RAINBOW TURTLES!

Possible Solution
import	turtle

turtle	=	turtle.Turtle()
turtle.turtlesize(2,	2,	2)
turtle.shape('turtle')
turtle.penup()

for	i	in	range(7):

turtle.forward(50)
if	i	==	0:

turtle.	color('red')
elif	i	==	1:

turtle.	color('orange')
elif	i	==	2:

turtle.	color('yellow')
elif	i	==	3:

turtle.	color('green')
elif	i	==	4:

turtle.	color('blue')
elif	i	==	5:

turtle.	color('indigo')
elif	i	==	6:

turtle.	color('violet')
turtle.stamp()

ACTIVITY 4: CIRCLECEPTION

Possible Solution

import	turtle
pen	=	turtle.Turtle()

pen.color('purple')
pen.begin_fill()
pen.circle(100)
pen.end_fill()
pen.color('blue')
pen.begin_fill()
pen.circle(50)
pen.end_fill()
pen.color('red')
pen.begin_fill()
pen.circle(20)
pen.end_fill()

ACTIVITY 5: TOOGA’S HOUSE

Possible Solution
import	turtle

tooga	=	turtle.Turtle()
tooga.turtlesize(2,	2,	2)
tooga.shape('turtle')
tooga.color('green')
tooga.penup()

pen	=	turtle.Turtle()
pen.pensize(10)
pen.color('yellow')
pen.penup()
pen.forward(100)
pen.left(90)
pen.pendown()
pen.forward(100)
pen.color('red')

pen.left(45)
pen.forward(150)
pen.left(90)
pen.forward(150)
pen.left(45)
pen.color('yellow')
pen.forward(200)
pen.left(90)
pen.forward(210)
pen.left(90)
pen.forward(100)

CHAPTER 6 ✮ CHALLENGES

CHALLENGE 1: TOOGA’S TRAVELS

Possible Solution
import	turtle

import	random

turtle.colormode(255)

turtle.Screen().setup(1000,	1000)
turtle.Screen().bgcolor(35,	58,	119)

divider_pen	=	turtle.Turtle()
divider_pen.color(255,	212,	31)
divider_pen.pensize(10)
divider_pen.back(500)
divider_pen.forward(1000)
divider_pen.ht()

pen	=	turtle.Turtle()
pen.penup()
pen.ht()
pen.goto(-200,300)
pen.color(255,	215,	0)
pen.pensize(5)
tooga	=	turtle.Turtle()
tooga.shape('turtle')
tooga.color(9,	185,13)
tooga.pencolor(0,	128,	0)
tooga.turtlesize(3,	3,	3)

tooga.penup()
tooga.	goto(0,	-100)

def	draw_star():
pen.pendown()
for	i	in	range(5):

pen.forward(100)
pen.right(144)

pen.penup()
pen.goto(pen.xcor()	+	200,	pen.ycor()	+
20)
return

tooga.left(90)

for	i	in	range(1,	6):
tooga.forward(150)
cloudy_night	=	random.choice([True,	False])
print(f"is	cloudy?	{cloudy_night}")
turtle.delay(30)
if	(cloudy_night	!=	True):

draw_star()
tooga.right(180)
tooga.forward(150)
turtle.delay(50)
tooga.right(180)

CHAPTER 7 ✮ ACTIVITIES

ACTIVITY 1: SUPER FUNCTION!

Possible Solution
def	superpower(name,	power):

print(f"Hi,	I'm	Super	{name}	and	my	superpower
is	{power}!")

superpower("Adrienne",	"coding")

ACTIVITY 2: FUNNY FUNCTIONS

Possible Solution
def	funny_greeting(color,	dessert):

print(f"My	favorite	dessert	is	{color}	because
it	tastes	so	good	and	my	favorite	color	is
{dessert}	because	it	is	very	pretty!")

funny_greeting("red",	"blueberry	pie")

ACTIVITY 3: WHAT TIME IS IT OVER THERE?

Possible Solution
from	datetime	import	datetime

from	datetime	import	timedelta

def	world_times():

my_city	=	datetime.now()
berlin	=	my_city	+	timedelta(hours=9)
baguio	=	my_city	+	timedelta(hours=15)
tokyo	=	my_city	+	timedelta(hours=16)
all_times	=	f'''It	is	{my_city:%I:%M}	in	my
city.
That	means	it's	{berlin:%I:%M}	in	Berlin,
{baguio:%I:%M}	in	Baguio	City	and	{tokyo:%I:%M}
in	Tokyo!'''
print(all_times)

world_times()

ACTIVITY 4: FACTORIAL FUNCTION

Possible Solution
def	factorial(number):

result	=	1
while	number	>=	1:

result	=	result	*	number
number	=	number	-	1

return	result

ACTIVITY 5: CUPCAKECOOKIE

Possible Solution
def	dessert_sorter(desserts):

for	i	in	range(desserts):
if	i	%	5	==	0	and	i	%	3	==	0:

print("cupcakecookie")
elif	i	%	3	==	0:

print("cupcake")
elif	i	%	5	==	0:

print("cookie")
dessert_sorter(200)

ACTIVITY 6: DRAWING GAME BOARDS

Possible Solution
def	print_horiz_line():

print("	---	"	*	board_size)

def	print_vert_line():

print("|	"	*	(board_size	+	1))

board_size	=	int(input("What	size	of	game
board?"))

for	index	in	range(board_size):

print_horiz_line()
print_vert_line()

print("	---	"	*	board_size)

ACTIVITY 7: ROCK PAPER SCISSORS

Possible Solution
print("Welcome	to	the	Rock	Paper	Scissors	Game!")

player_1	=	"Adrienne"

player_2	=	"Mario"

def	compare(item_1,	item_2):

if	item_1	==	item_2:
return("It's	a	tie!")

elif	item_1	==	'rock':
if	item_2	==	'scissors':

return("Rock	wins!")
else:

return("Paper	wins!")
elif	item_1	==	'scissors':

if	item_2	==	'paper':
return("Scissors	win!")

else:
return("Rock	wins!")

elif	item_1	==	'paper':
if	item_2	==	'rock':

return("Paper	wins!")
else:

return("Scissors	win!")
else:

return("Uh,	that's	not	valid!	You	have	not
entered	rock,	paper	or	scissors.")

player_1_choice	=	input("%s,	rock,	paper	or
scissors?"	%	player_1)
player_2_choice	=	input("%s,	rock,	paper	or
scissors?"	%	player_2)
print(compare(player_1_choice,	player_2_choice))

CHAPTER 7 ✮ CHALLENGES

CHALLENGE 1: HANGMAN GAME

Possible Solution
import	time

name	=	input("What	is	your	name?")
print(f"Hello,	{name}.	Time	to	play	hangman!")
time.sleep(1)
print("Start	guessing...")
time.sleep(0.5)

word	=	"secret"
guesses	=	''
turns	=	10
while	turns	>	0:

failed	=	0
for	char	in	word:

if	char	in	guesses:
print(char)

else:
print("_")
failed	+=	1

if	failed	==	0:
print("You	won")
break

guess	=	input("Guess	a	character:")
guesses	+=	guess
if	guess	not	in	word:

turns	-=	1
print("Wrong	guess")
print(f"You	have	{turns}	more	guesses
remaining")
if	turns	==	0:

print("You	Lose")

CHALLENGE 2: TURTLE RACE!

Possible Solution
from	turtle	import	*

from	random	import	randint
speed()
penup()

goto(-140,	140)

for	step	in	range(15):
write(step,	align='center')
right(90)
for	num	in	range(8):

penup()
forward(10)
pendown()
forward(10)

penup()
backward(160)
left(90)
forward(20)

ruby	=	Turtle()

ruby.color('red')

ruby.shape('turtle')

ruby.penup()
ruby.goto(-160,	100)
ruby.pendown()
for	turn	in	range(10):

ruby.right(36)

lily	=	Turtle()
lily.color('blue')
lily.shape('turtle')

lily.penup()
lily.goto(-160,	70)
lily.pendown()

for	turn	in	range(72):
lily.left(5)

tooga	=	Turtle()
tooga.shape('turtle')
tooga.color('green')

tooga.penup()
tooga.goto(-160,	40)
tooga.pendown()

for	turn	in	range(60):
tooga.right(6)

juju	=	Turtle()
juju.shape('turtle')
juju.color('orange')

juju.penup()
juju.goto(-160,	10)
juju.pendown()

for	turn	in	range(30):
juju.left(12)

for	turn	in	range(100):
ruby.forward(randint(1,5))
lily.forward(randint(1,5))
tooga.forward(randint(1,5))
juju.forward(randint(1,5))

GLOSSARY

This glossary provides the definitions for many key terms and
concepts discussed in this book. Though some words may look
familiar, keep in mind that their definitions here are within the
context of Python programming.

additive: refers to the process of creating colors on a computer
by adding different levels of light together

addition assignment operator: an operator (+=) used to make
mutations, or changes, by adding to a variable

and operator: a logical operator that determines if both values
being compared are True

arithmetic operators: a set of operators that allow you to
perform mathematical equations
assignment: the action of setting a piece of information or data
to a variable

bit: the smallest unit of data a computer can hold (8 bits = 1 byte)

bits: plural of bit, meaning more than one bit

Boolean type: a data type in Python that can be either True or
False

Boolean expression: a condition that results in a True or False
result

braces: reserved characters { } used to hold variables in
formatted string literals

brackets: reserved characters [] used to hold a list’s collection of
objects or to access an index

break: used with loops, the keyword used to immediately stop
repeating the loop and break out of it

bugs: mistakes or issues in code that cause it to act in an
unintended way

built-in functions: prewritten , ready-to-use code made available
by the Python language

byte: in computing, a unit of measurement the computer uses to
represent information

call: used with functions, the action to run code at that point in
time

comment: a piece of code marked with a hash character (#) that
is not meant to be executed by the computer. Useful for
debugging and including informational reminders about what the
code is doing

comparison operators: a set of operators that help us compare
one value with another

concatenation: the process of combining two things together,
usually strings

debugging: the process of investigating and determining the root
causes of issues in our code that cause it to act in a way we don’t
intend

decimal system: a number system that uses 10 different symbols
to represent and create all numbers

degrees: in math, a unit of measurement based on angles within a
circle

division by zero: a mathematical operation where you try to
divide a number by zero; will result in a ZeroDivisionError in
Python

dot notation: a way to show that certain blocks of code are
related to each other

else if (elif) statement: a basic code block that allows you to
check for a different Boolean expression and that is always used
after an initial if statement

ending index: in the programming concept of slicing, the
stopping or last index to take

equal-to operator: a comparison operator (==) that determines if
the value on the left of the operator is the same as the value on
the right of the operator

escape characters: special characters that alert the computer to
ignore some tricky or troublesome code

execute: to run or have the computer carry out an action

exponentiation: the process of raising an integer to specified
power, which uses the ** operator

extent: in the circle() function (from the Turtle module), the angle
at which to draw the circle

factorial: the resulting number of an integer multiplied by all the
integers below it

floating point numbers: a numeric type in Python that can have
whole and fractional parts and that is written using decimal points

floats: the shorter and more common reference to floating point
numbers

font: a set of type (letter, numbers, and symbols) of a common
style and size

for loop: a basic code block that allows you to repeat some code
a specific number of times

f-strings: short for “formatted strings.” An advanced way to print
strings that allows you to use variables, multiple lines, and
whitespace in the resulting string

function: a reusable code block that can do something specific
or return a value

greater-than operator: a comparison operator (>) that
determines if the value on the left of the operator is larger than
the value on the right of the operator

greater-than-or-equal-to operator: a comparison operator (>=)
that determines if the value on the left of the operator is larger or
the same as the value on the right of the operator

hexadecimal color: a 6-digit number that represents a color, with
each pair in the 6-digit number representing a number equivalent
to an RGB value

hexadecimal system: a number system that uses 16 different
symbols to represent and create all numbers

I/O: the concept of input and output, where pieces of information
or data are used to create or do something

IDE: an acronym for integrated development environment

IDLE: an acronym for integrated development and learning
environment, which is the tool that helps you write, debug, and
run Python code

if statements: a basic code block that allows you to control the
path of your code by checking a Boolean expression

immutable: unable to be changed

import: special keyword used to bring other modules or
functions into your code so you can use them

importing: the coding practice of making code in other files
available for you to use, which uses the import keyword followed
by the module being brought in

increment: the action of adding or increasing by 1

indentation: the coding practice of aligning related lines of code
using whitespace, usually achieved by pressing the Tab key

index: a number that represents the position of an object within
a list or tuple

indices: the plural form of index, meaning more than one index

infinite loop: an unwanted and unending loop that continues to
repeat its code forever (can be ended by pressing CTRL + C)

in operator: a membership operator that determines if a value is
part of a list or tuple and checks for positive confirmation that
something exists

input: information or data we provide to the computer to
process

instance: in object-oriented programming, a copy of a class

int: in Python, the shortened form of integer

integer: a basic data type in Python that represents whole
numbers. Also considered a numeric type

iterating: the action of repeating or going through a collection of
objects one by one

iteration: when iterating, one full cycle of repeated code

iterator: in for or while loops, the counter variable used to keep
track of the number of cycles that have been repeated

less-than operator: a comparison operator (<) that determines if
the value on the left of the operator is smaller than the value on
the right of the operator

less-than-or-equal-to operator: a comparison operator (<=) that
determines if the value on the left of the operator is smaller or the
same as the value on the right of the operator

line break: a new line in code

line feed: similar to line break; a new line in code

list: a basic data type in Python that uses brackets [] to hold a
collection of objects

logical operators: a set of operators used to compare True or
False operands

membership operators: a set of operators used to determine if
specific content is or is not in the input

module: a group or collection of reusable code, usually related

and made up of functions

modulus: an arithmetic operator that performs a division
operation and returns the remainder from that operation

mutable: able to be changed

mutation: in programming, a change or modification

not-equal-to operator: a comparison operator (!=) that
determines if the value on the left of the operator is not the same
to the value on the right of the operator

not in operator: a membership operator that determines if a
value is not part of a list or tuple and checks for positive
confirmation that something does not exist

not operator: a logical operator that determines if the value
being compared is False

numeric types: one of the basic data types in the Python
language that is used to represent numbers

object-oriented programming: a programming style in which
code is organized into groups like building blocks

operands: values that have actions performed on them

operators: special symbols or keywords that represent an action

order of operations: based on the rules of precedence in math,
this is the set of rules the computer follows to determine which
calculations to perform first in a long line of math equations

or operator: a logical operator that determines if at least one of
two values being compared is True

output: the resulting words, numbers, or actions that a computer
gives back after we ask it to do something

parameter: used in a function, this is a piece of a data passed in
as input that the function will do something with

power: in math, the number of times to multiply a number to a

certain exponent

primary additive colors: in computing, these are red, green, and
blue

radius: in the circle() function, the size of the circle you want to
draw

register: a place within the computer’s central processing unit
(CPU) where it can hold information

remainder: in math and while using division, this value is the
remaining amount that is left over in a division equation that is
not evenly divided

return value: the output or resulting data a function gives back
after being called

reusability: the concept of being able to use code over and over
again without much issue

RGB color model: one of the color models used to select colors in
computer coding

rules of precedence: based in mathematics, the order of
importance of certain mathematical operations

semicircle: a half circle equal to 180 degrees

shell: the interactive window that allows you to write Python
code within it and then see the results of your code right away

single quotes: special characters used to surround strings (‘)
slice range: the specific range of items to take when slicing

slicing: the action of taking a specific range of items within a list
or tuple

starting index: in the programming concept of slicing, the
starting or first index to take

step: in the circle() function, the number of units to skip

str: the abbreviated version of the string data type

string: a basic data type in Python that is used to represent
characters or what we know as text

syntax error: a mistake in code that the computer cannot
understand

triple quotes: special characters used with strings to allow multi-
line strings (‘’’) or (“””)

tuple: an unchangeable data type that can hold a collection of
objects and uses parentheses () to hold its objects

type: a designation or label that helps the computer understand
what kind of input we are giving it

type error: a mistake in the code that is related to an incorrect or
unexpected data type

variable: an object that allows us to keep track of information

while loop: another type of loop that keeps repeating a specific
block of code as long as a Boolean expression continues to be
true

zero division error: a mistake in the code that occurs when you
try to divide by 0

RESOURCES

MATH MODULE
This is a built-in module that comes with the Python language.
Much like the turtle module, the math module provides
functions that are ready for us to use and are commonly used in
Python programming. As its name implies, this module provides
many math functions, including sum(), sqrt(), and pow().

The sum() function accepts a list of integers as a parameter
and returns the total of all the integers in the list. It’s a ready-
made function for adding.

The sqrt(x) function accepts an integer and returns its
square root. For example, using sqrt(81) would return a value of
9.

The pow(x,	y) function is another useful function that
accepts two parameters and uses the exponentiation operator to
return the x parameter to the y power. For example, using pow(3,
4) would return a value of 81. It does the same thing as
multiplying 3 x 3 x 3 x 3.

These functions are the most used ones in the math module,
but there are many more. Go to Mathematical Functions in the
Python Standard Library
(https://docs.python.org/3/library/math.html) to see the full list!

RANDOM MODULE
Another built-in module that comes in handy for games and
programs is the random module. As you can guess, it provides
functions that help with the generation of random data. For our
purposes, you can focus on the randint() functions from this
module. Yes, “randint” stands for random integer!

http://docs.python.org/3/library/math.html

randint(x,	y): This function accepts two parameters: a
starting number and an ending number. When you use this
function, it picks a random number for you to use between the
starting number and up to (but not including) the ending number.
We used this function in our Guess the Number Game (here) to
ask the computer to pick a random number for us to guess!

DATETIME MODULE
Another very useful module that is readily available in the Python
language is called the datetime module. This module gives us
many different functions to use that deal with time, dates, and
changes to time and dates. In this book, we’ve used a few
common datetime functions, including the now() function and
the timedelta() function.

The now function returns the current date and time.
The timedelta function allows us to manipulate time

according to a specific unit we set. We used this function in our
What Time Is It Over There? activity (here).

Just like the math module, the datetime module offers so
many other useful functions that can be helpful in your programs.
Be sure to check out the Basic Date and Time Types in the Python
Standard Library
(https://docs.python.org/3/library/datetime.html) to see the full
list. (Don’t worry if the documentation sounds a little scary. As
long as you can find the name of the function and what
parameters it accepts, you should be able to figure out what it
does. You can even experiment with the different functions to
see what they do.)

WEBSITES
Here is a variety of websites to visit to further boost your
programming and Python knowledge!

http://docs.python.org/3/library/datetime.html

PYTHON RESOURCES

There are many resources available that you can use to test your
Python knowledge even beyond this book. Here’s a list of them
and more information about what you can find in each one:

• Practice Python (PracticePython.org): This great website has
many practice problems and projects that you can tackle using
Python.

• Code.org (Code.org/learn): This resource offers fun games and
activities to try on your own with Python.

• Real Python (RealPython.com): This website has many articles
that focus on different programming principles in Python. It’s a
great complement to the information in this book.

• Python Documentation (Docs.Python.org/3/contents.html): This
is the official documentation for the Python 3 language. It may
be a bit advanced, but it is the official source and is good to
know about.

CODING RESOURCES

For more general resources that teach coding, check out
these sites:

• Code.org Course Catalog (Studio.Code.org/courses): This site
has so many excellent coding resources for beginners. Choose
your age range or skill level, and there will be plenty of content
for you to enjoy!

• Scratch (Scratch.MIT.edu): Scratch is a project by the Lifelong
Kindergarten Group at the MIT Media Lab. It is a visual
programming language that can help you learn programming
concepts in a different way.

• Code Academy (CodeCademy.com): This site is an interactive
tool that helps you learn how to code in other languages. Get
real-time feedback as you solve coding puzzles and learn how
to write another language’s code.

http://PracticePython.org
http://Code.org/learn
http://RealPython.com
http://Docs.Python.org/3/contents.html
http://Studio.Code.org/courses
http://Scratch.MIT.edu
http://CodeCademy.com

ACKNOWLEDGMENTS

Mario: mahal, thank you for staying up with me all those
nights. Even though you felt just as tired after work and your eyes
grew heavier the longer you stayed up, you kept me company,
brought me coffee and cake, and helped me pull through and
finish this book. Thank you so much. I love you!

Jillie: You were the inspiration and motivation for this book.
Every time I felt too tired to finish a section or review an activity, I
remembered how excited you were at the prospect of learning
how to code from a book by your sister! It kept me on track and
helped me make sure I wrote a book that was good enough for
you. I love you!

Lucie: I am so happy you are with Jillie and are helping her
navigate this part of her life. I am also so proud of the big sister
you have become to her. Thank you for filling in for me as the
“eldest” sister for all these years. I can’t wait until you both are
closer to me! I love you!

Mom: For always being there and for supporting me through
every part of my life. I love you!

Tito Joel: For always supporting me and for being as excited
about this book as I am!

Tito JP: For never hesitating to let me crash at your place and
for supporting my tech career!

Tito Gerry: For inspiring me to be ambitious and always reach
for the stars!

Ma Angie: For everything you do and more. I hope this book
makes you proud. I love you, Dona Angie!

To all of my Instagram followers: Thank you for your
continued support. Without you, this opportunity wouldn’t even
be possible and this book wouldn’t exist!

Susan Randol: From initial milestone feedback to your

flexibility with deadlines, I appreciate everything you have done
to help make this book a success. Your enthusiasm for the book
made it a joy to work with you. Thank you, and I hope to work on a
JavaScript book with you in the future!

Patty Consolazio: You are quite the trooper for going
through my first book and pointing out all of the inconsistencies,
missing bits of information, and parts that were not quite clear.
This is greatly appreciated, as I not only want to educate readers
but inspire and excite them about the power of code. Without
your help, that would not be possible. Thank you!

Merideth Harte: Your patience and flexibility were incredibly
nice to work with, especially since my book was reliant on
accurate screenshots! Thank you for your quick work and quick
thinking!

Amir Abou Roumié: Your illustrations brought my book to
life! Thank you for creating such wonderful artwork; I’m honored
to have your work in my book!

Vanessa Putt: Our initial conversations and further
discussions about this book were always pleasant. Your
responses were quick, and you answered all of my questions in
full detail. You even discussed my idea for a JavaScript book,
which has some possibility of being created, and that is so
awesome! Thank you for everything!

Marthine Satris: Thank you for taking a chance and sending
me that email for a possible chat about a book. I’m certainly glad
you sent that email!

ABOUT THE AUTHOR

Software engineer, writer, and STEM education advocate
Adrienne B. Tacke is a Filipina technologist who has been
professionally developing software for over eight years. As a
Code.org volunteer in Las Vegas, she regularly speaks to students
of all ages about the power of code and specifically encourages
young women and girls to explore a career in software
engineering. She is also a contributing writer for online tech
publications such as HackerNoon and CodeBurst. Coding for
Kids: Python is her first book (but certainly not her last!).

	Title Page
	Copyright Page
	Dedication
	Contents
	Introduction
	Chapter 1: Welcome to Python!
	Chapter 2: print(“Hello!”)
	Chapter 3: Fun with Numbers
	Chapter 4: Strings and Other Things
	Chapter 5: Looking at Loops
	Chapter 6: May the Turtle Be with You
	Chapter 7: Reusable Code
	Final Bits and Bytes
	Answer Key
	Glossary
	Resources
	Acknowledgments
	About the Author

